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1 Model solution and stability

1.1 Construction of Figure 1 and proof of Proposition 1

We first construct the phase diagram. Dropping time indices, the steady-state of the model in
Table 1 can be written as:

C = moK'™¢r -G, (K =0 line)
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r(K)—p ( )

where we write r(K) = (1 — e, ) K&, from which the following results can be derived:

> 1 = 1 =
r(K) > 0, Il(lLIIOT(K) 00, Kh_r}réor(K) 0,
K
rg(K) = —ep (7’(}{)) <0, Il(igorK(K) = 00, I(ll_rgorK(K) =0.

The K = 0 line is concave towards the origin (as drawn in Figure 1):
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The slope of the C' = 0 line can be written as:

(ﬂ) _ Mp A N [r(K) —p—rx(K) [K + B
dK ) ¢~ [r(K) = pJ?

The Keynes-Ramsey capital stock, K%# is implicitly defined by r(K%#) = p. Hence, the C=0

line has a vertical asymptote at K = K®% is horizontal at K = 0, and is upward sloping for
0< K < KKE;
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where 7 (K) = e (1 +€e2)r(K)/K? > 0, and we have used the fact that (r(K) — p)rrx(K) —
2r2.(K) < 0. Hence, the C = 0 line is convex towards the origin as drawn in Figure 1. There is
a unique non-trivial equilibrium at point Eq which lies to the left of the Keynes-Ramsey point A.
(The equilibrium at point C is unstable and can thus be dismissed from further consideration.)

A very simple expression for the equilibrium output-capital ratio can be computed by equating
the ¢ =0 and K = 0 lines:

[r(K) — A [¥ — Gl = Mp+ N [K + B &
IR RENTER
well— er) (%) ~ [pwe + Mp + Nws] (%) AN =0,

where wp = B/Y and we = C/Y. Taking the positive root of this quadratic equation yields the
expression for the output-capital ratio associated with the Blanchard-Yaari equilibrium.
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Obviously, since r = (1 —e1,)(Y/K), we also have the expression for the equilibrium interest rate:
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Throughout the paper (and in the remainder of this appendix) we assume that the initial debt is
zero (wp = B = 0), so that rPY is simplified to:

)]1/2
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s , (for B =0). (A1)

Since r2Y = p+ A\(1 — wp), where wg = H/(H + K), it follows that p < 78Y < p + X because
0 < wy < 1. This last inequality can be deduced from the assumption wg = 1 — we < €
plus the fact that (rBY + X\)(H/K)BY = (WY /K)PY = [ef — we](Y/K)PY. This implies that



(H/K)PY > 0 and hence HBY > 0 (WY = W —T = W — G). In the steady state we have:
we(l—wh) = (p+ ) (K/Y)BY and (K/Y)BY = (1—€)/rBY. It is thus straightforward to show
that p < rBY < p+ X implies the following inequality for 1 — wg:

1—€; < wc(l wa) < (1 *EL)(l +)\/p)

Equation (A.1) can be used to derive the following results for the steady-state interest rate (holding
the share of government spending, 1 — w¢, constant).

drBY  werBY + X1 —¢er)  mBY + N1 —€p)/we
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where we have also used the fact that (A + p)(K/Y)BY = wo(l — wpg) > (1 — €) because
rBY < X+ p. The proof for drP®Y /d) runs as follows:
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Since 1 —wpg = (rBY — p)/), it is also straightforward to derive the results for the steady-state

share of human wealth:

dwg 1 1 drBY dvg 1 drBY S0
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The linearized model given in Table 2 can be written in terms of a single matrix equation:
C:’(t) _ T T—wp —(rep +7—p) C:'(t) (A6)
K(t) T r K(t)
N 0 - @(t) 7
-1 0 B(t)

where r = rBY, O(t) = dO(t)/C, K(t) = dK(t)/K, C(t) = C@t)/C, K(t) = K(t)/K, B(t) =
rdB(t)/Y, and G(t) = dG(t)/Y (and we have used dC(t) = C(t) and dK (t) = K(t)). The 2 by 2
matrix of coefficients for the endogenous variables is denoted by A (with typical element 6;;) and

the 2 by 2 matrix of coefficients for the exogenous variables is represented by T' (with non-zero

elements v, = —r/(1 —€r), vo = —(r —p)/(1 —€r)).



We let r* and —h* stand for the characteristic roots of A, and we wish to show that the
equilibrium Ejy in Figure 1 is saddle-point stable, i.e. that r* > 0 and h* > 0. The characteristic

roots are equal to:

1/2
r* = tr(QA) 1+(1—tf(§)2> ]>tr(A)a
. (4 4la] 2
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The adjustment speed of the economy is represented by h*. The proof of saddle-point stability
proceeds as follows. Recall that |A| = —r*h* and tr(A) = r* — h*. The determinant of A can be
written as follows:

«_ T [repwe + (e —wea)(r — p)]

Al =—r"h
Al = —r .

<0. (A7)

We assume in the text that the labour income share exceeds the share of government spending,
i.e., €5 > wg, so that the after-tax share of labour is positive. Hence, the roots alternate in sign,
and r* > 0 and ~A* > 0. This completes the proof of Proposition 1. O

1.2 Proof of Proposition 2

In order to prove the inequalities concerning the characteristic roots, we define f(s) = |sI — A|.
Obviously, since the system is saddle-point stable, f(s) is a quadratic function with roots s; =
—h* <0 and sy =7r* >0, and f(0) = |A| < 0. To prove the inequality for h* (> p+ A —r), all we
need to show is that f(5) < 0 for s=r — (p+ A). By simple substitutions we obtain:

5) = A(p+A)— rwe [r—p+reg)

1-— €1,
p+A eLwer?
= )\(p‘i’)\)* 1_WH P\(l*wH)+’l"6L]:*ﬁ<O,

where we have used the fact that r — p = A1 —wp) and rwe /(1 —€r) = (p+ ) /(1 —wpy). Since
r* = h* 4+ tr(A), the inequality for r* follows directly from the trace condition:

r'=h"4+r—p+r>@pE+rr-—r)+r—pF+r=A+r

This concludes the proof of Proposition 2. O
Of course, since r* = h* +tr(A), the unstable root exceeds the rate of interest, i.e., r* > r and

a fortiori r* >1r — p.

1.3 Model solution

We use the Laplace transform techniques pioneered by Judd (1982, 1985, 1987). By taking the
Laplace transform of (A.6) and using

L{C, s} = s£{C, s} — C(0) and L{K, s} = sC{K, s},
we obtain the following expression:

£{C,s}
L{K, s}

C(0) +70L{ B, s)
7K£{G7 S}

(sI —A) l




Define A(s) = sI — A, so that |A(s)| = (s —r*)(s + h*). By pre-multiplying (A.8) by adj(A(r*)),

we arrive at the initial condition for the jump in consumption:

. * * E{é’ T*}
AT ik ] )
r* — 029 012 é’(O) + VCL:{B’ " 0 (A.9)
621 r* — 611 v LAG, - 0] |

Since the characteristic roots of A are distinct, rank(adj(A(r*))) = 1 and there is exactly one
independent equation determining the jump in consumption, C'(0). Hence, either row of (A.9)
may be used to find C(0):

(" = 622) [C(0) + 70 L1B, "} | + 0129k LG} = 0, (A.10)
621 |C(0) + 70 LB, Y| + (" = 1)y £{Gr} = 0. (A1)

Using cither (A.10) or (A.11) to eliminate C(0) from (A.8), we arrive at the general perfect
foresight solution of the model in terms of Laplace transforms. Consider the first row of (A.8) in

combination with (A.10). After some simplification it can be written as follows:

(s+h)E{Cys}h = C0)+7cLB, s} + 127k l‘{%i = f*{G,r*}]
L’{B, s} — [:{Eﬂa*}

s —r*

+(r" = 62)v¢ : (A.12)

The second row of (A.8) can be combined with (A.11), after which the following expression is
obtained:

(s+ h*)/l{f}', sp = 'yK,C{é, sh+ (r" —611)vk

s—r*

L{G, s} L’{G‘,r*}]

L{B,s} — L{B,r*}

s—r*

+6217¢ . (A.13)

The long-run effects of shocks in abatement spending (G) and debt (B(cc)) are obtained from
(A.12) and (A.13) by applying the final-value theorem (Spiegel, 1965, p. 20).

Cloo) = lims{C,s) = —120xGF by Bloc) (A.14)
) r*h*

R(x) = limsL{R,s} = Surk@ —*5;:703(00). (A.15)
s T

By making the appropriate substitutions for the vy, 7~ and the §;;-terms from (A.6), we find the
expressions in section 3.1 of the text by setting B(co) = 0.

The initial responses of the time rates of change of the capital stock and consumption are
obtained by applying the initial-value theorem (Spiegel, 1965, p. 20).

KO0) = limsC{K, s} = lim 2L{K,s) (A.16)

= e [é(O)—(r*—én)L{é,r*} Sy L{ B} = 7, G(0) + 821C(0),
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By making the appropriate substitutions, we find the expressions in section 3 of the text.
By taking the Laplace transform of equation (T2.4) in Table 2, and imposing the fact that the
quality of the environment is a predetermined variable (so that £(0) = 0), we obtain the following

expression:

—ozKaEE{f(, s+ aGaEﬁ{G', s}
S+ ag '

L{E,s} = (A17)

Hence, the Laplace transform of environmental quality is linked directly to the Laplace transforms
for the capital stock and public abatement. It follows immediately from (T2.4) that:

E(0) = —axapK(0) — apE(0) + aganC(0) = agarG(0),
(since K(0) = E(0) = 0) and:

E©0) = faKaEIT((O) —apB(0) + aGaEé(o_)
= —agapK(0) — a2acG(0) + agapG(0). (A.18)

In order to calculate the transition paths for capital and consumption, the intertemporal paths
of G(t) and B(t) must be specified. The cases discussed in the text are based on the following

parameterizations:
o 2
Gt)=(1—e5") G, B(t)=bo+ Yy (1—e5")b, (A.19)
i=1

with £, > 0 and £, > 0. In that case, it is possible to derive the following expressions:

L{G, s} — L{G,r*} 1 1] 4
5 —r* B [(7’* +€c)(s+&¢) 7’*5] ¢ (420
~ ~ « 2
L{B, si - f*{B,r | . Z {m _ rTls] b. (A.21)

It is also useful to recognize that:

(s+h)(s+6) & h* [s—l—h* _5+£Z}’ Gih)s e {;—H—h*], (A.22)

for i = 1,2,G. Using (A.19)-(A.22) in (A.13) and recognizing (A.15), we obtain the transition
path for the capital stock by inverting the Laplace transforms:

611 +€&¢
™+ &g

K@) = A(h*,t)f((OO)vK(

+0217¢ Z <

Equation (A.23) contains a single adjustment term and three (temporary) single transition terms,

> GT (¢, h* 1)

) (€57, 1). (A.23)

about which the following properties can be established, respectively.



Lemma A.1 Let A(aq,t) be a single adjustment function of the form:
Alag,t) =1 —e >t

with oy > 0. Then A(aq,t) has the following properties: (i) (positive) A(aq,t) >0t € (0,00), (i)
A(aq,t) =0 fort =0 and A(az,t) — 1 in the limit as t — oo, (111) (increasing) dA(aq,t)/dt > 0,

(iv) (step function as limit) As oy — 00, A(aq,t) — u(t), where u(t) is a unit step function.

PROOF: Properties (i) and (ii) follow by simple substitution. Property (iii) follows from the fact
that dA(ay,0)/dt = a1[1 — A(aq,t)] plus properties (i)-(ii). Property (iv) follows by comparing
the Laplace transforms of A(aq,t) and u(t) and showing that they converge as a; — oo. Since
L{u,s} =1/s and L{A(cy,t),s} =1/s —1/(s + aq) this result follows. O

Lemma A.2 Let T(ay,a0,t) be a single transition function of the form:

T(oq,ae,t) = { 6_%%221 for on # 7

te” for a; = aw,
with oy > 0 and og > 0. Then T(aq, ag,t) has the following properties: (i) (positive) T(aq, o, t) >
0t e (0,00), (it) T(a1,a9,t) = 0 for t = 0 and in the limit as t — oo, (iit) (single-peaked)
dT (a1, ag,t)/dt > 0 for t € (0,1), dT(ay,a9,t)/dt < 0 fort € (f,00), dT (a1, a9,t)/dt = 0 for
t =t and in the limit as t — oo, and dT(ay,az,0)/dt =1, (iv) t = In(ay /as) /(1 —ag) if a1 # o
and t = 1/ay if a; = ag; (v) (point of inflexion) d*T(ay, ao,t)/dt? = 0 for t* = 2t

PRrROOF: Property (i) follows by examining the three possible cases. The result is obvious if
a; = ag. If ap < (>)ag, then ap — oy > (<)0 and e= ! > (<) e™2f for all t € (0,00), and
T(aq, a,0) > 0. Property (ii) follows by direct substitution. Property (iii) follows by examining
dT(Oél, a9, t)/dt:

dT(ay, a,t) { e oapeT2 g £

] —Q
dt 1—agt]e @t for a; = ay.

Property (iv) is obtained by examining dT?(ay, ag, t)/dt?:

2 —aqt 2 —aot

2 ate” Y1t —aqie” *2
d"T(oq, o9,t) ) =—ppt— for oy # az
d?t —a1[2 — agt]e @t for oy = aua.

Hence, d?T(ay,a2,0)/dt? = —(a1 + ag) < 0, and limy_o, d?*T(ay, ag,t)/dt? = 0. The inflexion
point is found by finding the value of t = t* where d?T(ay, ag,t)/dt? = 0. O

By using (A.19)-(A.22) in (A.12) and noting (A.14), we find the transition path for consumption
by inverting the resulting Laplace transforms:

Ct) = C(0)(1—A(h*,t) + C(c0)A(R*, 1) + (T‘ilfg;) GT(¢g, h* 1)

2
Yo (522 i 5@‘) biT(&;, h" 1), (A.24)
=1

r*+&;

where the jump in consumption that occurs at impact can be calculated by using (A.11) in
combination with (A.19):

P Y —611)a\ A bo 2 b,
0=~ () o [ X () (2




By setting by = b; = by = 0 and substituting é;; and v, the equations in the text are obtained.
By substituting (A.13), (A.19)-(A.22) into (A.17) and inverting the Laplace transform, we

derive the path for the environment:
E(t) = _QKX(OO)A(aEa h*vt) + aGéA(aEagth) (A26)

axYr (611 +€6)\ ~ %
< P +£G )GT<aE7£Gah 1t)

2
—a Y021 Z (
=1

Note that E(co) is defined as:

b; y
r*+£Z>T(aE’§”h ,t).
E(00) = —ag K () + agG.

The A(ag, ai,t) and T(ag, a1, a0, t) terms in (A.26) are, respectively, multiple adjustment and
multiple transition terms. The forms and properties of these terms are covered in Lemma A.3 to
A.5 below.

Lemma A.3 Let A(ag, a;,t) be a multiple adjustment function of the form:

1— (e P —ape *i "ewit> for a; # ag
Alag, a;,t) = ( xi—am
1—(1+ agt)e 2wt for a; = ag,

with ag >0 and o; > 0. Then A(ag, a;,t) has the following properties: (i) (increasing over time)
dA(ag, o, t)/dt > 0Vt € (0,00), dA(ag, ay,t)/dt =0 (for t =0 and in the limit as t — o0), (ii)
(between 0 and 1) 0< A(ag, a;,t) <1Vt € (0,00) and A(ag, a;,0) = 1—limy_,oo Aag, oy, t) =0,
(iii) (inflexion point) d?A(ap,a;,t)/dt? = 0 fort =t = In(ar/q)/(ag — ) if ag # o and
t=1/ap if ap = oy, (v) As ag — o0, Alag, a;,t) — Alag,t).

PROOF: Property (i): the derivative of A(a g, a;,t) with respect to time is itself proportional to a
single transition term with properties covered in Lemma A.2:

dA(OéE, ag, t)

dt = aEaiT(aE, ai,t) Z 0,

where for t € (0,00) the inequality is strict. Hence, A(apg,a;,t) itself is increasing over time.
Property (ii) follows from the fact that A(ag, o;,0) = 0 and lim;_, o A(ag, o;,t) = 1 plus the fact
that dA(ag, a;,0)/dt > 0. Property (iii) follows from Lemma A.2 and:

dQA(ozE,ai,t) dT(aE,ai,t)
—— =apo; | ——= | .
a2t E dt

Finally, property (iv) follows trivially by letting oy — oo in the definition of A(ag, a;,t).0
Lemma A.4 Let {(t) be a function with the following Laplace transform F(s):

ap
F(s) (s+ag)(s+ar)(s+ag)’

with 0< ag, oq, a0 < 0o. Then f(t) > 0Vt € [0, 00).



PRrOOF: Use the convolution property of the Laplace transform (Spiegel, 1965, p. 45). Define
G(s) =ag/(s+ag) and H(s) = 1/(s+a1)(s+a2), so that F(s) = G(s)H(s). The inverse Laplace

transforms of G(s) and H(s) are:
g(t) = age”*' h(t) = T(ay, a9,t).

Then the convolution property states that f(¢) is equal to:

t

f(t) = £-1{C(s), H(s)} = /0 o(r)h(t — 7)dr.

Since g(7) > 0 and h(7) > 0 V7 and ap < oo, f(t) must be non-negative since it represents the
discounted integral of a non-negative (single transition) function. O

Lemma A.5 Let T(ag, a1, a9,t) be a multiple transition function of the form:

T(OJE,OQ,Oég,t) = ap—al

( ap ) [T(av1, ag,t) — T(ag, as,t)] for a; # ag
aEthi%tm for oy = ag = ag,

with ag > 0, aq > 0, and ag > 0. Then T(ag,a1,a9,t) has the following properties: (i)
(positive) T(ag, a1, a9,t) > 0, (i) T(ag, o1, a0,t) = 0 for t = 0 and in the limit as t — oo,
(iii) (single-peaked) dT (o, a1, g, t)/dt > 0 for 0 <t <t and dT(ag, a1, a9,t)/dt <0 fort >t,
dT(ag,a1,a9,t)/dt =0 (fort =0,t =1, and t — o0), (iv) As ap — oo, T(ag,a1,as,t) —
T(oq, ag,t).

PRrROOF: Property (i) follows applying Lemma A.4, because the Laplace transform of T(ag, o, as, )
has the required form. Property (ii) follows trivially by substitution. Property (iii) can be proved
by examining the following differential equation in T(ag, a1, ag,t):
dT(aE, 1,09, t)
dt

The properties of T(ay, a9, t) are covered in Lemma A.2. T(aj,as,t) has a single maximum

= Qap [T(Oél,OéQ,t) - T(O[EvalaO[Qat)] .

at t = In(aq /o) /(a1 — as). T(ap,a1,as,t) itself has a maximum in # where T(aq,as,f) =
T(ag, a1, az,t) and T(ag, oy, as,t) = T(ay, az,t) < 0. The maximum of T(a, oy, ag,f) occurs
later in time than that of T(ay,ag,%), or £ >t as T(ay, ag, ) < 0.

That the maximum is unique can be proven by contradiction. If there were another maxi-
mum, there would also be a minimum for which T(ay, ag,tyrrny) = agT(ag, ag, as, tarry) (since
T(aE,al,ag,tMIN) = 0) and T(aE,al,ag,f) = T(al,ag,tMIN) > 0. This is impossible as
tany >t and T(aE,al, ag,t) < 0. Finally, property (iv) follows trivially by letting ap — oo in
the definition of T(ag, a1, ag,t). O

2 Proof of Propositions 3 and 4

In order to characterize the paths of consumption and the capital stock, we derive expressions
for the paths of the time rate of change of these variables. In sections 3-5 of the paper no bond
policy is used. Hence, in terms of (A.19) we impose B(t) = by = by = by = 0. Using (A.13)
and (A.19)-(A.22), we can write the time path for the rate of change of the capital stock (i.e.,
investment) as follows:

% _ -~ (ke [T =0 611+ 1 ~
L{K,s} =sL{K, s} = <7’*+5G> { T stig } [erh*} G. (A.27)




Similarly, using (A.12) and (A.19)-(A.22), we can write the time path for the rate of change of

?

consumption as follows:
A ~ ~ —0127k€a 611 r 1 5
L{C, s} =sL{C,s} — C(0) = G. A.28
(€5} = sL1C, s} = C(0) <r*(r*+£G) o | stég) st hr (4.28)

The statements regarding global monotonicity contained in Proposition 3 can now be proved with
the aid of (A.27) and (A.28). Global monotonicity exists provided the rate of change in the variable
does not change sign along the adjustment path. We first state and prove Lemma A.6.

Lemma A.6 Let {(t) be a function with the following Laplace transform F(s):

Ay n Ay
(s+a1) (s+a1)(s+a)’

with a; > 0, ag > 0 and Ay > 0. Then the sign of f(t) is as follows: (i) As >0 = {(t) >0, (ii)
Ay <0 and (ag —a1)(A1/A2) +1 <0 = {(t) >0V, (iti) A2 <0 and (a2 — a1 )(A1/A2) +1>0
= f(t) > 0Vt € 0,7], and f(t) < 0Vt € [t,00), where t = (a1 — o) 1 1In[l + (g — 1) A1 /As] if
a) #ag and t = —A1/As if aq = ao.

F(s) =

PRrROOF: The inverse of F(s) is:
f(t) = Ale_alt —+ AQT(CMl, a9, t),

where both exponential terms are non-negative. Part (i) follows trivially if Ay > 0. Parts (ii) and
(iii) are derived by finding the conditions under which f(¢) cuts the t-axis. Solving f(t) = 0, yields
the solution £ = (ag — ag) 'In[l + (g — ) Ay /As] if oy # ag and £ = —A; /Ay if oy = s .
Hence, ¢ < oo exists iff (a2 — a1)(A41/42) +1>0. O

Armed with this Lemma, Proposition 3 can be proved. Proposition 3(i) is proved by showing
that the terms in square brackets in front of G appearing in (A.27) when inverted imply a function
of time that changes sign for ¢ € [0,00). Lemma A.6 implies that this property can be ascertained
by looking at the Laplace transform directly. In terms of Lemma A.6, the relevant F(s) function
has ag = h*, ag = &4, A1 = (r* —611)/r* > 0, and Ay = —(611 + &) < 0. For this configuration
it is straightforward to show that Lemma A.6(iii) holds: adjustment of the capital stock must be
non-monotonic. If £ — oo, then F(s) — —611/(r*(s+h*)), which implies monotonic adjustment.
Proposition 3(ii) can be verified by obtaining the relevant F(s) function from (A.28): oy = h*,
ag =E€q, Ay = 611/(h* + 611) > 0, and As = 7* > 0. Hence, Lemma A.6(i) holds: adjustment of
consumption must be monotonic. O

The proof of Proposition 4 proceeds as follows. Part (i) states that it is possible for the
environment to deteriorate initially. By using (A.16) in (A.18) we obtain the condition for the

environment to deteriorate initially (in the absence of bond policy):
EO0) = —axapk(0) - a%acG(0)+acanG(0)
= agapyr( —61)L{G, "} + agapt,G <0,

since G(0) = 0 for 0 < &, < oo. In view of (A.19), we know that £{G,7*} = £,/ (r*(r* + £5)).
By substituting this in the expression and simplifying, we obtain the inequality mentioned in the
text and Proposition 4:

(i) () () =

10




The results in part (i) follow from this inequality. A low birth rate (A small) ensures that 611 =
r—p =XM1 —wpg) is close to zero so that (r* — é11)/r* is close to unity. A slow introduction of
the policy (§ small) ensures that the term r/(r* + {) does not vanish.

To prove part (i) of Proposition 4, we must show that the entire path of E(t) is monotonic
if £, — oco. We have already demonstrated that the environment improves in the long-run. If
&o — 00, and in the absence of bond policy, all transition terms from equation (A.26) vanish and
the environment improves gradually according to the multiple adjustment term A(ag, h*,t), the

properties of which are covered in Lemma A.3. O

3 Crowding out of the capital stock

It is possible to prove a number of results regarding the degree to which the capital stock is
crowded out by abatement. The results are shown as follows. The decline in the capital stock is
given by:
Q i .
reqwe + (e, — wg)(r — p)

In calculating the effects on Q of p, A, €, and w¢, it must be taken into account that the steady-

state interest rate r depends on these parameters (see (A.2)-(A.5)). The comparative static effects

are:
@ ( pPELWC 2) dr =0,
dA [reLwe + (e —wa)(r —p)]” ) dA
@ —erwe[r—pldr/dp)]
dp [rezwe + (e —we)(r —p)>
dQ _ perwe(dr/dws) + (r — p) [r — p+ reg] 50
dw [rewo + (2 —wa)(r — o)) ’
ﬁ _ pegwel(dr/der) — (r—p)[r — p+rwc]
de, [repwe + (e —wa)(r — p)]2

Capital crowding out increases if the birth rate rises, the rate of time preference falls, the initial

share of government spending rises, or the initial share of labour income falls.

4 Intergenerational welfare analysis

The welfare implications of the different environmental policies can be derived in the manner
suggested by Bovenberg (1993, 1994). The optimum utility level of generation v at time ¢ is denoted
by U(v,t). It is obtained by substituting the optimum values for C'(v, 7) (where 7 runs from ¢ to co)
plus the policy-induced path for E(7) into the utility functional:' U(v,t) = Ung(v,t) +vgUr(t),

IWe have modified the utility functional used in Bovenberg and Heijdra (1998) (viz. equation (1)) somewhat by

making it logarithmic in E(7) also (rather than linear):

Uv,t) = /t‘oo [logC (v, T) + vy glogE(T)]exp [(p + A)(t — 7)] dT.

Since we work with the log-linearized model this change does not affect anything substantial but it simplifies the
notation by not having to distinguish the initial level of environmental quality (denoted by Ep in Bovenberg and
Heijdra (1998)).

11



where Uy g(v,t) is the private component of welfare, and Ug(t) is the environmental component:
Unvg(v,t) = / logC(v, T) exp[(p + \)(t — 7)]dT, (A.29)
t

Up(t) = /t " log E(r) expl(p + \)(t — 7)]dr. (A.30)

Turn to the private component of welfare first. Using the Euler equation for the household, we
can relate C(v, 7) to C(v,t):

C(v,7) = C(v,t) exp U;(r(u) - p)d,u} L T>t

Substitution of this result in (A.29) yields:

Ung(v,t) = IngO#—i—A(t), (A.31)
aw) = [ |10 = st expl(o-+ e = it
- [ (%) expl(t — )+ \)Jd. (A.32)
Linearising the expressions in (A.31) and (A.32), we find:
dUng(v,t) = % AA(L), (A.33)
dA(t) = (pi A) /t T (e 0N g (A.34)

In order to perform the welfare analysis, we must distinguish between ‘existing’ agents that are
already alive at the time of announcement of the unanticipated shock, and ‘future’ generations
that are not yet alive at that time. The time of the announcement is denoted by ty; = 0. Hence,
agents with a generations index smaller than or equal to 0 (v < t9 = 0) are alive at the time of
the shock. Those with an index larger than 0 are born later (v =t > ¢ty = 0).

4.1 Existing Generations (v < 0)

For existing generations, the change in private utility is dUng(v,0) = C(v,0)/(p + A) + dA(0).
Using (A.34), and applying the initial-value theorem (Spiegel, 1965, p. 20), we find dA(0) =
(r/(p+ M) L{F,p+ A}. The jump in consumption is a weighted average of the jump in human
wealth and the change in financial wealth (although the capital stock is predetermined, a once-off
tax on capital owners of 7k (per unit of capital) implies fl(v,O) = A(O) = —7x for v < 0).
Hence, C(v,0) = s H(0) + (1 — azg)A(0), where H(v,0) = H(0), and ags denotes the share of
human wealth in total wealth of an agent belonging to generation v to be determined below. The
human wealth term H (0) can be eliminated by using the solution for the initial jump in aggregate
consumption, C(0) = (1 — wg)A(0) + wy H(0), where 1 —wy = K/(K + H) = (r — p)/A. This
implies that C(v,0) can be linked to C(0) and A(0) (= —7x):

i [O(O) (- wH)TKl

O(U,O) E—(l—OéHs)TK—f—OéHS or

where the revenue of the once-off capital tax (7K (0)) gives rise to the (negative) jump in debt
at time t = O: B(O) = —7x(1 —€r), where rK/Y =1 — €. The human wealth share ayg is
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determined by using the steady-state information for the optimal steady-state consumption profile
of existing generations, i.e., C(v,0) = C(v,v)exp(—(r — p)v) for v < 0. Since all generations are
born without financial wealth (A(v,v) = 0), human wealth is the same for all agents (H(v,t) = H),
and consumption is proportional to total wealth (C(v,t) = (p + A)(A(v,t) + H)), the following
expression for ayg is obtained:

ags = 14(7),0% =elr=rlv,
This expression is intuitively clear. Old agents (i.e., with very negative v) have had a long time
to accumulate financial assets and hence feature a relatively low share of human wealth in total
wealth. A very young agent (v =~ 0) owns little or no financial wealth and hence exhibits a human
wealth share of unity.

After combining all the information, we obtain the following relation:

(p+NdUNE(v,0) = =Tk + (e(;—;)v> [CN'(O) + TK} +rL{7, p+ A} (A.35)

4.2 Future Generations (v =t > 0)

Future generations are born without financial wealth. Hence their consumption at birth is given
by C(t,t) = (p + N H(t), so that C(t,t) = H(t). Human wealth can be eliminated by using the
aggregate relation C(t) = wy H(t) + (1 —wy)K(t) + [(1 —wg)/(1 — €£)]B(t). This enables us to
write C(t,t) in terms of C(t), K(t) and B(t):

Ot) — (1 —wm)K(®) —[(1 —wnr)/(1 — )] B(t)

O(t,t) =

,t>0. (A.36)

The following Lemma can be used to calculate the Laplace transform of dA(?).

Lemma A.7 Let X(t) be a function defined as follows:

X(t)z/ 2(p)e” PN Bt gy,
¢

Then L{X, s} is given by:

L{z,p+ A} — L{z,s}
s=(p+A)

L{X,s} = [
PRrOOF: X(t) satisfies the differential equation:
X(t) = —z(t) + (p+ NX(t), X(0) = L{z,p+ \}.
The Laplace transform of the differential equation amounts to:
sC{X, s} — X(0) = —L{z,s} + (p+ N L{X, s}.

By substituting the initial condition X(0) = L{z,p + A} and gathering terms, we obtain the
required result. O
The Laplace transform of dA(t) can be obtained by applying Lemma A.7 to (A.34):

r L{F, p+ A} — L{F, s}
P+>‘> { s=(p+A) . (4.37)

L{dA, s} = <
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By combining (A.36) with (A.33), taking Laplace transforms, and using (A.37), we arrive at the
following expression for the Laplace transform of private utility of future generations:

(b4 N L{dUng. 8] = (5{6,5} — (1= wi)L{K, s} = [(1 —wn)/(1 —€1)] £{é,s}>

WH

L{7, p+ A} — L{7, s}
+r < Y > . (A.38)

By substituting the Laplace transforms for C(t), K (t), B(t), and #(t) [= —e; K (t)], and inverting,
the entire path for dUyg(t,t) is obtained (where ¢ acts as the index for future generations, i.e.,
t>0).

In order to derive the results in sections 5-7 of the paper, the path for dUyg(t,t) is written
in terms of dUng(0,0), dUyg(c0,00), and adjustment and transition terms like A(h*,t) and
T(&,,h*,t). This can be proved as follows. The crucial results that must be used are:

£4{£ﬂip+A}£Uiﬂ

Y Py } = L{K.pt )

B < T (611 +€¢)
(r*+&a)p+ A +¢&a)

> GT(¢g, h* 1)

~ Yx (011 + &)
A e e o 52”CZ<T*+5 p+A+5)>]

+621702( ’I" +€ +)\+£)>T(§mh*at)v

and:

= C(0)+ [é(oo) —C0) - (1 wH)k(oo)} INGE)

2
T2 | B 0 - Aw 0]+ Be0A ) + 3l BT b

Jr
b2+ (1 —wa)(b11 +£&¢)
+7K( o +§G

2

fi + 6 + 6 — W %

Yo Z ( 22,{,* flé-( H) sz(Sw h at)
=1 ?

g(‘a h’*

By substituting these results into the inverted equation (A.38), and gathering constant terms, and
terms involving A(h*,t) and T(&;, h*,t), dUng(t,t) can be written as follows:

dUNE(t,t) = dUNE(0,0) [dUNE(OO OO) - dUNE(O 0)} A(h*,t)
+OnE(6q)GT( g, h™, ) ZANE )b T(E;, B, 1), (A.39)

where we have used the definitions of dUng(0,0), dUng(00,00), Qne(fe) and Ang(E;):
C(0) — [(1 —wm)/(1 — er)] B(0)

WH

—re L{K, p+ N},

(p+N)dUng(0,0) =
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WH
TeEy, ~
- (p + A) Fleo),
_ (1 —wu)(§ —h") Yorba1€L
(p+NANE(&) = [ wr(l—er) (r Jrgic)(er A+E)
+’70(£i + 022 + 021 (1 — wH))]
wr(r* +¢;) ’

(P+MNves) = <7"*7+K§G> {612 + (- ZI;)(&H +&a) I T;Lf?:éf) .

In section 5 no bond policy is used (é(t) = by = by = by = 0), so that the transition terms
T(&;, h*,t) disappear from the various expressions. In section 6 of the paper, b; and £, are used
as instruments to redistribute utility across generations, and the most general expressions are
relevant.

5 Proof of Proposition 5

In the absence of bond policy, the change in private welfare experienced by very old generations
(v — —o0) can be written as:

(p+N)dUng(—00,0) = rL{7, p+ A}

The proof of Proposition 5 proceeds as follows. Proposition 5(i) makes use of the following ex-
pression for L{7, p+ A}:

L{F,p+ N} = —erL{K,p+\} (A.40)
_ €k bun b1 + &g a
prATI [ (p+X)  (p+A+Ee)(r +Ea)]
where we have used (A.13), (A.19), and (A.20). Designating the term in square brackets by I'y,
we observe that I'y > 0 if the policy is introduced instantaneously ({5 — 00):

. 511
lim I' = ——= >0.
§g—o0 ! m(p+A)

Hence, if £ — oo, then (p + N\)dUng(—00,0) = rL{7,p+ A} > 0 as (v, < 0) so that old
generations unambiguously gain. If the policy is introduced gradually ({5 < 00), the sign of I'; is
ambiguous. For a low enough value of £, I'; may become negative so that (p+\)dUng(—00,0) =
rL{7, p+ A} < 0 and old generations lose as a result of the gradual introduction of the policy.
The relevant condition for this case to obtain is that £, < £, where £ is the non-zero value of
&g for which I'y = 0:

™ (p+A) =bulp+A+r1")

SG 611

It is, of course, possible that £ < 0 in which case I'; > 0 for all positive values of £,. This
completes the proof of Proposition 5(i).
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In order to prove Proposition 5(ii) we write p 4+ \)dUyg(0,0) = C(0)/wy + rL{7F, p+ \}. We
have already established the sign configuration of L{7, p + A}. From (A.25) we know that:

ey Eo(r™ —611) ~ 7771{(7"**511)50 A
c) = r*we(r* +£g) ¢= 891 (1* + €) G <0

By combining the relevant information, (p + \)dUng(0,0) can be written as:

r*— 611 SG TEL’I"*Fl ~
wgbor ™ +8g  p+ A+ R

(p+ NdUn5(0,0) = —1K

P

We designate the term in square brackets by T's. It is possible to show that I'y < 0 regardless of the
speed at which the policy is introduced. By using the relations (r* — 811)/621 = 812/ (r* — b22) =

612/(h* + 611) and 12 = —[rer + 611, T'2 can be written in terms of two parts:
—011éq } [ O11
I, = + re
’ wr(h+6)(r +€a)] T L+ N+ A+ )
(611 +€¢) 3e

AT E) AR+ Eg)  wa(dn + ) +Eg) |

The first term in square brackets is unambiguously negative, so that a sufficient condition for
I'; < 0 is that the second term in square brackets, which we designate by I's, be negative also.
Note that I's can be written as: I's = £ (§aT'31 +'s2) /T's3, where I'ss = wir(p+ M) (p+A+h")(p+
A+ &) (r* +£¢) (611 + h*) > 0 is the positive denominator. It is easy to show that I's; and I'sy

are both negative:
I's; = 61100]{(511—l—h*)—(p—f—)\)(p—F)\—Fh*) <0,
F32 = 7"* [511 — (p—l—)\)]wH(511 +h*) +511(p—|—)\)wH(511 +h*)
— (p+N*(p+A+h") <0,

where we have used the fact that 617 = AM(1 —wg) < p+ A and 0 < wyg < 1. Hence, I's < 0, so
that the sufficient condition for I's < 0 is satisfied regardless of the magnitude of £. It has thus
been established that (p + A\)dUng(0,0) < 0. This completes the proof of Proposition 5(ii).

In order to prove Proposition 5(iii) we write steady-state utility as:

" (pik> (o)

Using (A.14), (A.15), and 7(c0) = —ez, K (00) > 0, this expression can be re-written as:

_ Ok {5&+511(1—WH)+?"€L511} &

(p+ N)dUnE(c0,00) = [C;(JC:) _ (1-— w:[;K(oo)

d =
(p+A)dUn (00, 00) = =5 Wi wh o+ A

We designate the term in square brackets as I'y. By substituting 615 = —[reg, + 611], T'4 can be
rewritten as:

_bn
H p+A

1
T'y=—-611 —reg, [— ] <0,
w

where we have used the fact that 0 < wy < 1 and 611 = A(1 —wpgy) < p+ A. This completes the
proof of Proposition 5(iii).
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In order to prove Proposition 5(iv), write dUng(0,0) — dUpn (00, 00) as follows:

(wH(p + A)(h* + 611)r*h*
TG

> [dUN£(0,0) — dUn (00, 0)]

(A.A41)

= (M —dwnp)(l —wy) —rer, {(h* —wn)(l —wn) +p+>\} .

(p+A+h*)
Proposition 2 demonstrates that h* > Awpg. Hence, the first term on the right-hand side is positive
but the term in square brackets is also positive, so that the two terms work in opposite directions.

By bringing all terms on the same denominator we can rewrite the right-hand side of (A.41) as
Is5/(p+ A+ h*), where I's is defined as:

Iy
(1 — wH)

=(h* = dwm)(p+A+h") - <(h* +0u)(h" 4 622) )\> y

p+A
[((h* = dwn)(1 —wr) + p + N

and where we have used the relations rey, = — (812 + 611) and d10 = —(1 — wg)(h* + d22) (R* +
611)/(p+ N). After substituting 11 = M1 —wpg) and 622 = p+ A(1 —wy) and simplifying, we can
show that I's < 0:

Ty = (1—wg)(h* — \on) {(p—&-)\—&—h*) - <<h* —Awn) + (p”A)) x

p+A
((h* = X)L —wn) + p+ )]

(h* = dwg)(h* — dwg + p+ 20)
p+A

—(1 —wy)*(h* — Mwp) [)\ + ] < 0.

Since the term in round brackets on the left-hand side of (A.41) is negative, I's < 0 implies that
dUng(0,0) > dUng(00,00). This concludes the proof of Proposition 5(iv).

In order to prove Proposition 5(v) we write the utility of the representative agent at the time of
the shock as pdUng(0) = C(0) + pL{7, p} (the generations index is obviously not relevant here).
We have already established the sign configuration of £{7, p + A}. By combining the relevant
information, pdUxg(0) can be written as:

Y6126 G
h*(p+ h*)(p+<€6)

where we have used r* = p+ h*. Hence, regardless of the speed at which the policy is introduced

PdUNE(O) = —

<0,

(€a), pPdUng(0) < 0, and there are first-order welfare costs associated with the increase of the
abatement activities. This completes the proof of Proposition 5(v). O

6 Environmental utility and the proof of Proposition 6

6.1 Environmental utility

The environmental component of total utility is given in equation (A.30). By linearising (A.30),
and using Lemma A.7, the following expression for the change in environmental utility can be
obtained:

L{E,p+ )} — L{E,s}

E{dUE,S}: S*(p+>\)

(A.42)
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By using the initial and final value theorems, respectively, on equation (A.42) we obtain:
E(o0)

dUg(0) = L{E, p+ A}, dUp(oc0) = FESY

6.2 Proposition 6

In order to prove Proposition 6(i), we write, by employing (A.17), dUg(0) = L{E,p + \} =
[—agapl{K,p+ A\ +agapl{G, p+\}]/(p+A+ag). By using (A.40) and the Laplace transform
of (A.19) this can be rewritten as follows:

agaE vl ~ agog e
dUE(0) = — G+
#(0) p+A+ag (p+)\+h*> p+A+ag <(P+)\)(p+)\+§G

where I'; is defined in section 5 above. We have already demonstrated that I'y > 0 if the policy is

)> G, (A43)

introduced sufficiently quickly (i.e., if £; > £). Hence, since v < 0, dUg(0) > 0 in that case.
Environmental utility can decrease initially only if the policy is introduced slowly (¢4 < &g so

that Iy < 0) and abatement is not very effective at cleaning up the environment (oG /ax small).

In terms of (A.43), a sufficient condition for the initial green welfare to deteriorate is therefore:

ne=(5) (5550) o) (59)
! g P+ A p+A+Eq r )

This completes the proof of Proposition 6(i).

The proof of Proposition 6(ii) is immediate:
E(0) 1 arYgbu | A
d =——=— —-———— | G>0.
Ug(c0) PR W [ag e >

In order to prove Proposition 6(iii), we only need to consider the case of an abrupt introduction
of the policy (§z — 00) (since dUg(0) is largest for an instantaneous introduction of the policy).

We can write:

(p+ N [dUg(00) — dUR(0)] = [ae%} G
ap agYgb1 X
(%E o OKTKRO1L | A
<p+)\+OéE> [aG r*(p+)\+h*)]
ag 5 arYrOn ap - 5
= 1—-———| G- — G>0.
QG{ p+/\+aE} r*h* { p+)\+aEp+)\+h*}

The long-term effect on environmental utility exceeds the short-term effect both because the
environment regenerates slowly and because the economic system has a finite transition speed.
Only if both ag and A* tend to infinity, do the two effects coincide. This completes the proof of
Proposition 6(iii). O
In order to prove Proposition 6(iv), we use (A.17) and the Laplace transform of (A.19) (setting
b; =0 and £, — o) to derive:
QRS ~ ~
—akL{R, £{G.s}]
S+aE[ agL{K, s} +agl{G,s}
)8 1 .
= B l:OéG + CYK( ’YK) 1 :l G.
s+ ag r* s+ h*

£{E,s} =

Since the term in square brackets is positive (as v; < 0), Lemma A.6 implies that E(t) rises
monotonically.C
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7 Comparative static effects for the optimal abatement share

In the text below equation (21) the comparative static effects on the optimal share of abatement
spending are discussed. These results can be obtained as follows. We assume that the policy is

introduced instantaneously (£, — o0). The first-order condition for an internal optimum is:

2
—P7EL YEQGOE | A
d = =0. A.44
p U(O) (1—€L)h*(p+h*) + p—l—aE ¢ 0 ( )

Equation (A.7) implies that r*h* = p%erwc/(1 — €), and the trace condition shows that r* =

p+ h*. Hence, (A.44) can be solved for the optimal share of private consumption:

. + «
e = LTy (A.45)
YEXGOE
The comparative static effects on &g of ag, ax, ag, and v5 can be obtained by differentiating

(A.45) with respect to these variables:

di de —

& = - va = p 2 < 07
dag dag YEQGOE

d(;}(j . d@(; 7([) + aE)

- = - - 2 < 0,
dag dag YECGOE

doo - dwa —(p + aE)
ra— = - - P} < 0,
dvg dvg YEAGCE

dwo _ _chG ~0

dOéK o daK e

With infinite lives and abrupt policy introduction, there is no effect on the capital stock. This
explains why ax does not affect the optimal share of abatement.

8 Redistribution issues

8.1 All current generations equally well off

In sub-section 6.1 of the paper we discuss a Pareto-improving policy which involves the neutral-
isation of intergenerational inequity of existing generations only. By imposing a once-off capital
tax, all existing generations can be made to gain to the same extent, whilst future generations
reap additional benefits due to the gradual improvement of the environment. In sub-section 6.1,
Tk is the only bond-policy instrument available to the policy maker.

It follows from equation (A.35) that the neutralisation of generational effects for existing gen-

erations requires C(0) + 7, = 0, or:
7k = —C(0), B(0)=(1—¢.)C(0). (A.46)

But the jump in consumption in its turn depends on the parameters of the bond path. By setting
&q — oo and by = by =0 in (A.25) we obtain:

c0) = — (M> G- (7—0) B(0). (A.47)

r*691 r*

By using (A.46) and (A.47) we find the expressions for C(0), B(0), and 7x:

C(0) = —1x = B(0)/(1 — ) = —G/we. (A.48)
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The bond-induced consumption jump eliminates all transitional dynamics from the consumption-
capital system. In terms of Figure 2 of the paper, the bond policy shifts the MKR curve to
intersect the new IS curve in a point vertically below the initial equilibrium Eg (i.e. at point D).

Hence, the macroeconomic variables satisfy:

K(t) =Y(t) =#(t) =W(t) =0,C(t) = —GJwe, (A.49)

and the environment evolves according to:

E(t) = Oé(;éA(OéE,t). (A50)

By using equation (A.49) in (A.35) and (A.38), and equation (A.50) in (A.42) we obtain the

expressions for, respectively, non-environmental and environmental utility:

G
d = d tt) = ———c—
Ung(v,0) Ung(t,t) TSy
Oé(;é p+ A P
dUg(t) = 11— — ot
=(t) p+)\{ <p+)\+OéE>e
for v <0 and t > 0. The total welfare gain to present generations equals:
1 YEQGQE | A
d = |l-— = f <0.
(p+ \)dU(v,0) [ wc+p+)\+O¢E}G’ orv <0

By setting w¢ such that dU (v, 0) = 0, we obtain the expression for the optimal share of abatement

which makes all present generations equally well off (and thus all future generations strictly better
off):

PI P+)\+CYE
we = ————.
YTEQGAE

8.2 All current and future generations equally well off

The simulations underlying Table 4 in the text are performed as follows. The policy maker uses
the path of debt as parameterized in (A.19). This implies that the paths for the capital stock,
consumption, and the environment are given by (A.23)-(A.26). The paths for private utility are
given in (A.35) and (A.39) and the path for environmental utility is given in (A.42). Total utility
is the sum of private and environmental utility. The requirements for the egalitarian policy are
that all generations gain to the same extent. Denoting this common gain by 7, the requirements

are summarized by:
dU(v,0) =dU(t,t) =m, v <0,t > 0.

The instruments at the disposal of the policy maker are a once-off tax on capital owners at the
time of the shock (Tx), plus the parameters influencing the shape of the anticipated part of the
bond path (§; and b;, i = 1,2). The values for these parameters are computed as follows.

As in the previous sub-section, the capital levy 7 is used to eliminate the intergenerational
inequity for existing generations. With the more general bond policy used here, equation (A.48)

becomes:

C10) = —ric = BO)/(1 — ) = =G — (5= ) 3o (A1)

rt—bn ) 4
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Similarly, the long-run effects on consumption and the capital stock can be expressed as follows:

> _ G Y011 2 bi(r* + & — 611)
=t ((7" —bu)h > ; +& (A.52)
(o) = (mubuwe )bl 6 - tu)
K(x) = ((1 —er)(r* — 811)h* > ; &, (A.53)
_ we ~ G
 1—¢p [C(%) * @

By using the Laplace transforms of the bond path and the implied solution paths for capital and

consumption, equation (A.38) can be written as follows:

1 1 2 1
L{dUnE, s} = po (g) +pu (S Jrh*) + pxi (H) ; (A.54)
=1 *

where pg, pg, and px; are defined as follows:

1 - - B(c0) reL x
M= on [C(oo) —(1—-wp) [K(oo) e ] - (pH)QK(oo),
B 1 - - i (022 +&; + 021(1 — wp)]
PEE T Nen C(0) = C(00) + (1 —wn)K Wcz[ (r + &) (& — ™) H
+(P+)\)(P+)\+h*) 706212 Efz_h*)] |

= G [<i—°:f>bz-+vo(“‘“iiffz;é?“hif’ﬂ”>]

+ TGL’}/C(Sglbi
(p+ Mo+ A+ &) +&)(E —h*)’
(i = 1,2),where C(0), C(c0), and K (c0) are defined, respectively, in (A.51), (A.52), and (A.53).
In a similar fashion, the Laplace transform of environmental utility can be written as follows:

1 1
L{dUg, s} = eq (g>+eH <$+h*>+e,4 <S+a >+Zem( > (A.55)
where eq, eq, €4, and ex; are defined as follows:

_agG — agK(c0)

60 = 3
p+A
— QK 7
ey = 6 ,
1= T —an)p A | e 212 (fzh*)]
~ aK

+ A+ = —agG+ | —— a1 ,

(p aglea = —ag (h* —04E> l K(00) = ycb21 EZ 5 —CYE)]
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- —agapYe021b; :
= . (i=1,2).
KT A )+ E)E — ) (& — an) ( )

By combining (A.54) and (A.55), the Laplace transform of the path of total utility is obtained:

L{dU,s} = [po+vgeo) (é) + [pu + vpen] <?1h*>

1 1
+Yrea <5+04E> +Z[pxz‘ + vYpexi] <5+5¢> .

=1

An egalitarian policy is such that all generations enjoy the same utility change, i.e. all terms

involving time-variation are set to zero:
P +Ypen = Ypea = pxi + vpexi =0, (i =1,2).
The common gain to all generations is then given by:
™= po + Ygeo-

Values for m are reported in Table 4. Finally, an optimal egalitarian policy is such that = = 0.
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