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In the text of the paper we refer on several occasions to this appendix. The following results are

proved in this appendix (plus many other things). In brackets the page number in the text where

the particular result is first mentioned. Note that the proofs do not appear in this appendix in the

same order they are referred to in the text.

Result 1. Proof of Proposition 1(ii) (p. 8).

Result 2. Computations section 3 (p. 8).

Result 3. Impact effect on human wealth (p. 12).

Result 4. Welfare effects section 4 (p. 14).

Result 5. Proof of Proposition 4 (p. 16).

Result 6. Egalitarian bond policy and Proposition 5 (pp. 16-18).

Result 7. Inequalities macroeconomic variables (p. 22).

Result 8. Inequalities welfare (p. 25).



A.1.1. Individual households

The Hamiltonian associated with the optimisation problem faced by the representative

consumer of vintagev can be written as:

whereλ(v,τ) is the co-state variable of the flow budget identity. This leads to the following first-

(A1)
H(v,τ) ≡ log











C(v,τ) L(v,τ)1 1/σL

1 1/σL

λ(v,τ) (r β)A(v,τ) W(τ) 1 tL(τ) L(v,τ) G(τ) C(v,τ) ,

order conditions:

where X(v,τ) is full consumption' defined in (2.2). By eliminatingλ(v,τ) from (A2)-(A4), we

(A2)1
X(v,τ)

λ(v,τ),

(A3)L(v,τ)1/σL

X(v,τ)
λ(v,τ)W(τ) 1 tL(τ) ,

(A4)dλ(v,τ)
dτ

(α r)λ(v,τ),

obtain:

where we have also used (A5) in order to simplify (A6). Equation (A5) shows that labour supply

(A5)L(v,τ)1/σL W(τ) 1 tL(τ) ,

(A6)X(v,τ) C(v,τ)










σL

1 σL

W(τ) (1 tL(τ)) 1 σL,

(A7)Ẋ(v,τ)
X(v,τ)

r α,

only depends on the current after-tax wage rate as stated in the text.

The budget identity of the representative household can be rewritten by using (A5) and the

definition of X(v,τ):

whereYF(v,τ)=YF(τ) is defined as:

(A8)Ȧ(v,τ) (r β)A(v,τ) W(τ) 1 tL(τ) L(v,τ) G(τ) C(v,τ) YF (τ) X(v,τ),
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Equation (A9) coincides with equation (T1.12) in Table 1. The term in square brackets on the

(A9)

YF (v,τ) ≡










W(τ) 1 tL(τ) L(v,τ) L(v,τ)1 1/σL

1 1/σL

G(τ)











1
1 σL

W(τ) (1 tL(τ)) 1 σL G(τ) ≡ YF(τ).

right-hand side on the first line represents the surplus' from working, i.e. the after-tax wage

income minus the instantaneous utility cost of supplying labour. In view of (A5) this expression

can be expressed in terms of the after-tax wage only (done on the second line).

By integrating (A8) subject to the household’s NPG condition, the life-time budget

restriction is obtained:

whereH(t) is human wealth:

(A10)A(v,t) H(t) ⌡
⌠
∞

t

X(v,τ)e (r β) (t τ)dτ,

Since full income is age-independent, the same holds for human wealth. By differentiating (A11)

(A11)H(t) ≡ ⌡
⌠
∞

t

YF(τ)e (r β) (t τ)dτ.

with respect to time, equation (T1.2) in Table 1 is obtained. The path ofX(v,τ) is described by

(A7), which implies:

By using (A12) in (A10), the expression forX(v,t) is obtained:

(A12)X(v,τ) X(v,t)e (r α) (τ t), τ≥ t.

Hence, full consumption is a constant proportion of total wealth.

(A13)X(v,t) (α β) A(v,t) H(t) .

A.1.2. Aggregate households

The aggregate variables can be calculated as the weighted integral of the values for the

different generations. For example, aggregate financial wealth,A(t), and full consumption,X(t), are:

The definition of aggregate full consumption implies the following expression for the time rate of

(A14)A(t) ≡ ⌡
⌠
t

∞

A(v,t)βeβ(v t)dv, X(t) ≡ ⌡
⌠
t

∞

X(v,t)βeβ(v t)dv.
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change in aggregate full consumption:

The individual Euler equation (A7) shows that all generations face the same intertemporal trade-

(A15)Ẋ(t) β X(t,t) X(t) ⌡
⌠
t

∞

βeβ (v t)Ẋ(v,t)dv.

off, i.e. Ẋ(v,t)=(r-α)X(v,t). Furthermore, newly-born agents have no financial assets (A(t,t)=0), and

(A13) shows that for them full consumption is proportional to human wealth, i.e.X(t,t)= (α+β)H(t).

Finally, the aggregate version of (A13) isX(t)=(α+β)[A(t)+H(t)]. By using all three results in

(A15), the aggregate modified Euler equation is obtained:

By using the aggregate version of (A13) (and its time derivative) and (T1.2) in (A16), equation

(A16)
Ẋ(t) β (α β)H(t) β (α β) A(t) H(t) (r α) ⌡

⌠
t

∞

λeβ (v t)X(v,t)dv

(r α)X(t) β (α β)A(t).

(T1.1) in Table 1 is obtained. Finally, aggregating (A5) and (A6) with (A9) substituted in, gives

(T1.8) and (T1.13).
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A.2. The optimisation problem for a representative firm

The Hamiltonian for the problem facing the representative firm is:

The first-order conditions are:

(A17)

G(τ) F(L(τ) ,N(τ) ,K(τ)) W(τ)L(τ) 1 tN(τ) PN(τ)N(τ) I(τ)

q(τ)K(τ)








φ







I(τ)
K(τ)

δ .

These expressions coincide with, respectively, equations (T1.6), (T1.7), (T1.9), and (T1.4) in Table

(A18)FL(L(τ) ,N(τ) ,K(τ)) W(τ),

(A19)FN(L(τ) ,N(τ) ,K(τ)) 1 tN(τ) PN(τ),

(A20)1 q(τ)φ 







I(τ)
K(τ)

0,

(A21)q̇(τ)








r δ φ







I(τ)
K(τ)

q(τ) FK(L(τ) ,N(τ) ,K(τ)) I(τ)
K(τ)

.

1 in the text. The proof ofV(t)=q(t)K(t) proceeds along the lines suggested by Hayashi (1982). We

first write:

By using (T1.3) and (A21) the term in square brackets on the right-hand side of (A22) can be

(A22)d
dτ

q(τ)K(τ)er (t τ) q̇(τ)K(τ) q(τ) K̇(τ) rq(τ)K(τ) er (t τ).

written as follows:

where we have used the linear homogeneity of the production function in the second step and

(A23)

. I(τ) K(τ)FK(.)

I(τ) Y(τ) FL(.)L(τ) FN(.)N(τ)

I(τ) Y(τ) W(τ)L(τ) 1 tN(τ) PN(τ) ,

equations (A18)-(A19) in the third step. By substituting (A23) in (A22) and integrating both sides

from t to infinity, subject to a NPG condition, we obtain:

Hence,V(t)=q(t)K(t).

(A24)q(t)K(t) ⌡
⌠
∞

t

Y(τ) W(τ)L(τ) 1 tN(τ) PN(τ)N(τ) I(τ) er (t τ)dτ V(t).
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A.3. Solving the model

In this section we log-linearize the model around an initial steady state in which both debt

and net foreign assets are zero (i.e.B=F=0). Readers unfamiliar with the technique of analyzing

log-linearized perfect foresight models should consult Judd (1982, 1985, 1987a-b) and Bovenberg

(1993, 1994). In this appendix we work with a more general specification for the production

technology than in the paper. Particularly, instead of using the Cobb-Douglas production function

(T1.10), we adopt a nested CES function:

where 0<εL,εK,εN<1 are efficiency parameters (summing to unity) andσLZ and σKN are substitution

(A25)

Y(t) F(L(t),K(t),N(t)) ≡ εLL(t)(σLZ 1)/σLZ (1 εL)Z(t)(σLZ 1)/σLZ
σLZ/(σLZ 1)

Z(t) ≡




















εK

1 εL

K(t)(σKN 1)/σKN











εN

1 εL

N(t)(σKN 1)/σKN

σKN/(σKN 1)

,

elasticities. The case discussed in the text is obtained by settingσLZ=σKN=1.

The log-linearized model (using (A25) rather than (T1.10)) is given in Table A.1 of this

appendix. In order to solve the model, it is useful to first condense the static part of the model as

much as possible. By using (TA.6)-(TA.8) and (TA.10), output (Ỹ(t)), employment (L̃(t)), energy

use (Ñ(t)), and the wage (W̃(t)) can be written in terms of the capital stock (K̃(t)) and the various

tax rates (t̃N(t) and t̃L(t)):

(A26)Ỹ(t)
(σL σLZ) (1 ωL) ωKK̃(t) σKNωNt̃N(t) σL ωL σKNωN σLZωK t̃L(t)

σKNωL ωN ωK σLZ σL(1 ωL)
,

(A27)L̃(t)
σL (1 ωL) ωKK̃(t) σKNωNt̃N(t) σL σKNωL ωN σLZωK t̃L(t)

σKNωL ωN ωK σLZ σL(1 ωL)
,

(A28)Ñ(t)
σLZ σL (1 ωL) σKNωL ωKK̃(t) σKN(1 ωL) σL ωL t̃L(t) σLZ σL (1 ωL) t̃N(t)

σKNωL ωN ωK σLZ σL(1 ωL)
,

(A29)W̃(t)
(1 ωL) ωKK̃(t) σL ωK t̃L(t) σKNωNt̃N(t)

σKNωL ωN ωK σLZ σL(1 ωL)
.

By imposing the parameter values of the Cobb-Douglas case (σLZ=σKN=1 so thatωi=εi), we obtain

the expressions in (2.9)-(2.12) in the text. The impact changes in output, employment, etcetera,

follow from the fact thatK̃(0)=0.
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A.3.1. The investment system

By using the output expression (A26) in (TA.4) and (TA.9) in (TA.3), the investment

system in (q,K)-space is obtained:

where the Jacobian matrix on the right-hand side is denoted by∆I with typical elementδi
I
j. The

(A30)











K̃
.
(t)

q̃
.
(t)





















0
r ωI

σAωA

r ωL ωK (1 ωL)

ωA σKNωL ωN ωK σLZ σL (1 ωL)
r











K̃(t)

q̃(t)

















0

r ωK σLZ σL (1 ωL) σKNωL ωNt̃N(t) σL ωL (1 ωL) t̃L(t)

ωA σKNωL ωN ωK σLZ σL (1 ωL)

,

determinant of∆I is unambiguously negative so that saddle-point stability of the investment system

is guaranteed:

The characteristic roots of∆I thus alternate in sign. Designating the positive (unstable) root byrI

(A31)∆I

r 2ωK ωI ωL (1 ωL)

σAω2
A σKNωL ωN ωK σLZ σL (1 ωL)

< 0.

and the negative (stable) root by -hI, the following expressions can be derived:

In the Appendix of the paper these inequalities are proved by directly looking at the characteristic

(A32)rI

r
2













1










1
4ωI ωK ωL (1 ωL)

σAω2
A σKNωL ωN ωK σLZ σL (1 ωL)

1/2

> r ,

(A33)hI

r
2













1










1
4ωI ωK ωL (1 ωL)

σAω2
A σKNωL ωN ωK σLZ σL (1 ωL)

1/2

> 0,

polynomial (see also Figure A.1). This completes the proof of Result 1.

A.3.1.1. Long-run, impact, and transition results with time-invariant tax shocks

In section 3 of the paper we consider the case of an unanticipated permanent increase in

the energy tax (keepingtL constant). In the discussion surrounding Result 7 we need to know the
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effects of a time-invariant (unanticipated-permanent) shock in the labour income tax rate. Since the

model is linearized, we can work out the effects of both types of shock in one go. In the remainder

of section A.3 we assume that the tax revenue is rebated to the households in a lump-sum fashion.

Hence, the shocks facing the general investment system are:

The long-run effects on private capital and Tobin’sq of an increase in the capital tax are

(A34)t̃N(t) t̃N, t̃L(t) t̃L, t∈[0,∞).

obtained by substituting (A34) into (A30) and imposing the steady state:

Empirical studies suggest that capital and energy are complementary inputs, i.e. thatσLZ>σKNωL in

(A35)K̃(∞) σL t̃L











σLZ σL (1 ωL) σKNωL

ωL (1 ωL)
ωNt̃N, q̃(∞) 0.

terms of our formulation. This ensures that the term in round brackets on the right-hand side of

(A35) is positive, just as in the Cobb-Douglas case discussed in the text. By using (A34) and the

first expression of (A35) in (A26)-(A29) we obtain the long-run results for output, employment,

energy use, and the wage rate:

The impact results are obtained as follows. By taking the Laplace transform of (A30) we

(A36)

Ỹ(∞) σL t̃L (σL σLZ) (ωN/ωL) t̃N, L̃(∞) σL t̃L (ωN/ωL) t̃N ,

Ñ(∞) σL t̃L











ωN σLZ σL (1 ωL) σKNωL ωK

ωL (1 ωL)
t̃N, W̃(∞) (ωN/ωL) t̃N.

obtain the following expression:

where we have used the fact that the private capital stock is predetermined (so thatK̃(0)=0), γQ is

(A37)AI(s)










{ K̃ ,s}

{ q̃,s}











0

q̃(0) { γQ,s}
,

defined as:

and AI(s)≡sI-∆I, so that AI(s) ≡(s-rI)(s+hI). By pre-multiplying (A37) by adj(AI(s)) and evaluating

(A38)γQ ≡
r ωK σL ωL (1 ωL) t̃L σLZ σL (1 ωL) σKNωL ωNt̃N

ωA σKNωL ωN ωK σLZ σL (1 ωL)
,

the resulting expression fors=rI, we obtain the initial condition for the jump in the value of

Tobin’s q:
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from which we derive that:

(A39)
adj(AI(rI))A I(rI)













{ K̃ ,rI}

{ q̃,rI}
≡













rI r δI
12

δI
21 rI











0

q̃(0) { γQ,rI}











0

0
,

Equation (A34) implies the following Laplace transforms:

(A40)q̃(0) { γQ,rI}.

By using (A41) in (A40), we obtain the final expression forq̃(0):

(A41){ t̃N,s}
t̃N

s
, { t̃L ,s}

t̃L

s
.

where we have used (A38) andrI=r+hI in the final step. Again, complementarity between capital

(A42)q̃(0) ≡
γQ

rI











r
r hI













ωK σL ωL (1 ωL) t̃L σLZ σL (1 ωL) σKNωL ωNt̃N

ωA σKNωL ωN ωK σLZ σL (1 ωL)
,

and energy ensures that the energy tax has the same effect on Tobin’sq in the general model of

this appendix and the Cobb-Douglas model discussed in the text.

The transition results for the investment system are obtained by inverting (A37) and using

(A35) and (A42):

This completes the derivation of the results in section 3.1 of the paper (where the labour income

(A43)K̃(t) K̃(∞) 1 e hI t , q̃(t) q̃(0)e hI t.

tax rate is constant,t̃L=0, andσLZ=σKN=1 so thatωi=εi).

A.3.2. The saving system

The saving system is given in (TA.1)-(TA.2) and can be written in single matrix

expression as follows:

The Jacobian matrix on the right-hand side of (A44) is denoted by∆S with typical elementδ i
S
j. The

(A44)









H̃
.
(t)

Ã
.
(t)











r β 0

(α β) r α β











H̃(t)

Ã(t)













r ỸF (t)

r ỸF (t)
.

determinant of the Jacobian is easily computed:
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By using the information on shares at the bottom of Table 2, we derive thatωX-ωA=ωG+ωL(1-tL)

(A45)∆S (r β) (α β r)
r (r α) (ωX ωA)

ωA

.

/(1+σL)>0. This immediately shows that saddle point stability in the saving system holds and that

α<r<α+β. The characteristic roots of∆S alternate in sign. Designating the positive (unstable) root

by rS and the negative (stable) root by -hS, the following expressions can be derived:

In the Appendix to the paper these roots are related directly to the characteristic polynomial.

(A46)rS r β > 0, hS α β r > 0.

The saving system thus contains one predetermined variable (financial assets) and one non-

predetermined jumping' variable (human wealth). In the absence of bond policy, the jump in the

value of financial assets, which occurs at timet=0, is due solely to the change in the value of

Tobin’s q and equals:

where we have used (TA.14) and the fact thatK̃(0)=F̃(0)=0 andB̃(t)=0 for all t≥0.

(A47)Ã(0) ωAq̃(0)
ωAγQ

rI

.

The forcing variable of the saving system,ỸF(t), is time-varying and depends on the path

for wages, which is determined in the investment system, and the path for lump-sum transfers,

which is affected by the policy maker. In the absence of bond policy, lump-sum transfers are equal

to the revenue of the energy tax as the log-linearized government budget restriction reduces to

T̃(t)=G̃(t) (see (TA.15)). By using (A26), (A29), the first expression in (A43), (TA.11), and

(TA.12), we obtain the path of full income:

with:

(A48)ỸF (t) ỸF (0)e hI t 1 e hI t ỸF (∞),

The expressions in (3.6)-(3.7) in the text are obtained by settingt̃L=0 and imposing the Cobb-

(A49)

ỸF (0)










(1 ωL)ωK σLZωK σKNωL ωN tL σKNωN(1 ωL)θN

σKNωL ωN ωK σLZ σL (1 ωL)
σL ωL t̃L











ωK σLZ σL (1 ωL) σKNωL σL σKNωL (1 ωL) tL σLZ σL (1 ωL) (1 ωL)σKNθN

σKNωL ωN ωK σLZ σL (1 ωL)
ωNt̃N,

(A50)ỸF (∞) σL ωL tL ωNθN t̃L











σL tL











σKNωL ωK σLZ σL (1 ωL) ωN

ωL (1 ωL)
θN ωNt̃N.
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Douglas parameter restrictions in (A49)-(A50).

A.3.2.1. Long-run, impact, and transition results with time-invariant tax shocks

By imposing the steady state in (A44), thelong-run effects on human and financial wealth

are obtained:

whereỸF(∞) is given in (A50). These expressions are found in (3.8) in the paper.

(A51)H̃(∞)
r ỸF(∞)

r β
, Ã(∞)

r (r α) ỸF(∞)

(r β) (α β r)
,

The impact resultsare obtained as follows. By taking the Laplace transformation of (A44)

we obtain:

where Ã(0) is given in (A47), and AS(s)≡sI-∆S, so that AS(s) ≡(s-rS)(s+hS). By pre-multiplying

(A52)AS(s)










{ H̃ ,s}

{ Ã,s}













H̃(0) r { ỸF ,s}

Ã(0) r { ỸF ,s}
,

(A52) by adj(AS(s)) and evaluating the resulting expression fors=rS we obtain the initial condition

for the jump in human wealth:

from which it follows trivially that:

(A53)adj(AS(rS))A S(rS)













{ H̃ ,rS}

{ Ã,rS}
≡











α 2β 0

(α β) 0













H̃(0) r { ỸF ,rS}

Ã(0) r { ỸF ,rS}











0

0
,

In view of (A48), the Laplace transform of full income can be written as a weighted average of the

(A54)H̃(0) r { ỸF ,rS}.

impact and the long-run effect:

This expression coincides with (3.10) in the paper.

(A55)H̃(0)








r
r β





















r β
r β hI

ỸF (0)










hI

r β hI

ỸF (∞) .

The transition resultsare obtained as follows. First we invert the matrix AS(s) in (A52) to

obtain the solution in terms of Laplace transformations:

(A56)










{ H̃ ,s}

{ Ã,s}

1
(s rS)(s hS)











s r α β 0

(α β) s r β













H̃(0) r { ỸF ,s}

Ã(0) r { ỸF ,s}
.
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SincehS=α+β-r (see (A46)) the first line in (A56) yields the following solution for human wealth:

where we have substituted (A54). By using the path of full income (A48) in (A57), the path for

(A57)
H̃(t) r 1











{ ỸF ,r β} { ỸF ,s}

s (r β)
,

human wealth can be written as:

The second line in (A56) can be used to derive the solution for financial assets. By using (A54)

(A58)H̃(t) H̃(0)e hI t 1 e hI t H̃(∞).

and noting thatrS=r+λ (see (A46)) we obtain the solution in terms of the Laplace transform:

By using the path of full income in (A59), the path for financial wealth is obtained after some

(A59)
(s hS) { Ã,s} Ã(0) r { ỸF ,s} r (α β)











{ ỸF ,r β} { ỸF ,s}

s (r β)
.

simplifications:

where T(hS,hI,t) is a transition term. The properties of the transition term, mentioned in footnote 14

(A60)Ã(t) Ã(0)e hSt T(hS,hI ,t)










r r α hI ỸF(0) ỸF(∞)

r β hI

1 e hSt Ã(∞),

of the paper, are summarized in Lemma A.1.

LEMMA A.1: Let T(α1,α2,t) be a single transition function of the form:

with α1>0 and α2>0. Then T(α1,α2,t) has the following properties: (i) (positive)T(α1,α2,t)>0

T(α1,α2,t)

e α1t e α2t

α2 α1

if α1≠α2

te α1t if α1 α2,

t∈(0,∞), (ii) T(α1,α2,t)=0 for t=0 and in the limit as t→∞, (iii) (single-peaked)dT(α1,α2,t)/dt>0 for

t∈(0,t̂) and dT(α1,α2,t)/dt<0 for t∈(t̂,∞), dT(α1,α2,t)/dt=0 (for t=t̂≡ln(α1/α2)/(α1-α2) (t̂≡1/α1 if

α1=α2) and in the limit as t→∞), and dT(α1,α2,0)/dt=1, (iv) (point of inflexion)d2T(α1,α2,t)/dt2=0

for t*=2t̂.

PROOF: Property (i) follows by examining the two possible cases. Ifα1<(>)α2, thenα2-α1>(<)0 and

exp[-α1t]>(<)exp[-α2t] for all t∈(0,∞), and T(α1,α2,0)>0. Property (ii) follows by direct

substitution. Property (iii) follows by examining dT(α1,α2,t)/dt:
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Property (iv) is obtained by examining dT2(α1,α2,t)/dt2:

dT(α1,α2,t)

dt











α1e α1t α2e α2t

α1 α2

.

Hence, d2T(α1,α2,0)/dt2=-(α1+α2)<0, and limt→∞d2T(α1,α2,t)/dt2=0. The inflexion point is found by

d 2T(α1,α2,t)

d 2t











α2
1e α1t α2

2e α2t

α2 α1

.

finding the value oft=t* where d2T(α1,α2,t)/dt2=0. The proofs for the case for whichα1=α2 are

similar.

This completes the derivation of the results in section 3.2 of the paper.

A.3.3. The ecological system

The path for environmental quality is computed as follows. By taking the Laplace

transformation of (TA.5) we obtain:

where we have used the fact that environmental quality is a predetermined variable (i.e.Ẽ(0)=0).

(A61)(s hE) { Ẽ,s} hEσN { Ñ,s},

By using (A28) and the first expression in (A43), the path of energy use under time-invariant tax

shocks can be written as:

whereÑ(0) is

(A62)Ñ(t) Ñ(0)e hI t Ñ(∞) 1 e hI t ,

and Ñ(∞) is given in (A36). By using (A62) in (A61) we obtain:

(A63)Ñ(0)
σKN(1 ωL) σL ωL t̃L σLZ σL (1 ωL) t̃N

σKNωL ωN ωK σLZ σL(1 ωL)
,

which can be inverted to yield:

(A64){ Ẽ,s} σN











hE

s hE











Ñ(∞)
s

Ñ(0) Ñ(∞)
s hI

,

where A(hI,hE,t) is an S-shaped adjustment term. The properties of this term are mentioned in

(A65)Ẽ(t) σNhEÑ(0)T(hI ,hE,t) A(hI ,hE,t) Ẽ(∞), Ẽ(∞) ≡ σNÑ(∞),
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Footnote 13 of the paper and are summarized in Lemma A.2.

LEMMA A.2: Let A(α1,α2,t) be a multiple adjustment function of the form:

with α1>0 and α2>0. Then A(α1,α2,t) has the following properties: (i) (increasing over time)

A(α1,α2,t)
1











α2

α2 α1

e α1t










α1

α2 α1

e α2t if α1≠α2

1 (1 α1t)e α1t if α1 α2,

dA(α1,α2,t)/dt>0 ∀t∈(0,∞), dA(α1,α2,t)/dt=0 (for t=0 and in the limit as t→∞), (ii) (between 0 and

1) 0<A(α1,α2,t)<1 ∀t∈(0,∞) and A(α1,α2,0)=1-limt→∞A(α1,α2,t)=0, (iii) (inflexion point)

d2A(α1,α2,t)/dt2=0 for t=t̂≡ln(α1/α2)/(α1-α2) (t̂≡1/α1 if α1=α2).

PROOF: The derivative of A(α1,α2,t) with respect to time is itself proportional to a single transition

term with properties covered in Lemma A.1:

for t∈(0,∞) the inequality is strict. Hence, A(α1,α2,t) itself is increasing over time. Property (ii)

dA(α1,α2,t)

dt
α1α2











e α1t e α2t

α2 α1

≥0,

follows from the fact that A(α1,α2,0)=0 and limt→∞A(α1,α2,t)=1 plus the fact that dA(α1,α2,0)/dt≥0.

Property (iii) makes use of:

Hence, d2A(α1,α2,0)/dt2=α1α2>0, and limt→∞d2A(α1,α2,t)/dt2=0. The inflexion point is found by

d 2A(α1,α2,t)

d 2t
α1α2











α1e α1t α2e α2t

α1 α2

.

finding the value oft where d2A(α1,α2,t)/dt2=0. The solution ist̂≡ln(α1/α2)/(α1-α2). The proofs for

the case for whichα1=α2 are similar.

This completes the derivation of the results in section 3.3 of the paper. Section A.3 establishes

Result 2. By plugging (A49)-(A50) into (A55) and settingt̃L=0, an expression is obtained from

which the inequality in equation (3.11) in the paper can be derived. This establishes Result 3.
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A.4. Welfare analysis

The welfare implications of the different environmental policies can be derived in the

manner suggested by Bovenberg (1993, 1994). The optimum utility level of generationv at time t

is denoted byΛ(v,t). It is obtained by substituting the optimum values forX(v,τ) (where τ runs

from t to ∞) plus the policy-induced path forE(τ) into the utility functional (2.1): Λ(v,t)≡

ΛNE(v,t)+γEΛE(t), where ΛNE(v,t) is the non-environmental component of welfare, andΛE(t) is the

environmental component:

We can now analyze the two components of utility separately.

(A66)ΛNE(v,t) ≡ ⌡
⌠
∞

t

logX(v,τ)exp (α β) (t τ) dτ,

(A67)ΛE(t) ≡ ⌡
⌠
∞

t

logE(τ)exp (α β) (t τ) dτ.

A.4.1. Non-environmental utility

The Euler equation for the household,Ẋ(v,τ)=[r-α]X(v,τ), implies that:

Substitution of this result in (A66) yields:

(A68)X(v,τ) X(v,t)exp (r α) (τ t) , τ≥ t.

The change in utility is then equal to:

(A69)

ΛNE(v,t) ⌡
⌠
∞

t

logX(v,t) (r α)(t τ) exp(α β)(t τ) dτ ⇔

logX(v,t)
α β

r α
(α β)2

.

We now need to distinguish between generations that are alive at the time of the shock (v<0) and

(A70)(α β)dΛNE(v,t) dX(v,t)
X(v,t)

≡ X̃(v,t).

future generations including the newly born (v≥0).

A.4.1.1. Existing generations (v<0)

Existing generations are born before the policy shock occurs and thus have a negative

generations index,v<0. For an individual we have thatX(v,0)=(α+β)[A(v,0)+H(0)], so that:
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(A71)X̃(v,0) 1 αH(v) dA(v,0)
A(v,0)

αH(v) dH(0)
H(0)

, with αH(v) ≡ H(0)
A(v,0) H(0)

,

whereX̃(v,0)≡dX(v,0)/X(v,0). In the steady-state we have thatX(v,0)=X(v,v)exp[-(r-α)v], implying:

Furthermore, we know that

(A72)(α β) A(v,0) H(0) (α β)H(0)exp (r α)v ⇒ αH(v) ≡ exp(r α)v .

Equation (A73) says that the rate of change in the value of individual assets equals the rate of

(A73)dA(0)
A(0)

dA(v,0)
A(v,0)

.

change in the value of aggregate financial wealth. By using (A72)-(A73) in (A71) we obtain:

where we note that by definitionÃ(0)≡rdA(0)/Y≡ωAdA(0)/A(0) and similarly H̃(0)≡rdH(0)/Y(0)

(A74)X̃(v,0) (Ã(0)/ωA) 1 e (r α)v (H̃(0)/ωH)e (r α)v.

≡ωHdH(0)/H(0), whereωH≡rH(0)/Y(0).

By substituting (A74) into (A70) the effect on welfare for existing generations can be

written as:

which coincides with equation (4.1) in the text.

(A75)(α β)dΛNE(v,0) (Ã(0)/ωA) 1 e (r α)v (H̃(0)/ωH)e (r α)v, v<0,

A.4.1.2. Future generations and newborns (v≥0)

The utility change for future generations and newborns is evaluated at birth,i.e. we

compute dΛNE(v,v) for v=t≥0. First, we know that agents are born without financial wealth,

A(v,v)=0, so that:

The change in welfare of future generations and newborns is rewritten as:

(A76)X(v,v) (α β)H(v) ⇒ X̃(v,v) dH(v)
H(0)

H̃(v)/ωH.

This coincides with equation (4.3) in the text. Note that in subsections A.4.1.1 and A.4.1.2Y(0),

(A77)(α β)dΛNE(v,v) X̃(v,v) H̃(v)/ωH, v t≥0.

H(0), A(0), X(v,0), and A(v,0) denote initial steady-state values for the respective variables, i.e.

values that pertainbefore the shock occurs. In the paper itself the index 0' is dropped from

steady-state values to simplify the notation. See for example the information on shares at the

bottom of Table 2.
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A.4.2. Environmental utility

The environmental component of total utility is given in equation (A67). By linearizing

(A67) we obtain the following expression for the change in environmental utility:

which shows that the impact effect on environmental utility is:

(A78)dΛE(t) ≡ ⌡
⌠
∞

t

Ẽ(τ)e (α β) (t τ)dτ,

where we have used (A65) to work out the Laplace transformation. Equation (A79) coincides with

(A79)dΛE(0) { Ẽ,α β}
hEhI

(α β hI)(α β hE)











Ẽ(∞)
α β

σNÑ(0)

hI

> 0,

(4.4) in the paper.

In a similar fashion, the long-run effect on environmental utility can be obtained directly

from (A78):

which is equation (4.5) in the paper. This completes the derivation of the results in section 4.1 of

(A80)dΛE(∞) ≡ lim
t→∞ ⌡

⌠
∞

t

Ẽ(τ)e (α β) (t τ)dτ Ẽ(∞)
α β

,

the paper and thus establishes Result 4.
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A.5. Proof of Proposition 4

We now turn to the proof of Proposition 4. Part (i) follows directly from (A79) since

Ẽ(∞)>0 and Ñ(0)<0. Similarly, dΛE(∞)>0 follows from (A80) and the fact thatẼ(∞)>0. Parts (ii)

and (iii) can now be proved as follows. First we recall that the path of energy use is monotonically

decreasing (see (A62) and note thatÑ(∞)<Ñ(0)<0). By definition we have that:

where we have used (A64) andẼ(0)=0. The term in square brackets on the right-hand side of

(A81)
{ Ẽ

.
,s} ≡ s { Ẽ,s} Ẽ(0) σN











hE

s hE











Ñ(0)










hI

s hI

Ñ(0) Ñ(∞) ,

(A81) is positive, so that environmental quality is monotonically increasing.

By using (A78) we obtain the following expression:

from which it follows that dΛ̇E(0)=(α+β)dΛE(0)>0 (as Ẽ(0)=0) and dΛ̇E(∞)=0 (from (A80)). By

(A82)dΛ̇E(t) ≡ d
dt

dΛE(t) Ẽ(t) (α β)dΛE(t),

using (A78) in (A82) and noting thatẼ(τ)>Ẽ(t) (for 0≤t<τ<∞) we derive:

Hence, dΛ̇E(t) is strictly positive initially and during the transition. This proves both parts (ii) and

(A83)

dΛ̇E(t) Ẽ(t) (α β) Ẽ(t)⌡
⌠
∞

t

e (α β) (t τ)dτ (α β)⌡
⌠
∞

t

Ẽ(τ) Ẽ(t) e (α β) (t τ)dτ

(α β)⌡
⌠
∞

t

Ẽ(τ) Ẽ(t) e (α β) (t τ)dτ > 0, (0≤ t<∞).

(iii) of Proposition 4 and thus establishes Result 5.
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A.6. Redistribution issues

Under an egalitarian policy, the path of lump-sum taxes must be chosen such that all

current and existing generations experience the same change in welfare. The implied path of debt

must satisfy the government budget restriction. In order to guarantee government solvency, we

directly postulate a stable path for debt and then deduce the implied path of lump-sum taxes. The

debt path is:

with φ1,φ2>0 andb0, b1, b2 finite. Note that (A84) implies thatB̃(0)=b0+b1+b2 and B̃(∞)=b0.

(A84)B̃(t) b0 b1e φ1t b2e φ2t,

By using (A84) in the government budget identity (TA.15) we obtain the following

expression for the (log-linearized) primary deficit:

(A85)D̃(t) ≡ G̃(t) B T̃(t) LS b0

2

i 1

bi (1 φi / r)e φi t,

where the subscriptLS' refers to the lump-sum rebating scenario analyzed in section 3 of the

paper, andB' refers to the bond policy. Since the investment system is independent of the path of

government debt, its solution is the same, and wages and tax revenue are unaffected by the bond

path. Hence:

where we have used (A85) to get from the first to the second equality in (A87).

(A86)ỸF (t)
LS

εL (1 tL) W̃(t) t̃L LS
T̃(t) LS,

(A87)ỸF (t)
B

εL (1 tL) W̃(t) t̃L LS
G̃(t) B ỸF (t)

LS
D̃(t),

By using (A54) and (A86)-(A87) the jump in human wealth under bond policy can be

computed:

where {D̃,r+β} is given by:

(A88)H̃(0) B ≡ r {[ ỸF]B,r β} H̃(0) LS r { D̃ ,r β},

(A89){ D̃ ,r β} ≡
b0

r β

2

i 1

bi (1 φi / r)

r β φi

.

Similarly, by using (A57) and (A87) the path for human wealth under bond policy can be

computed:
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By using (A85) we obtain:

(A90)
H̃(t) B H̃(0) LSe hI t 1 e hI t H̃(∞) LS r 1











{ D̃ ,r β} { D̃ ,s}
s (r β)

.

Finally, by substituting (A91) into (A90) and noting (A77), we obtain the path of non-

(A91)1











{ D̃ ,r β} { D̃ ,s}
s (r β)

b0

r β

2

i 1











bi (1 φi / r)

r β φi

e φi t.

environmental welfare under bond policy:

The path for environmental welfare does not depend on bonds and is given in (A78). With

(A92)

ωH (α β)dΛNE(t ,t) H̃(0) LSe hI t 1 e hI t H̃(∞) LS

r










b0

r β

2

i 1











bi (1 φi / r)

r β φi

e φi t .

time-invariant tax shocks it can be written as:

The effect on total welfare must equal the common effect under the egalitarian policy, which

(A93)dΛE(t)
Ẽ(∞)
α β











σNhEÑ(0) hI Ẽ(∞)

(hI hE) (α β hE)
e hEt











σNhEÑ(0) hEẼ(∞)

(hI hE) (α β hI)
e hI t.

implies the following restriction:

In view of (A92) and (A93), the egalitarian policy thus requires all exponential terms in the

(A94)dΛ(t ,t) ≡ dΛNE(t ,t) γEdΛE(t)
Π

α β
.

expression for total utility to be eliminated, using the policy variablesφ1, φ2, b0, b1, and b2. An

obvious requirement is that the bond policy rule contains the correct exponential terms:

Elimination of the exp[-hI t]-term (givenφ1=hI) by choice ofb1 yields:

(A95)φ1 hI , φ2 hE.

Similarly, elimination of the exp[-hEt]-term (givenφ2=hE) by choice ofb2 yields:

(A96)

b1











r
r hI

ỸF (0) ỸF (∞)
LS

γEωH











α β
r hI











hE

hE hI











r β hI

α β hI

σNÑ(0) Ẽ(∞) .
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The permanent term in total utility is equal to:

(A97)b2 γEωH











r β hE

r hE











α β
α β hE











σNhEÑ(0) hI Ẽ(∞)

hE hI

.

All existing generations (at the time of the shock) experience the same change in

(A98)b0 ỸF (∞)
LS

(r β)ωH

r
γEẼ(∞) Π .

environmental welfare, so that the equality (α+β)dΛ(v,0)=Π for v≤0, reduces to dΛNE(0,0)=dΛNE(-

∞,0), or:

where [Ã(0)]B represents the change in the value of financial assets under bond policy. In view of

(A99)ωA Π γE(α β)dΛE(0) Ã(0) B,

(TA.14) and (A84) it equals:

By substituting (A100) into (A99) and using (A96)-(A98) we obtain an expression which can be

(A100)Ã(0) B ωA q̃(0) LS B̃(0) ωA q̃(0) LS b0 b1 b2.

solved for the common welfare effect:

This coincides with (4.6) in the paper. By substituting (A36), (A42), (A49)-(A50), (A63), and

(A101)

ωXΠ ωA q̃(0) LS











r
r hI

ỸF (0)
LS











hI

r hI

ỸF (∞)
LS

γEωX











hI

r hI











hE

r hE











r σNÑ(0)

hI

Ẽ(∞)
LS

.

(A65) into (A101) we obtain an expression linkingΠ to the tax shocks:

whereΓL, ΓN, ΣL, andΣN are positive constants:

(A102)ωXΠ ΓL σL tL ΓN θN θP
N ωNt̃N ΣL ωL tL ΣNωN θN θP

N σL t̃L ,

(A103)ΓL ΣN ≡
r σKNωL (1 ωL)

(r hI) σKNωL ωN ωK σLZ σL (1 ωL)

hI

r hI

> 0,
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and whereθN
P is the Pigouvian energy tax:

(A104)ΓN ≡
r σKN(1 ωL) σLZ σL (1 ωL)

(r hI) σKNωL ωN ωK σLZ σL (1 ωL)

hI σKNωL ωK ωN σLZ σL (1 ωL)

(r hI)ωL (1 ωL)
> 0,

(A105)ΣL ≡
r σLZωK σKNωL ωN

(r hI) σKNωL ωN ωK σLZ σL (1 ωL)

hI

r hI

> 0,

This establishes Result 6.

(A106)θP
N ≡

γEσNωXhE

ωN(r hE)
> 0.
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A.8. Inequalities

In this section and the next we only consider the Cobb-Douglas case. It is conjectured that

the results can easily be extended to the more general case, but we have refrained from doing so

since little additional insight would seem to be gained in doing so. The first inequality which

warrants further comment is the one relating to Tobin’sq in (5.6). A direct approach yields the

proof. We know that adjustment in the capital stock is monotonic, so that the induced path of the

labour income tax rate is also monotonic and can be written as:

with (by Assumptions 1 and 2):

(A107)t̃L(t) t̃L(0)e hI t t̃L(∞) 1 e hI t ,

Equations (A107)-(A108) imply furthermore that the Laplace transform of the labour income tax

(A108)t̃L(0) < t̃L(∞) < 0.

rate is negative:

By applying the solution approach discussed above (in section A.3.1) to theoriginal investment

(A109){ t̃L ,s} < 0.

system (A30), settingt̃N(t)=t̃N, and using t̃L(t) given in (A107) above, we obtain the following

expression for the jump in Tobin’sq:

where the unstable root to be used isrI (because the original system is being used). Note that

(A110)q̃(0) TR











r εK

ωA εL (1 σL)εK

(1 σL)εN { t̃N,rI} σL εL { t̃L ,rI} ,

(A110) is just an alternative way to write the corresponding expression in (5.6) in the paper. By

using (3.2), it is clear that (A110) can be rewritten as:

where (A109) is used to demonstrate the final inequality.

(A111)q̃(0) TR q̃(0) LS











r εK σL εL

ωA εL (1 σL)εK

{ t̃L ,rI} > q̃(0) LS,

The impact effects on output, employment, energy use, and wages are obtained by using

(A26)-(A29), noting thatK̃(0)=0, and thatt̃L(0)<0 by the SRNLC. The inequalities pertaining to the

two scenarios follow in a straightforward fashion. By substituting the expression fort̃L(0) (from

(5.3) with K̃(0)=0 imposed) into (A26)-(A29), equations (5.7)-(5.10) in the paper are obtained. As

is explained in the paper, no unambiguous conclusion can be obtained regarding the impact effect

on full income. By using (3.6) and (5.11) we obtain the inequality mentioned in the paper. This
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establishes Result 7.

A.9. Inequalities welfare

We now turn to the proof of Proposition 7. Proposition 7(i) follows from (5.6) and 7(iii)

from (5.5). Proposition 7(v) follows readily from the fact that [ỸF(0)]TR>[ỸF(∞)]TR. The two

remaining claims, 7(ii) and 7(iv), clearly hold for initial tax rates equal to zero. With all

expressions being continuous this then implies that for all parameter settings there must be a

neighbourhood of the origin (θN,tL)=(0,0) where the result holds. We refer to this neighbourhood as

the case with sufficiently low' tax rates. We thus do not engage in a quest for specific bounds the

taxes must satisfy, since that would require tedious analysis of nonlinear inequalities which does

not add much insight. The zero initial taxes assumption simplifies matters substantially since it

renders the long-run response of disposable full income zero (see (3.7) and (5.11)). Comparisons

are consequently in terms of the initial jump for full income only. Upon substituting zero initial

taxes, claim 7(ii) reduces to the statement that [ỸF(0)]TR is positive (which we showed is true).

Claim 7(iv) is evidently true as [q̃(0)]TR<0 and [H̃(0)]TR>0.

Proposition 8, relating to the welfare consequences of the two scenarios considered, is half-

way proven, like the other summarizing proposition. In fact, only claim 8(iii) warrants any

comment. Using the assumption of zero initial taxes, the comparison reduces to a true inequality in

terms of [ỸF(0)]TR. All other claims are either proven or self-evident. This establishes Result 8.
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A.4.2. Environmental utility(old)

The environmental component of total utility is given in equation (A66). By linearizing

(A66) we obtain the following expression for the change in environmental utility:

The impact effect on environmental utility can be obtained directly from (A77) by applying the

(A112){dΛE,s} { Ẽ,α β} { Ẽ,s}
s (α β)

.

initial value theorem:

where we have used (A64) to work out the Laplace transformation. Equation (A78) coincides with

(A113)dΛE(0) ≡ lim
s→∞

s {dΛE,s} { Ẽ,α β}
hEhI

(α β hI)(α β hE)











Ẽ(∞)
α β

σNÑ(0)

hI

,

(4.4) in the paper.

In a similar fashion, the long-run effect on environmental utility can be obtained directly

from (A77) obtained by applying the final value theorem:

which is equation (4.5) in the paper. This completes the derivation of the results in section 4.1 of

(A114)dΛE(∞) ≡ lim
s→0

s {dΛE,s} Ẽ(∞)
α β

,

the paper and thus establishes Result 4.
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A.5. Old proof of Proposition 4(ii)-(iii)

In a similar fashion we write:

where we have used (A78) in going from the second to the third expression and (A80) in going

(A115)

{dΛE

.
,s} ≡ s {dΛE,s} dΛE(0) (α β) { Ẽ,α β} s { Ẽ,s}

s (α β)

{ Ẽ
.
,α β} { Ẽ

.
,s}

s (α β)
,

from the third to the fourth. By using (A80) in (A81) we find:

Inverting this transform gives only terms that are positive in the time domain. An alternative proof

(A116)

{dΛE

.
,s} ≡ σN











hE

(α β hE)(s hE)











Ñ(0)










hI s α β hE hI

(α β hI) (s hI)
Ñ(0) Ñ(∞) > 0.

is more general and holds for all increasing functions. We first state and prove the following

Lemma.

LEMMA A.3: Let ẋ(t)≥0 ∀t≥0 and ẋ(t)>0 ∃t≥0. Then the following result holds:

whereα1>0.

{ ẋ,α1} { ẋ,s}

s α1

α1 { x,α1} s { x,s}

s α1

α1











⌡
⌠
∞

t

x(τ) x(t) eα1(t τ)dτ > 0,

PROOF: The first equality follows from the initial value theorem and need not be proved here. To

prove the second step, we write the integral on the right-hand side as:

whereG(t) is defined as:

( )











⌡
⌠
∞

t

x(τ) x(t) eα1(t τ)dτ ⌡
⌠
∞

0











⌡
⌠
∞

t

x(τ)eα1(t τ)dτ e stdt ⌡
⌠
∞

0











⌡
⌠
∞

t

x(t)eα1(t τ)dτ e stdt

{ G,s} (1/α1) { x,s},

We first note that {G,s} is:

G(t) ≡ ⌡
⌠
∞

t

x(τ)eα1(t τ)dτ.
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(Proof: G(0)= {x,α1} and Ġ(t)=-x(t)+α1G(t). Hence, (s-α1) { Ġ,s}=G(0)- {x,s}= { x,α1}- { x,s}. )

{ G,s}
{ x,α1} { x,s}

s α1

.

By using this result in ( ) and simplifying we obtain:

which completes the proof of Lemma A.3.











⌡
⌠
∞

t

x(τ) x(t) eα1(t τ)dτ
α1 { x,α1} s { x,s}

α1(s α1)
,

Old stuff

It is straightforward to derive that:

which proves that numerator and denominator in (*) have the same sign. It remains to show what

s
>

<
α1 ⇔ { x,α1}

>

<
{ x,s},

happens ifs=α1. By l’Hôpital’s Rule we find:

lim
(s α1)→0

{ x,α1} { x,s}

s α1

lim
(s α1)→0

⌡
⌠
∞

0

x(t)e st 1 e (s α1) t dt

s α1

lim
(s α1)→0

⌡
⌠
∞

0

x(t)e st (s α1)e (s α1) t dt

1
0.

Since the path of environmental quality is monotonically increasing, it follows from Lemma A.3

and (A81) that {dΛ̇E,s} ≥0. Equation (A77) shows that dΛ(t) satisfies the following differential

equation:

from which we derive that dΛ̇E(0)=(α+β)dΛE(0)>0 (asẼ(0)=0). Hence, dΛ̇E(t) is strictly positive

(A82)dΛ̇E(t) Ẽ(t) (α β)dΛE(t),
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initially and {dΛ̇E,s}>0. This proves both parts (ii) and (iii) of Proposition 4 and thus establishes

Result 5.
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Extra material deleted from published version of the paper:

5. Tax reform and the double dividend hypothesis

In this section we consider an alternative policy scenario, namely a green' tax reform that consists

of an unanticipated and permanent simultaneous increase in the energy tax rate and decrease of the

labour income tax rate. In order to allow for comparison with the previously discussed scenario we

require the tax reform to be budget-neutral. No deficits are allowed and we abstract from bond

policy again. We also rule out lump-sum redistribution which implies we cannot have a tax reform

with constant tax changes, i.e. at least one of the tax rate changes must vary over time. The natural

choice in our context is to administer a time-invariant shock to the energy tax and to allow a time-

varying labour income tax rate to balance the budget.

5.1. Time-varying labour income taxation

The path of the labour income tax rate that satisfies the conditions posed is found by setting

B̃(t)=G̃(t)=T̃(t)=0 (so that (T2.15) holds trivially) and solving (T2.11) fort̃L(t):

whereωG≡εNθN+εLtL≥0 is the initial share of tax revenue in national income. The two terms on the

(A5)εL (1 tL) t̃L(t) εN(1 θN) t̃N ωGỸ(t) ,

right-hand side of (5.1) represent, respectively, the rate effect and the base effect. In view of the

simple Cobb-Douglas production structure, the tax bases for the labour and energy tax are both

proportional to aggregate output. Of course, if initial taxes are zero (tL=θN=ωG=0), there is no base

effect and only the rate effect survives.

In the general case (withσL>0 andωG>0), the base effect is induced by labour and energy

adjustment in the impact period, and by labour, energy, and capital reallocation during transition

and in the long run. By settingt̃N(t)=t̃N in (2.9) and using (5.1), the quasi-reduced forms for output

and the labour tax rate under tax reform are found:

(A6)Ỹ(t)
(1 σL) (1 tL)εKK̃(t) 1 (1 σL) tL σL θN εNt̃N

(1 tL) εL (1 σL)εK σL ωG

,

(A7)εL t̃L(t)
ωG(1 σL)εKK̃(t) εL (1 σL)εK (1 σL)εL tL 1 σL (1 εL) θN εNt̃N

(1 tL) εL (1 σL)εK σL ωG

.
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Before moving on to the macroeconomic and distributional consequences of the tax reform

policy we must reconsider stability of the investment system since the dynamics are affected by the

policy under consideration. As it turns out the investment system is no longer stable for all levels

of pre-existing taxation. Intuitively, stability requires the marginal product of capital (FK) to rise as

the capital stock falls. By usingF̃K(t)≡Ỹ(t)-K̃(t) and equation (5.2), we obtain the following

expression for the marginal product of capital:

whereψ(θN,tL) andχ(θN,tL) are defined as follows:

F̃K(t) ≡ Ỹ(t) K̃(t) ψ(θN,tL) K̃(t) χ(θN,tL)εNt̃N,

Stability thus requiresψ(θN,tL)>0, which is trivially satisfied if labour supply is exogenous (σL=0)

(A6)ψ(θN,tL) ≡
εL (1 tL) σL ωG

(1 tL) εL (1 σL)εK σL ωG

, χ(θN,tL) ≡
1 (1 σL) tL σL θN

(1 tL) εL (1 σL)εL σL ωG

.

or initial tax rates are zero (θN=tL=ωG=0). In the general case, however, stability depends on the

magnitude of pre-existing tax rates,θN and tL, as can be illustrated with the aid of Figure 2.

Designating the denominator and numerator ofψ(.) by ψD and ψN, respectively, stability

obtains if bothψD and ψN are positive (modest tax rates) or both are negative (high tax rates). In

terms of initial tax rates, the two cases are represented in Figure 2 by areas 0AB and C1DE,

respectively. In order to exclude the latter case, which does not appear to have much real-world

relevance, we make the following assumption.

ASSUMPTION1: The initial tax ratesθN and tL satisfy:

i.e. the initial tax rates are relatively low and preserve macroeconomic diminishing returns to

(NSC)ψ(θN,tL) > 0 : 0≤θN≤1, 0≤ tL<1, θN ≤
εL 1 (1 σL) tL

σL εN

,

capital.

This normal' stability condition (NSC) ensures that the denominator appearing in (5.2)-(5.3) is

positive. It is thus also useful to sign the relationship between the change in the energy tax and the

induced labour tax change, both at impact and in the long-run (see (5.3)). Indeed, if initial taxes

are zero, the bracketed term in front oft̃N on the right-hand side of (5.3) is positive and the labour

tax falls as a result of the increase in the energy tax. As is well known, however, this result does

not extend to the general case, because the erosion of the tax base can be so severe as to prompt a

positive relationship between the shock in the energy tax and the induced change in the labour tax.

In order to rule out such cases, we make a number of assumptions regarding initial tax rates which

will ensure that the economy operates on the upward sloping side of the Laffer curve:

-30-



ASSUMPTION2: The initial tax ratesθN and tL satisfy:

i.e. the initial tax rates are such as to place the economy on the upward sloping segment of the

(SRNLC)t̃L(0)/̃tN < 0 : θN <
εL (1 σL)εK (1 σL)εL tL

εL (1 σL) (εK εN)
,

(LRNLC)t̃L(∞)/t̃N < 0 : θN <
εL 1 (1 σL) tL

εL (1 σL)εN

,

Laffer curve.

Given Assumption 1, the long-run no-Laffer-curve condition (LRNLC) is actually more restrictive

than its short-run counterpart (SRNLC), i.e. LRNLC implies SRNLC. In terms of Figure 2, SC and

SRNLC hold in the trapezoid 0BHG whilst SC and LRNLC obtain in the triangle OBI (which is

fully contained in 0BHG). Armed with Assumptions 1 and 2, we are able to derive the modified

version of Proposition 1.

PROPOSITION 6: SupposeσL>0 and that Assumptions 1 and 2 hold. Then (i) the full model is

locally saddle-point stable; (ii) the investment system has distinct characteristic roots, -hI<-hI
*<0

and r<rI
*=r+h I

*<rI=r+h I; (iii) the stable root satisfies∂hI
*/∂σA<0 and hI

*→∞ as σA→0; and (iv) the

saving system has distinct characteristic roots -hS=r-( α+β)<0, rS=r+ β>0. PROOF: See Appendix.

The most important thing to note from Proposition 6 is that even though the dynamic properties of

the economy are the same under lump-sum rebating and tax reform, the adjustment speed is lowest

under the latter scenario, i.e.hI>hI
*. This has important repercussions for both the macroeconomic

and distributional effects of the energy tax.

5.2. The macroeconomic effects

The capital stock and its associated shadow value exhibit similar transition patterns as before, with

capital gradually decreasing to its new steady-state value and Tobin’sq returning to its initial

steady-state value upon an initial fall at impact. However, as was pointed out above, the adjustment

speed is lower,hI
*<hI, and q̃(0) and K̃(∞) are different as well. For the long run decrease in the

capital stock we can now write:

where the subscriptsTR' and LS' refer, respectively, to the tax reform scenario and lump-sum

(5.5)K̃(∞) LS < K̃(∞) TR











1 (1 σL) tL σL θN

εL (1 tL) σL ωG

εNt̃N < 0,

recycling case. The decrease in the capital stock is smaller under tax reform than under lump-sum
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recycling. The labour supply response due to the fall in the labour tax dampens the reduction in the

capital stock needed to return the marginal product of capital to its initial equilibrium value.

Accordingly, for inelastic labour supply the fall in the capital stock is the same for both scenarios,

[K̃(∞)]TR=[K̃(∞)]LS=-εN t̃N/εL. With elastic labour supply but zero initial taxes, however, we also find

[K̃(∞)]TR=-εN t̃N/εL, but [K̃(∞)]LS is still given by (3.1), so that the inequality in (5.5) continues to

hold due to the compensating labour market effects.

The adjustment of Tobin’sq at impact can be expressed as:

whereχ(θN,tL)>0 is given in (5.4). The shadow value of the capital stock falls at impact, though by

(5.6)q̃(0) LS < q̃(0) TR











εK χ(θN,tL)

ωA











r

r hI

εNt̃N < 0,

less than under lump-sum recycling of the tax revenue. The reason is again the dampening effect

of the labour market response due to the labour tax cut. This ensures that the path of the after-tax

marginal product of capital under tax reform lies above the corresponding path for the lump-sum

case, both at impact and during transition, i.e. 0>[Ỹ(t)-K̃(t)-t̃N]TR>[Ỹ(t)-K̃(t)-t̃N]LS. Since Tobin’sq

represents the present value of this path, its path under tax reform also lies above the lump-sum

path, i.e. [q̃(t)]LS<[q̃(t)]TR<0. In terms of Figure 1, the shift in theq̇(t) line is smallest under tax

reform, the long-run effect is at E2, the impact effect is at A′, and the saddle path is the dashed

line through A′ and E2.

Since capital is predetermined, the impact effect on output can be obtained from (5.2) by

settingK̃(0)=0:

(5.7)Ỹ(0) LS < Ỹ(0) TR











1 (1 σL) tL σL θN

(1 tL) εL (1 σL)εK σL ωG

εNt̃N < 0.

The reduction in output is dampened by the cut in the labour-income tax rate. Intuitively, the tax

cut brings about a labour supply response which ensures that the gross wage is reduced further and

employment picks up somewhat:

(5.8)W̃(0) TR













εL 1 (1 σL) tL σL εK (1 εL)θN

εL (1 tL) εL (1 σL)εK σL ωG

εNt̃N < W̃(0) LS < 0,

(5.9)L̃(0) LS < L̃(0) TR











σL (εK θN)

εL (1 tL) εL (1 σL)εK σL ωG

εNt̃N, L̃(0) TR

>

<
0.
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If the pre-existing energy tax is low (θN<εK) employment is boosted at impact due to the tax

reform. A consequence of the dampened employment effect is that the reduction in the demand for

energy is also dampened:

Finally, since in the tax-reform scenario tax revenue and thus transfers are held constant

(5.10)Ñ(0) LS < Ñ(0) TR











1 (1 σL) tL σL εK

(1 tL) εL (1 σL)εK σL ωG

t̃N < 0.

(G̃(t)=T̃(t)=0), (T2.12) and (T2.8) together imply that the path of full income is proportional to that

of employment:

where [ỸF(0)]LS is given in (3.6). No unambiguous conclusion can be drawn with respect to the

(5.11)ỸF (0)
TR











(1 tL) (εK θN)

(1 tL) εL (1 σL)εK σL ωG

εNt̃N,

relative size of the impact effect on full income under the two scenarios. After some manipulation,

however, we obtain the following inequality:

If both tax rates are zero initially (θN=tL=0), full income rises at impact due to the labour tax cut

ỸF (0)
TR

<

>
ỸF (0)

LS
⇔ θN

<

>

εK (1 εN) tL

εN

.

but the rise is in that case weaker than under lump-sum revenue recycling. The reason for this is

that with elastic labour supply part of the labour tax cut is passed on to capital owners in the form

of a lower wage level. For higher initial tax rates, however, the degree of tax shifting will be

reduced and the rise in the after-tax wage rate will start to dominate the rise in transfers, so that

[ỸF(0)]TR>[ỸF(0)]LS.

The long-run effects on the various macroeconomic variables can be obtained by using

(5.5) and noting thatq̃(∞)=0 and K̃(∞)=Ỹ(∞)=Ĩ(∞) in the steady state. For energy we find the

following result:

The long-run factor price frontier,εLW̃(∞)+εNt̃N(∞)=0, ensures that the effect on the gross wage rate

(5.12)Ñ(∞) LS < Ñ(∞) TR











(1 εK) 1 (1 σL) tL

εL (1 tL) σL ωG

t̃N < 0.

is the same under both scenarios. The labour tax cut thus translates into a higher after-tax wage

and a smaller reduction in employment under tax reform than under lump-sum recycling:

At best there is no long-run employment effect under tax reform (ifθN=0 initially), but an

employment expansion is impossible. Finally, the proportionality between employment and full
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income under tax reform can be exploited to obtain the following result:

(5.13)L̃(∞) LS < L̃(∞) TR











σL (1 εK)θN

εL εL (1 tL) σL ωG

εNt̃N ≤ 0.

The results in this section demonstrate that the relative changes in the macroeconomic

(5.14)ỸF(∞)
LS

< ỸF(∞)
TR











(1 εK) (1 tL)θN

εL (1 tL) σL ωG

εNt̃N ≤ 0.

variables under tax reform and lump-sum recycling are qualitatively similar. Essentially, all

changes are less pronounced under the former policy because the labour-income tax cut acts as an

automatic stabiliser.1

5.3. The distributional effects

Now that the macroeconomic effects of the tax reform have been determined, we can simply

follow the analysis of section 4.1 in order to compute its welfare consequences. The change in

financial wealth follows readily from [Ã(0)]TR=ωA[q̃(0)]TR. This also gives us the change in

non-environmental welfare for the infinitely old:

dΛNE( ∞,0)
LS

< dΛNE( ∞,0)
TR

≡ (α β) 1 q̃(0) TR < 0.

Under both scenarios the very old are hurt, but the pain is least under the recycling policy.

The welfare effect for the generations born in the new steady state, [dΛNE(∞,∞)]TR, can be

derived in a similar manner, by using (3.8), (4.3) and (5.14):

Hence, steady-state generations are also hurt under the tax-reform scenario, though by less than

dΛNE(∞,∞)
LS

≤ dΛNE(∞,∞)
TR

≡
r ỸF (∞)

TR

(r β)(α β)ωH

≤ 0.

under the lump-sum scenario.

For the complete picture of changes in non-environmental welfare under tax reform we

need the effect on human wealth at impact. From (3.10) and (4.3) we can conclude that the

generations born at the time of the tax reform benefit from it, but we cannot determine how their

gain relates to their gain under the previous scenario. The problem is caused by the fact that the

impact effect on human wealth is a weighted average of the impact and long-run effects on full

income (see (3.10)), but that both the weights are different between the scenarios (ashI>hI
*) and the

quantities to be weighted are different (as [ỸF(0)]TR<[ỸF(0)]LS for low tax rates and
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[ỸF(∞)]TR>[ỸF(∞)]LS). No generally valid conclusions can be drawn, though some special cases are

nevertheless instructive. If capital is highly mobile (σA→0) then bothhI and hI
* are extremely high

relative to β, and the long-run effect on full income will dominate the expression (3.10), so that

[H̃(0)]TR>[H̃(0)]LS. On the other hand, if the generational-turnover effect is strong (β is high), the

short-run effect on full income dominates and we conclude [H̃(0)]TR<[H̃(0)]LS for low tax rates.

This last inequality also holds generally for zero initial taxes and thus, by a continuity argument,

for initial taxes close to zero. We conclude that the picture from the macroeconomic variables

above broadly translates to non-environmental welfare; viz. the changes are less pronounced under

tax reform.

The effects on environmental welfare are quite straightforward. Indeed, by using (5.10) and

(5.12) in (4.4) (imposingẼ(∞)=-σNÑ(∞)) and noting the adjustment speed is nowhI
*, we

immediately conclude that the rise in environmental welfare is smaller under tax reform:

The smaller reduction of the capital stock and the slower adjustment speed both directly deliver a

dΛE(0)
LS

> dΛE(0)
TR













hI

α β hI











hE

α β hE











σNÑ(0)

hI

Ẽ(∞)
α β

> 0.

smaller increase in environmental utility at impact. In the long run, only the capital stock effect

survives (see (4.5)), which ensures that [dUE(∞)]LS>[dUE(∞)]TR. We summarize our findings from

this section in the following propositions. The first of these generalizes Proposition 3 to the case of

tax reform.

PROPOSITION 7: The changes in the path of non-environmental welfare indexed by tax reform

satisfy (i) [dΛNE(-∞,0)]TR<0, (ii) 0<[dΛNE(0,0)]TR for low initial tax rates, and (iii)[dΛNE(∞,∞)]TR≤0.

Furthermore, (iv) [dΛNE(-∞,0)]TR<[dΛNE(0,0)]TR for low initial tax rates and (v)

[dΛNE(∞,∞)]TR<[dΛNE(0,0)]TR for all feasible rates of pre-existing taxation. Finally, the path of

changes in environmental welfare satisfies (vi)0<[dΛE(0)]TR<[dΛE(∞)]TR for all feasible initial tax

rates.PROOF: See text and Heijdra and Van der Horst (1998).

The inequalities stated are exactly the same as in Proposition 3, though the conditions required by

some are not necessarily the same. The next proposition specifies how the welfare effects of the

two policies considered in this paper, viz. lump-sum recycling and tax reform, relate:

PROPOSITION 8: Under the assumptions made, the paths of changes in welfare resulting from tax

increase and tax reform satisfy (i)[dΛNE(-∞,0)]LS<[dΛNE(-∞,0)]TR, for all feasible rates of

pre-existing taxation, (ii) [dΛNE(-0,0)]TR<[dΛNE(-∞,0)]LS for low initial tax rates, and (iii)

[dΛNE(∞,∞)]LS≤[dΛNE(∞,∞)]TR for all feasible rates of pre-existing taxation. The paths of changes in
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environmental welfare satisfy (iv)[dΛE(0)]TR<[dΛE(0)]LS and (v) [dΛE(∞)]TR< [dΛE(∞)]LS for all

feasible initial tax rates.

The tax reform policy is thus qualitatively the same as the recycling policy in the sense that all

changes are in the same direction. Of course, for specific generations the consequences of the two

policies may differ but the broad picture is more or less the same. The main differences that exist

between the welfare profiles generated by the two policies are that (i) tax reform generates slower

adjustments and consequently affects more generations’ welfare, but (ii) at the same time the

changes are less pronounced under tax reform.

5.4. Is there a double dividend?

Over the past few years a vast literature has emerged dealing with the so-called double dividend

hypothesis (See Parry (1995) and Goulder (1995) for recent papers on this topic). There are

actually two versions of this hypothesis. In general, the double dividend hypothesis states that

using the revenues of environmental taxes to cut distortionary taxes on labour or consumption may

yield two dividends. The first dividend is the improvement in environmental quality. The second

dividend is defined as a rise in employment in the European literature, whereas in the American

literature it is more generally defined as the extra benefits derived from the reduction in pre-

existing distortions in the economy. Up to now most studies on double dividend have been

conducted by means of static representative agent models.

We focus on the European definition of the double dividend. In the short run a

simultaneous increase in both environmental quality and employment will occur provided the initial

energy tax is low. Equation (5.9) shows that in that case employment rises at impact due to the

labour tax cut, and the process of capital decumulation is set in motion which leads to a gradual

improvement in environmental quality, and an immediate green dividend, i.e. [dΛE(0)]TR>0, without

immediately offsetting the employment effects of the labour tax cut. This is sufficient for

establishing a double dividend as both dividends are generation-independent so that redistributional

aspects play no role here.

The environmental gain is persistent and growing as we have seen, but in the long run the

employment dividend will disappear. The decrease in the capital stock depresses labour demand

and the concomitant erosion of the tax base necessitates a gradual increase in the labour tax rate

which in turn depresses labour supply. Both effects result in lower employment levels. Indeed, as

was shown in (5.13), at best there is no long-run employment effect under tax reform (ifθN=0

initially), but an employment expansion is impossible.

-36-



Table A.1: Log-linearized version of the generalized model

(TA.1)
Ã
.
(t) r (α β) Ã(t) (α β) H̃(t) r ỸF (t)

(TA.2)
H̃
.
(t) (r β) H̃(t) r ỸF (t)

(TA.3)
K̃
.
(t) (r ωI /ωA) Ĩ(t) K̃(t)

(TA.4)
q̃
.
(t) r q̃(t) r /ωA ωLW̃(t) ωNt̃N(t)

(TA.5)
Ẽ
.
(t) hE Ẽ(t) σNÑ(t)

(TA.6)Ỹ(t) L̃(t) σLZW̃(t)

(TA.7)Ñ(t) K̃(t) σKN/ωK ωLW̃(t) (1 ωL) t̃N(t)

(TA.8)L̃(t) σL W̃(t) t̃L(t)

(TA.9)q̃(t) σA Ĩ(t) K̃(t)

(TA.10)Ỹ(t) ωL L̃(t) ωKK̃(t) ωNÑ(t)

(TA.11)T̃(t) ωL tL W̃(t) L̃(t) ωL (1 tL) t̃L(t) θNωNÑ(t) ωNt̃N(t)

(TA.12)ỸF (t) ωL (1 tL) W̃(t) t̃L(t) G̃(t)



(TA.13)ωCC̃(t) ωXX̃(t) σL ỸF (t) G̃(t) , ωXX̃(t) (α β)/r Ã(t) H̃(t)

(TA.14)Ã(t) ωA K̃(t) q̃(t) B̃(t) F̃(t)

(TA.15)
B̃
.
(t) r B̃(t) G̃(t) T̃(t)

Steady-state shares:

ωL FLL/Y=WL/Y Share of labour in national income.
ωN FNN/Y=(1+tN)PNN/Y Share of energy in national income.
ωK FKK/Y Share of capital in national income.
ωI I/Y Share of firm investment in national income.
ωX X/Y Share of full consumption in national income.
ωA rA/Y=rqK/Y Share of asset income in national income.
ωC C/Y Share of consumption in national income.
ωG G/Y=T/Y Share of transfers and tax revenue in national income.

Relationships between shares and parameters:

ωC=ωA+(1-tL)ωL+ωG

ωC=1-ωI-ωN(1-θN)
ωC=ωX+σLωL(1-tL)/(1+σL)
ωA+ωI=ωK

ωG=ωLtL+ωNθN

ωL+ωK+ωN=1
θN≡tN/(1+tN)

Notes: (a) We have used the normalizationB=F=0 initially.
(b) σA≡-(I/K)(φ″/φ′)≥0, represents the degree of concavity of the installation cost

function. A low value forσA implies that physical capital is highly mobile, with the
limiting case ofσA=0 (no adjustment costs) representing perfect mobility of capital.

(c) The relative price of energy is assumed to be constant.
1. To complete the discussion of the macroeconomic effects, it is noted that the

transition paths for the variables discussed in this section can all be written as a
weighted average of the impact effect and the long-run effect, with respective time-
varying weights exp[-hI

*t] and 1-exp[-hI
*t].


