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A.1 Introduction

In this Mathematical Appendix the details of the more important derivations are presented.

A.2 Key model derivations

Since Φ′ (s) = φ (s), 0 ≤ Φ(s) < 1, and Φ (0) = 0 we have that:

−m (s) =
d

ds
ln [1 − Φ(s)] ⇒

−
∫ τ−v

0

m (s) ds =

∫ τ−v

0

d ln [1 − Φ(s)]

= ln [1 − Φ(τ − v)] − ln [1 − Φ(0)]

= ln [1 − Φ(τ − v)] . (A.1)

It follows from (A.1) that:

1 − Φ(τ − v) = exp

{
−

∫ τ−v

0

m (s) ds

}
≡ exp {−M (τ − v)} . (A.2)

Obviously, it follows from the definition of M (τ − v) that:

M ′ (τ − v) = m (τ − v) , (A.3)

φ (τ − v) = M ′ (τ − v) exp {−M (τ − v)} . (A.4)

By expanding the lifetime utility function of a newborn we obtain:

Λ(v, v) ≡
∫ t

v

U [c̄(v, τ)] e−[θ(τ−v)+M(τ−v)]dτ +

∫ ∞

t

U [c̄(v, τ)] e−[θ(τ−t)+M(τ−v)−M(t−v)]dτ

=

∫ t

v

U [c̄(v, τ)] e−[θ(τ−v)+M(τ−v)]dτ + Λ(v, t), (A.5)
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where Λ (v, t) is defined as:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t

U [c̄(v, τ)] e−[θ(τ−t)+M(τ−v)]dτ. (A.6)

From the perspective of period t (> v), the first term on the right-hand side of (A.5) reflects the

stream of felicity due to past choices (“water under the bridge”), whilst the second term deals with

current and future felicity. The term exp {M (t − v)} appearing in (A.6) is a constant which does

not affect the optimal choices of the household. It must be recognized, however, in the section on

welfare effects (see below).

The household chooses paths for c̄ (v, τ) and ā (v, τ) in order to maximize Λ(v, t) subject to a

transversality condition, the budget identity,

˙̄a (v, τ) = [r + m (τ − v)] ā (v, τ) + w̄ (τ) − z̄ (τ) − c̄ (v, τ) , (A.7)

and taking as given the initial stock of assets, ā (v, t). The Hamiltonian is:

H ≡ U [c̄(v, τ)] e−[θ(τ−t)+M(τ−v)]

+µ (v, τ)
[
[r + m (τ − v)] ā (v, τ) + w̄ (τ) − z̄ (τ) − c̄ (v, τ)

]
,

and the first-order necessary conditions are:

∂H
∂c̄ (v, τ)

= c̄ (v, τ)
−1/σ

e−[θ(τ−t)+M(τ−v)] − µ (v, τ) = 0, (A.8)

µ̇ (v, τ) = − ∂H
∂ā (v, τ)

= − [r + m (τ − v)]µ (v, τ) . (A.9)

Using (A.8)-(A.9) we can derive the consumption Euler equation for this case:

µ̇ (v, τ) c̄ (v, τ)
1/σ

+
1

σ
µ (v, τ) c̄ (v, τ)

1/σ−1 ˙̄c (v, τ) = − [θ + m (τ − v)] e−[θ(τ−t)+M(τ−v)]

µ̇ (v, τ) c̄ (v, τ)
1/σ

µ (v, τ) c̄ (v, τ)
1/σ

+
1

σ

µ (v, τ) c̄ (v, τ)
1/σ−1 ˙̄c (v, τ)

µ (v, τ) c̄ (v, τ)
1/σ

= − [θ + m (τ − v)]

− [r + m (τ − v)] +
1

σ

˙̄c (v, τ)

c̄ (v, τ)
= − [θ + m (τ − v)]

˙̄c (v, τ)

c̄ (v, τ)
= σ [r − θ] . (A.10)

This is equation (8) in the paper.

The life-time budget constraint is obtained by integrating (A.7) forward in time and imposing

the initial and terminal conditions. The integrating factor is:

R (v, t, τ) ≡ e−[r(τ−t)+M(τ−v)−M(t−v)], (A.11)

dR (v, t, τ)

dτ
= − [r + m (τ − v)]R (v, t, τ) . (A.12)

Using (A.7) we find:

[ ˙̄a (v, τ) − [r + m (τ − v)] ā (v, τ)]R (v, t, τ) = [w̄ (τ) − z̄ (τ) − c̄ (v, τ)]R (v, t, τ)

d

dτ
ā (v, τ) R (v, t, τ) = [w̄ (τ) − z̄ (τ) − c̄ (v, τ)]R (v, t, τ)

∫ ∞

t

dā (v, τ) R (v, t, τ) =

∫ ∞

t

[w̄ (τ) − z̄ (τ) − c̄ (v, τ)]R (v, t, τ) dτ

lim
τ→∞

R (v, t, τ) ā (v, τ) − ā (v, t) =

∫ ∞

t

[w̄ (τ) − z̄ (τ) − c̄ (v, τ)]R (v, t, τ) dτ. (A.13)
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The transversality condition for the household ensures that the first term on the left-hand side of

(A.13) is zero:

lim
τ→∞

R (v, t, τ) ā (v, τ) = 0, (A.14)

so that (A.13) reduces to:
∫ ∞

t

c̄ (v, τ) R (v, t, τ) dτ = ā (v, t) + h̄ (v, t) , (A.15)

h̄ (v, t) ≡
∫ ∞

t

[w̄ (τ) − z̄ (τ)]R (v, t, τ) dτ, (A.16)

where h (v, t) is human wealth at time t of an household of vintage v. It features a generations

index because the annuity rate of interest depends on it. Equation (10) in the paper is obtained

by rewriting (A.16) somewhat.

To solve for consumption in the planning period we note that the Euler equation (A.10) can

be solved to yield:

c̄ (v, τ) = c̄ (v, t) eσ[r−θ](τ−t). (A.17)

Using (A.11) and (A.17) we find that (A.15) can be rewritten as:

ā (v, t) + h̄ (v, t) = c̄ (v, t)

∫ ∞

t

eσ[r−θ](τ−t)e−[r(τ−t)+M(τ−v)−M(t−v)]dτ

= c̄ (v, t) ∆ (v, t) , (A.18)

where ∆ (v, t) is defined as:

∆ (v, t) ≡
∫ ∞

t

eθ(t−τ)−M(τ−v)+M(t−v)dτ

= er∗(t−v)+M(t−v)

∫ ∞

t

e−r∗(τ−v)−M(τ−v)dτ

= er∗u+M(u)

∫ ∞

u

e−[r∗s+M(s)]ds ≡ ∆(u, r∗) , (A.19)

where r∗ ≡ r − σ [r − θ] and u ≡ t − v is the household’s age in the planning period. The general

expression for ∆ (u, λ) is found in equation (11) in the paper. Equation (A.18) is the same as

equation (9) in the paper.

To derive the per capita expressions we first note that:

l (v, t) = be−[n(t−v)+M(t−v)] (A.20)

so that:

l̇ (v, t)

l (v, t)
= − [n + m (t − v)] . (A.21)

Furthermore, it follows from equation (A.16) that human capital evolves according to:

˙̄h (v, t) = [r + m (t − v)] h̄ (v, t) − w̄ (t) + z̄ (t) . (A.22)

Per capita consumption is defined as c(t) ≡
∫ t

−∞ l(v, t)c̄(v, t)dv so that:

ċ (t) = l (t, t) c̄ (t, t) +

∫ t

−∞
l (v, t) ˙̄c (v, t) dv +

∫ t

−∞
l̇ (v, t) c̄ (v, t) dv

= bc̄ (t, t) + σ [r − θ] c (t) −
∫ t

−∞
[n + m (t − v)] l (v, t) c̄ (v, t) dv, (A.23)
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where we have used (A.10) and (A.21) to get to the second line. This is equation (18) in the

paper.

Per capita financial wealth is defined as a(t) ≡
∫ t

−∞ l(v, t)ā(v, t)dv so that:

ȧ (t) = l (t, t) ā (t, t) +

∫ t

−∞
l (v, t) ˙̄a (v, t) dv +

∫ t

−∞
l̇ (v, t) ā (v, t) dv

=

∫ t

−∞
l (v, t)

[
[r + m (t − v)] ā (v, t) + w̄ (t) − z̄ (t) − c̄ (v, t)

]
dv

−
∫ t

−∞
[n + m (t − v)] l (v, t) ā (v, t) dv

= (r − n) a (t) + w (t) − z (t) − c (t) , (A.24)

where w (t) = w̄ (t), z (t) = z̄ (t), and we have used equation (A.7) and noted the fact that

newborns are born without financial assets (a (t, t) = 0). This is equation (19) in the paper.

Finally, per capita human wealth is defined as h(t) ≡
∫ t

−∞ l(v, t)h̄(v, t)dv so that ḣ (t) can be

written as:

ḣ (t) = l (t, t) h̄ (t, t) +

∫ t

−∞
l (v, t) ˙̄h (v, t) dv +

∫ t

−∞
l̇ (v, t) h̄ (v, t) dv

= bh̄ (t, t) +

∫ t

−∞
l (v, t)

[
[r + m (t − v)] h̄ (v, t) − w̄ (t) + z̄ (t)

]
dv

−
∫ t

−∞
[n + m (t − v)] l (v, t) h̄ (v, t) dv

= (r − n) h (t) + bh̄ (t, t) − w (t) + z (t) , (A.25)

where we have used (A.22) to get to the second line. This is equation (20) in the paper.

A.3 Coherency condition

In the text we define the aggregate mortality rate as:

m̄ =

∫ t

−∞
m (t − v)

L (v, t)

L (t)
dv

= b

∫ t

−∞
m (t − v) e−[n(t−v)+M(t−v)]dv

= b

∫ ∞

0

m (s) e−ns−M(s)ds, (A.26)

where we assume that n ≡ b − m̄ 6= 0. To solve this integral we write:

− d

ds

[
e−ns−M(s)

]
= ne−ns−M(s) + m(s)e−ns−M(s) ⇔

− e−ns−M(s)
∣∣∣
∞

s=0
= n

∫ ∞

0

e−ns−M(s)ds +

∫ ∞

0

m (s) e−ns−M(s)ds. (A.27)

By using (A.26) to simplify the second term on the right-hand side of (A.27) we obtain:

1 = (b − m̄)

∫ ∞

0

e−ns−M(s)ds +
m̄

b
⇔

1

b
=

∫ ∞

0

e−ns−M(s)ds ≡ ∆(0, n) , (A.28)
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where ∆ (u, λ) is defined in the text. For a given birth rate b, equation (A.28) implicitly defines

the coherent solution for n and thus for m̄ ≡ b − n. (Vice versa, for a given n, (A.28) determines

the coherent solution for b.) Note that (A.28) coincides with equation (16) in the paper.

A.4 Financial assets

To derive the effect on per capita assets, start with the definition of â and use equations (24)–(26)

in the paper:

â ≡
∫ ∞

0

l(u)ˆ̄a(u)du

=

∫ ∞

0

l(u)∆(u, r∗)ˆ̄c(u) − l(u)ˆ̄h(u)du

= [ŵ − ẑ]∆(0, r)b

∫ ∞

0

e[r−n]uΩ(u, r, r∗)du, (A.29)

where Ω(u, r, r∗) is given by:

Ω(u, r, r∗) ≡
∫ ∞

u
e−r∗s−M(s)ds

∆(0, r∗)
−

∫ ∞
u

e−rs−M(s)ds

∆(0, r)
.

To determine the sign of the integral we need to determine the sign of Ω(u, r, r∗). It is easy to see

that Ω(u, r, r∗) = 0 and lim
u→∞

Ω(u, r, r∗) = 0. Differentiation of Ω(u, r, r∗) with respect to u gives

Ω′(u, r, r∗) =
e−ru−M(u)

∆(0, r)
− e−r∗u−M(u)

∆(0, r∗)
, (A.30)

which clearly has just one root and Ω′(0, r, r∗) > 0 (for r > r∗). This in combination with

continuity of Ω(u, r, r∗) shows that Ω(u, r, r∗) > 0 for u > 0 (and r > r∗), so the whole integral in

equation (A.29) must be positive. This determines the sign of equation (33) because:

dâ

dẑ
=

1

r − n

[
1 +

dĉ

dẑ

]
= −b∆(0, r)

∫ ∞

0

e[r−n]uΩ(u, r, r∗)du < 0. (A.31)

Note that ĉ can be written as:

ĉ = ˆ̄c (0)
∆(0, n∗)

∆(0, n)

= [ŵ − ẑ]
∆(0, r)

∆(0, r∗)

∆(0, n∗)

∆(0, n)
,

where n∗ ≡ n − σ [r − θ]. Hence, it follows that â can be written as:

(r − n) â = ĉ − [ŵ − ẑ]

= [ŵ − ẑ]

[
1 − ∆(0, r)

∆(0, n)

∆(0, n∗)

∆(0, r∗)

]
. (A.32)

Since â > 0 it follows from (A.32) that, since r > n, we have:

∆(0, r)

∆(0, n)

∆(0, n∗)

∆(0, r∗)
< 1.

This result is very hard to prove directly.
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A.5 Calibrating the distribution function

As was shown above (in equation (A.2)), the proportion of the population surviving up to age u

is given by:

1 − Φ(u) = e−M(u), (A.33)

where M(u) =
∫ u

0
m(s)ds. To calibrate the distribution function of the lifetime we first have

to choose a parametric family. We consider four different functional forms for the instantaneous

mortality rate:

1. Constant mortality rate (used by Blanchard to allow for exact aggregation):

m(s) = µ0, (A.34)

M (u) = µ0u. (A.35)

2. Mortality rate linear in age:

m(s) = µ0 + 2µ2
1s, (A.36)

M (u) = µ0u + µ2
1u

2 (A.37)

3. Mortality rate piecewise linear in age:

m(s) = µ0 + 2µ2
1 max(0, s − ū), (A.38)

M (u) = µ0u + δ (u)µ2
1 (u − ū)

2
, (A.39)

where δ (u) = 0 for 0 ≤ u < ū and δ (u) = 1 for u ≥ ū.

4. Gompertz-Makeham mortality rate:

m(s) = µ0 + µ1e
µ

2
s, (A.40)

M (u) = µ0u + (µ1/µ2) [eµ
2
u − 1] . (A.41)

As is explained in the paper, we use actual demographic data for the cohort born in 1920 in

the Netherlands. The estimates for the different models are presented in Table A.1. In that table,

b0 = 0.0236 in the implied birth rate for the G-M model (see Footnote 17 in the paper). This

birth rate is held constant for the other models, implying different population growth rates, n̂ (b0).

The implied ∆ (u, θ) functions and steady-state values for ˆ̄h (u), ˆ̄c (u), and ˆ̄a (u) are visualized in

Figure A.1.

A.6 Expressions for ∆ (u, λ)

The ∆ (u, λ) plays a crucial role in the model. For all models it can be expressed in terms of

known functions.
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1. Constant mortality. For the Blanchard case equations (A.34)-(A.35) are relevant. It follows

that:

∆ (u, λ) ≡ eλu+M(u)

∫ ∞

u

e−[λs+M(s)]ds

= eλu+µ
0
u

∫ ∞

u

e−[λs+µ
0
s]ds =

1

λ + µ0

. (A.42)

This result is mentioned in the paper in the first paragraph of Subsection 3.2.

2. Linear-in-age mortality. For this case, equations (A.36)-(A.37) are relevant. We find:

∆(u, λ) = e[λ+µ
0
]u+µ2

1
u2

∫ ∞

u

e−[λ+µ
0
]s−µ2

1
s2

ds

=

√
π

2µ1

erfcx

(
µ1u +

λ + µ0

2µ1

)
. (A.43)

3. Piecewise-linear mortality. For this model, equations (A.38)-(A.39) are relevant. For the

first part (u < ū) we get for ∆(u, λ):

∆(u, λ) = e[λ+µ
0
]u

[∫ ū

u

e−[λ+µ
0
]sds +

∫ ∞

ū

e−[λ+µ
0
]s−µ2

1
[s−ū]2ds

]

=
1 − e−[λ+µ

0
][ū−u]

λ + µ0

+ e−[λ+µ
0
][ū−u]e[λ+µ

0
−2µ2

1
ū]ū+µ2

1
ū2

∫ ∞

ū

e[λ+µ
0
−2a2

1
ū]s+µ2

1
s2

ds

=
1 − e−[λ+µ

0
][ū−u]

λ + µ0

+ e−[λ+µ
0
][ū−u]

√
π

2µ1

erfcx

(
λ + µ0

2µ1

)

=
1

λ + µ0

+ e−[λ+µ
0
][ū−u]Γλ, (A.44)

where Γλ is defined as:

Γλ ≡
√

π

2µ1

erfcx

(
λ + µ0

2µ1

)
− 1

λ + µ0

. (A.45)

For the second part (u ≥ ū) we get

∆(u, λ) = e[λ+µ
0
]u+µ2

1
[u−ū]2

∫ ∞

u

e−[λ+µ
0
]s−µ2

1
[s−ū]2ds

= e[λ+µ
0
]u+µ2

1
[u−ū]2−µ2

1
ū2

∫ ∞

u

e−[λ+µ
0
−2µ2

1
ū]s−µ2

1
s2

ds

= e[λ+µ
0
−2µ2

1
ū]u+µ2

1
u2

∫ ∞

u

e−[λ+µ
0
−2µ2

1
ū]s−µ2

1
s2

ds

=

√
π

2µ1

erfcx

(
µ1[u − ū] +

λ + µ0

2µ1

)
. (A.46)

Concluding:

∆(u, λ) =





1
λ+µ

0

+ e−[λ+µ
0
][ū−u]Γλ for 0 < u < ū

√
π

2µ
1

erfcx
(
µ1[u − ū] + λ+µ

0

2µ
1

)
for u ≥ ū

(A.47)

Properties of the functions used are covered in the following Lemma.
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Lemma A.1 The error function (erf (x)), complementary error function (erfc (x)), and scaled

complementary error function (erfcx (x)) are defined as follows.

erf(x) =
2√
π

∫ x

0

e−t2dt,

erfc (x) ≡ 2√
π

∫ ∞

x

e−t2dt = 1 − erf(x),

erfcx (x) ≡ ex2

erfc(x).

For non-negative values of x, these functions have the following properties:

(i) 0 < erf(x), erfc(x), erfcx < 1 for 0 < x ¿ ∞.

(ii) erf(0) = 1 − erfc(0) = 1 − erfcx(0) = 0.

(iii) limx→∞ erf(x) = 1, limx→∞ erfc(x) = limx→∞ erfcx(x) = 0.

(iv) erf ′(x) > 0, erfc′(x) < 0, erfcx′(x) < 0.

(v) erfcx (x) ≈ 1/ (x
√

π) for large x.

4. Gompertz-Makeham mortality. For this model equations (A.40)-(A.41) are relevant. The

demographic discount function for the G-M process can be written as:

∆(u, λ) = e[λ+µ
0
]u+

µ1

µ2
eµ2u

∫ ∞

u

e−[λ+µ
0
]s−µ1

µ2
eµ2s

ds. (A.48)

We define β (u) ≡ µ
1

µ
2

eµ
2
u and t = β (s) so that dt = β′ (s) ds = µ2β (s) ds. We see that (A.48)

can be rewritten as:

∆(u, λ) = e[λ+µ
0
]u+β(u)

∫ ∞

u

e−β(s)e−[λ+µ
0
]sds. (A.49)

We can write:

e−β(s) = e−t (A.50)

e−[λ+µ
0
]sds =

e−[λ+µ
0
]s

µ2β (s)
µ2β (s) ds

=
e−[λ+µ

0
]s

µ2t
dt

=
1

µ2

(
µ2

µ1

)α

tα−1dt, (A.51)

where we have made use of the following fact to get to the final expression:

t =
µ1

µ2

eµ
2
s ⇔

(
µ2t

µ1

)α

= eαµ
2
s = e−[λ+µ

0
]s, (A.52)

for α ≡ − (λ + µ0) /µ2. Since s ∈ [u,∞) it follows that t ∈ [β (u) ,∞). By using (A.50) and (A.51)

in (A.49) we obtain:

∆(u, λ) =
µα−1

2

µα
1

e[λ+µ
0
]u+β(u)Γ(α, β(u)), (A.53)

where Γ(α, β(u)) is the upper tailed incomplete gamma function (defined in general terms as

Γ(α, x) =
∫ ∞

x
tα−1e−tdt; see Kreyszig (1999, p. A55)). The incomplete gamma function is well
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documented (see every mathematical/statistical handbook) and, more importantly, most software

packages have very fast routines to calculate it.

There is one slight complication: the incomplete gamma function is usually only defined for

α ≥ 0, whereas we need to evaluate it for α < 0. We can solve this problem by using the

‘functional relation of the incomplete gamma function’. Indeed, by integrating the incomplete

gamma function by parts we obtain the following recursion formula:

Γ(α, x) =
1

α
e−ttα

∣∣∣∣
∞

t=x

+
1

α

∫ ∞

x

tαe−tdt = − 1

α
e−xxα +

1

α
Γ(α + 1, x). (A.54)

Repeated application of eq. (A.54) gives for k = 0, 1, 2, . . .:

Γ(α, x) = − e−xxα

[
1

α
+

1

α

1

α + 1
x +

1

α

1

α + 1

1

α + 2
x2 + · · · + 1

α

1

α + 1
· · · 1

α + k − 1
xk−1

]

+
1

α

1

α + 1
· · · 1

α + k − 1
Γ(α + k, x). (A.55)

Hence, by choosing the smallest integer k such that α+k is non-negative, the value of Γ(α, x) can

be computed in a standard fashion.

A.7 Macroeconomic shocks

All the shocks studied (or mentioned) in Section 4 of the paper can be expressed in terms of the

following functions:

w(t) =





ŵ for t < 0

ŵ + dw0e
−ξt for t ≥ 0

, (A.56)

r(t) =





r for t < 0

rN ≡ r + dr for t ≥ 0
, (A.57)

g(t) =





0 for t < 0

dĝ for t ≥ 0
, (A.58)

z(t) =





0 for t < 0

−dz0e
−χt + dẑ[1 − e−χt] for t ≥ 0

. (A.59)

Government consumption dĝ and the path of government debt are related to the other parameters

according to:

dĝ =
χdẑ

r − n + χ
− (r − n) dz0

r − n + χ
, (A.60)

d(t) =
dĝ + dz0

χ
[1 − e−χt]. (A.61)

The time at which the shock occurs is normalized to zero, and the intertemporal substitution

elasticity is equal to unity (σ = 1)

The three shocks explicitly studied in the text are:

• Unanticipated and permanent balanced-budget increase in government consumption: g (t)

set as in (A.58), z (t) set according to (A.59) and (A.48) with χ → ∞, i.e. dĝ = dẑ. No debt

financing occurs, i.e. d (t) = 0 for all t ≥ 0.
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• Ricardian equivalence experiment, temporary tax cut: g (t) = 0, z (t) set according to (A.59)

and (A.48) with 0 < χ ¿ ∞, and the (stable) path of debt is set according to (A.53).

• Unanticipated and permanent increase in the world interest rate: dr > 0 for t ≥ 0.

A fourth shock is only discussed here because its effects are very similar to those of the tem-

porary tax cut:

• Temporary productivity shock: g (t) = z (t) = d (t) = 0, w (t) set according to (A.56) with

0 < ξ ¿ ∞.

A.7.1 Post-Shock Profiles

The steady-state age profiles for the different variables before the shock occurs (t < 0) are defined

for individual households in equation (24)-(26). After the shock occurs (t ≥ 0), the path for

individual human wealth is:

h̄(v, t) = ŵ∆(t − v, rN ) + dw0e
−ξt∆(t − v, rN + ξ) − dẑ∆(t − v, rN )

+[dz0 + dẑ]e−χt∆(t − v, rN + χ). (A.62)

For households who were born before the shock (v < 0), the age index at the time of the shock

is −v > 0. For such households, the paths for individual consumption and asset holdings after the

shock (t ≥ 0) are given by:

c̄E(v, t) =
ˆ̄a(−v) + h̄(v, 0)

∆(−v, θ)
e(rN−θ)t, (A.63)

āE(v, t) = ∆(t − v, θ)c̄E(v, t) − h̄(v, t), (A.64)

where the subscript “E” denotes existing households (at the time of the shock).

For households that are born after the shock (v ≥ 0), the relevant age index at time t (≥ v) is

defined as t− v. For such households the paths for consumption and asset holdings (at individual

and cohort level) at time t (≥ 0) are given by:

c̄F (v, t) =
h̄(v, v)

∆(0, θ)
e(rN−θ)(t−v), (A.65)

āF (v, t) = ∆(t − v, θ)c̄F (v, t) − h̄(v, t), (A.66)

where the subscript “F” denotes future households.

A.7.2 Welfare Effects

The welfare effects of the different shocks are illustrated in Figure 6 in the text. For existing

agents the change in welfare from the perspective of the shock period t = 0 is evaluated (dΛ (v, 0)

for v ≤ 0) whereas for future agents the welfare change from the perspective of their birth date is

computed (dΛ (v, v) for v > 0).
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A.7.2.1 Existing generations

Equation (43) is derived as follows. The effect on welfare of existing agents at t = 0 can be

written as a function of their age at that moment (−v):

dΛ(v, 0) =

∫ ∞

0

[ln c̄E(v, τ) − ln ˆ̄c(v, τ)]e−θτ−M(τ−v)+M(−v)dτ. (A.67)

Consumption after the shock can be written in terms of pre-shock consumption:

c̄E(v, τ) =
ˆ̄a(−v) + h̄(v, 0)

∆(−v, θ)
e(rN−θ)τ

= e(rN−r)τ

[
ˆ̄a(−v) + ˆ̄h(−v)

∆(−v, θ)
e(r−θ)τ +

h̄(v, 0) − ˆ̄h(−v)

∆(−v, θ)
e(r−θ)τ

]

= e(rN−r)τ

[
ˆ̄a(−v) + ˆ̄h(−v)

∆(−v, θ)
+

h̄(v, 0) − ˆ̄h(−v)

∆(−v, θ)

]
e(r−θ)τ

= e(rN−r)τ

[
1 +

h̄(v, 0) − ˆ̄h(−v)

ˆ̄a(−v) + ˆ̄h(−v)

]
ˆ̄c(−v)e(r−θ)τ

= e(rN−r)τ

[
ˆ̄a(−v) + h̄(v, 0)

ˆ̄a(−v) + ˆ̄h(−v)

]
ˆ̄c(v, τ). (A.68)

By taking logarithms of (A.68) and rewriting we obtain:

ln c̄E(v, τ) − ln ˆ̄c(v, τ) = (rN − r) τ + ln ΓE(v), (A.69)

where ΓE(v) is defined in equation (44). By substituting (A.69) into (A.67) and splitting the

integral we get:

dΛ(v, 0) = dr

∫ ∞

0

τe−θτ−M(τ−v)+M(−v)dτ +

[
eM(−v)

∫ ∞

0

e−θτ−M(τ−v)dτ

]
ln ΓE(v)

= dr

∫ ∞

0

τe−θτ−M(τ−v)+M(−v)dτ +

[
e−θv+M(−v)

∫ ∞

−v

e−[θs+M(s)]ds

]
ln ΓE(v)

= dr

∫ ∞

0

τe−θτ−M(τ−v)+M(−v)dτ + ∆(−v, θ) ln ΓE(v). (A.70)

Equation (A.70) coincides with equation (43) in the text.

A.7.2.2 Future generations

Equation (45) is derived as follows. For future households the welfare effect at birth is defined

as:

dΛ(v, v) =

∫ ∞

v

[ln c̄F (v, τ) − ln ˆ̄c(v, τ)]e−θ[τ−v]−M(τ−v)dτ. (A.71)

Next we express the post-shock consumption path in terms of the pre-shock path as:

c̄F (v, τ) =
h̄(v, v)

∆(0, θ)
e(rN−θ)(τ−v)

= e(rN−r)(τ−v) ĥ(v, v)

ˆ̄h(0)

ˆ̄h(0)

∆(0, θ)
e(r−θ)(τ−v)

= e(rN−r)(τ−v) h̄(v, v)

ˆ̄h(0)
ˆ̄c(v, τ). (A.72)
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By taking logarithms of (A.72) and rewriting we obtain:

ln c̄F (v, τ) − ln ˆ̄c(v, τ) = (rN − r) (τ − v) + ln ΓF (v), (A.73)

where ΓF (v) is defined in equation (46). By substituting (A.73) into (A.71) and splitting the

integral we get:

dΛ(v, v) = dr

∫ ∞

v

(τ − v) e−θ(τ−v)−M(τ−v)dτ +

[∫ ∞

v

e−θ(τ−v)−M(τ−v)dτ

]
ln ΓF (v)

= dr

∫ ∞

0

se−[θs+M(s)]ds +

[∫ ∞

0

e−[θs+M(s)]ds

]
ln ΓF (v)

= dr

∫ ∞

0

se−[θs+M(s)]ds + ∆(0, θ) ln ΓF (v). (A.74)

Equation (A.74) coincides with equation (45) in the text.
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Table A.1: Estimated Survival Functions (different models)

µ̂0 µ̂1 µ̂2
ˆ̄u σ̂ m̄ n̂ (b0) ̂1 − Φ(100)

1. Constant 0.0115 – – – 0.2213 0.0115 0.0129 31.77

M (u) = µ0u (14.29)

2. Linear −0.8824×10−2 0.0174 – – 0.0997 – – –

M (u) = µ0u + µ2
1u

2 (−8.47) (32.65)

– 0.0132 – – 0.1312 0.0109 0.0134 17.57

(42.24)

3. Piece-wise linear (PWL) 0.3629×10−2 0.0441 – 54.84 0.0243 0.0101 0.0142 1.29

M (u) = µ0u + δ (u)µ2
1 (u − ū)

2
(32.15) (37.74) (97.61)

δ (u) =

{
0 for 0 < u < ū

1 for u ≥ ū

4. Gompertz-Makeham (GM) 0.2437×10−2 0.5520×10−4 0.0964 – 0.0049 0.0102 0.0134 0.01

M (u) = µ0u + (µ1/µ2) [eµ
2
u − 1] (65.84) (20.51) (138.17)
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Fig. A.1. Steady-State Profiles for Individuals (different models)


