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Abstract 
 
We study a closed economy featuring heterogeneous agents and exhibiting endogenous 
economic growth due to interfirm external effects. Individual agents differ in terms of their 
mortality profile. At birth, nature assigns a health status to each agent. Health type is private 
information and annuity firms can only observe an agent’s age. In the presence of longevity 
risk, agents want to annuitize their wealth conform the classic result by Yaari (1965). In the 
first-best case with perfect annuities, the market would feature a separating equilibrium (SE) 
in which each health type obtains an actuarially fair perfect insurance. In the SE all agents are 
savers throughout their lives. The informational asymmetry precludes the attainment of the 
first-best equilibrium, however, as healthy individuals have a strong incentive to misrepresent 
their type by claiming to be unhealthy. Using the equilibrium concept of Pauly (1974) and 
Abel (1986), we prove the existence of a second-best pooling equilibrium (PE) in which 
individuals of all types annuitize at a common pooling rate. As the unhealthy get close to their 
maximum attainable age, the pooling rate prompts such individuals to become net borrowers. 
But borrowing would reveal their health status, so the best the unhealthy can do is to impose a 
borrowing constraint on themselves during their autumn years. Using a plausibly calibrated 
version of the model we find that the growth- and welfare effects of PE versus SE are rather 
small, whilst those of PE versus no annuities at all (NAE) are rather large. An imperfect 
insurance is better than no insurance at all, both at the microeconomic and at the 
macroeconomic level. 
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1 Introduction

Economic theory suggests that life annuities are very attractive insurance instruments in

the presence of longevity risk. This result was first articulated in the seminal paper by

Yaari (1965) and was recently recast in a much more general setting by Davidoff, Brown,

and Diamond (2005). The intuition behind this result is not very difficult: annuities insure

against the risk of outliving one’s assets.

Over the last few decades, however, more and more evidence has been unearthed hinting

at the existence of an annuity puzzle: a rather robust fact of life is that in reality very few

individuals purchase life annuities despite their theoretical attractiveness. Friedman and War-

shawsky (1990, pp. 136-7) give the following potential explanations for the low participation

in private annuity markets. First, individuals may want to leave bequests to their offspring.

Second, individuals may hold other types of annuities, e.g. in the form of social security and

private pensions (social annuities). Third, private annuities may be priced unattractively be-

cause of transactions costs and taxes, excessive monopoly profits earned by annuity firms, and

adverse selection.1 A fourth explanation is that family risk sharing may act an as incomplete

annuity market, a result first proposed by Kotlikoff and Spivak (1981).

In this paper we restrict attention to the adverse selection channel.2 Intuitively adverse

selection arises because individuals who believe themselves to be healthier than average are

more likely to buy annuities, i.e. the high-risk types are overrepresented in the clientele of

annuity firms and annuity pricing cannot be based on average population mortality.

The objective of our paper is to study the growth and welfare implications of adverse

selection effects in the annuity market. Our model has the following key features. First,

we postulate a simple general equilibrium model of a closed economy featuring endogenous

growth. Second, we assume that the economy is populated by overlapping generations of het-

erogeneous finitely-lived agents. Individual agents know their own death probability process,

but annuity firms cannot observe an agent’s health type (neither directly nor indirectly). The

mortality process is modeled realistically and closely tracks existing demographic data. In

1Following the initial research by Friedman and Warshawsky (1988, 1990), a large subsequent literature

has emerged. See for example Mitchell et al. (1999), Finkelstein and Poterba (2002, 2004), and Finkelstein et

al. (2009).
2Heijdra and Mierau (2009) study the general equilibrium implications of imperfect annuities under the

excess monopoly profit interpetation.
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the core model we distinguish two types of agents, namely healthy and unhealthy, and we

assume that their respective population shares are constant.

Third, we assume perfectly competitive annuity markets, with firms offering linear annuity

contracts, cf. Pauly (1974) and Abel (1986). Under this equilibrium concept the insurer can

only choose the price of the annuity and cannot achieve complete market separation.3

The main findings of our analysis are as follows. First, if health status were observable or

could be “credibly signalled” to insurers, then there would be a separating equilibrium (SE)

in which each health type would get actuarially fair perfect insurance. We consider the case

of a patient economy in which all types would be net savers during life. In the SE, however,

healthy individuals have a huge incentive to misrepresent their health status (“by cheating”

and claiming to be a low-risk type) thus destroying market separation. The SE is thus a

hypothetical case acting as a benchmark.

Second, with health being an unobservable attribute, perfect competition in the annuity

market will result in a pooling equilibrium (PE). The equilibrium pooling rate is an asset-

weighted average of individual mortality rates, a result first derived in a partial equilibrium

context by Sheshinski (2008). In the PE, the unhealthy (low-risk types) get a less than

actuarially fair rate (as stressed in the literature), but the healthy (high-risk types) get a

better than actuarially fair rate. This result shows that Friedman and Warshawsky (1990, pp.

147-152) only consider one side of the coin by restricting attention to individuals facing less

than actuarially fair annuity returns (see their Tables V and VI). In contrast, in our general

equilibrium model the healthy annuitants benefit for part of their life from the presence of

unhealthy annuitants.

Third, in the PE the unhealthy encounter a “self-imposed” borrowing constraint if they

live long enough. Intuitively, as the unhealthy get close to their maximum attainable age, the

pooling rate prompts such individuals to become net borrowers. But borrowing would reveal

their health status, so the best the unhealthy can do is to impose a borrowing constraint on

themselves during their autumn years. It must be stressed that this asset depletion result is

not exogenously imposed (as in the partial equilibrium studies of Friedman and Warshawsky

(1990, p. 147) and Walliser (2000, pp. 378-9)) but follows from the internal logic of the

3An alternative equilibrium concept that can be used to deal with adverse selection is the one suggested by

Rothschild and Stiglitz (1976). See Eichenbaum and Peled (1987) for an application of the Rothschild-Stiglitz

concept. See Walliser (2000, pp. 376-7) and below for a defense of the linear pricing assumption.
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model.4 Hence, our model yields a consistent explanation why not everybody annuitizes in a

general equilibrium model with risk pooling.

Fourth, for a plausibly calibrated version of the model we find that (a) the SE is only

slightly better in welfare terms than the PE, and (b) the PE is vastly better than no-annuities

equilibrium (NAE) in which all health types are confronted with the possibility of asset

depletion at relative young ages. Hence, imperfect longevity insurance is better than no

insurance at all.

Our paper is most closely related to Abel (1986) and Walliser (2000). Both of these

papers use the linear annuity pricing concept adopted by us. Abel (1986) presents a simple

two-period general equilibrium exogenous growth model. The model features privately known

longevity risk, two health types, and adverse selection and also allows for bequests. In his

partial equilibrium model, Walliser (2000) extends Abel (1986) to include 75 periods and

simultaneous health and income heterogeneity. As was mentioned above, he exogenously

imposes a non-negativity constraint on annuity holdings.

The structure of our paper is as follows. Section 2 presents the continuous-time model.

Section 3 states the key informational assumptions and studies the balanced growth path

for the (hypothetical) separating equilibrium and the pooling equilibrium. This section also

presents a plausible calibration and visualization of the different equilibria as well as their

welfare properties. Section 4 restates the main results and presents some possible extensions.

The paper also contains two brief mathematical appendices containing the proofs of the two

propositions stated in the main text.

4In particular, our result follows from the fact that (a) there are only two health types, (b) all individuals

are life-cycle savers in the SE, and (c) the life-insured SE borrowing rate is punitively high. In future research

we plan to study the case with more than two health types and investigate the simultaneous existence of

pooling equilibria in the annuity and life-insurance markets.
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2 Model

2.1 Consumers

2.1.1 Individual behaviour

Individuals differ according to their health status acquired at birth. From the perspective of

birth, the expected remaining lifetime utility function of a health type j individual is given

by:

Λj (v, v) =

∫ v+D̄j

v

ln c̄j(v, τ) · e−ρ(τ−v)−Mj(τ−v)dτ, (1)

where v is the birth date, D̄j is the maximum attainable age for this type of agent, c̄j (v, τ)

is consumption, ρ is the pure rate of time preference, and e−Mj(τ−v) is the probability that

the agent is still alive at some future time τ (≥ v).5 Here, Mj(τ − v) ≡
∫ τ−v

0 µj(s)ds stands

for the cumulative mortality rate and µj (s) is the instantaneous mortality rate of an agent

of age s, where 0 ≤ s ≤ D̄j . This rate is strictly increasing in age, µ′
j (s) > 0 and µ′′

j (s) > 0,

and features lims→D̄j
µj (s) = +∞. To keep things simple, the felicity function is assumed to

be logarithmic, implying a unitary intertemporal substitution elasticity.

The agent’s budget identity is given by:

˙̄aj (v, τ) = [r + pj (τ − v)] · āj (v, τ) + w (τ) − c̄j (v, τ) , (2)

where āj (v, τ) is real financial wealth, r is the interest rate (a constant, see below), w (τ) is

the wage rate. In the spirit of Yaari (1965), we assume that agents can purchase annuities to

insure against longevity risk. Without a bequest motive, financial wealth is fully annuitized

so āj (v, τ) is also the agent’s demand for annuities. Since an agent’s age at time τ is directly

observable to the insurer, the net return on such annuities, pj (τ − v), depends on it. Labour

supply is exogenous and each agent supplies a single unit of labour throughout life, i.e. we

abstract from retirement.

At time v, the agent chooses paths for consumption and financial assets in order to max-

imize lifetime utility (1) subject to the flow budget identity (2) and a solvency condition,

taking as given its initial level of financial assets āj(v, v) = 0. In the absence of borrowing

5For a detailed derivation of the lifetime utility function in the presence of mortality risk, see Heijdra and

Romp (2008, pp. 91–92).
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constraints, the agent’s optimal plans for v ≤ t ≤ v + D̄j are fully characterized by:

˙̄cj(v, t)

c̄j(v, t)
= r + pj (t − v) − µj (t − v) − ρ, (3)

c̄j(v, v) =

∫ v+D̄j

v
w (τ) · e−r(τ−v)−Pj(τ−v)dτ

∫ v+D̄j

v
e−ρ(τ−v)−Mj(τ−v)dτ

, (4)

āj (v, t) · e−r(t−v)−Pj(t−v) =

∫ t

v

w (τ) e−r(τ−v)−Pj(τ−v)dτ − c̄j (v, v)

∫ t

v

e−ρ(τ−v)−Mj(τ−v)dτ, (5)

where Pj(τ − v) ≡
∫ τ−v

0 pj(s)ds is the cumulative net annuity return factor. Equation (3)

is the ‘consumption Euler equation’, relating the optimal time profile of consumption to

the difference between the annuity rate of interest (r + pj (τ − v)) and the total rate of

felicity discounting due to impatience and mortality (ρ + µj (τ − v)). Equation (4) shows

that consumption at birth is proportional to human wealth (the numerator), consisting of the

annuitized value of wages. The propensity to consume (one over the denominator) depends

on the ‘effective’ discount rate facing the consumer. Finally, the planned path of financial

wealth is defined in (5). It is easy to see that financial assets are zero at birth and at the

date of certain death, D̄j . The exact form of the wealth profile depends on the specific type

of equilibrium on the annuity market (see Section 3).

Below we encounter equilibria in which type j agents experience a binding borrowing

constraint from age S̄j onward. In that case equations (3) and (5) are valid only for 0 ≤

t − v ≤ S̄j , āj (v, t) = 0 and c̄j (v, t) = w (t) for S̄j ≤ t − v ≤ D̄j , and S̄j replaces D̄j in (4).

2.1.2 Demography

We allow for a non-zero rate of population growth but impose that the relative population

proportion of people of different health types is constant. Since health groups are distinguished

by their mortality process, this requirement furnishes the following condition:

βj ·

∫ D̄j

0
e−ns−Mj(s)ds = 1, (6)

where βj is the crude birth rate of type j cohorts, and n is the growth rate of the pop-

ulation. For a given value of n and a given mortality process Mj (s), equation (6) de-

fines the coherent solution for βj . The newborn cohort of type j at time v is given by

Lj (v, v) = πjβjL (v) where L (v) is the total population at time v and πj is the fraction of

type j people in the population. The average mortality rate for type j people is given by
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µ̄j ≡ [
∫ t

t−D̄j
µj (t − v)Lj (v, t) dv]/Lj (t) = βj − n. Finally, the relative cohort size of type j

agents of age t − v evolves according to:

lj (v, t) ≡
Lj (v, t)

L (t)
=







βjπje
−n(t−v)−Mj(t−v) for 0 ≤ t − v ≤ D̄j

0 for t − v > D̄j

(7)

Intuitively, the relative size of the type j cohort declines with age because the aggregate

population grows over time (first cause) and cohort members die (second cause).

2.1.3 Aggregate household behaviour

Armed with equation (7), it is possible to compute per capita values for consumption and

assets. We restrict attention to the balanced growth path along which wages grow at a

constant exponential rate, g. It follows that:

w (t) = w (v) · eg(t−v). (8)

Allowing for a borrowing constraint at age S̄j and using (8) we find that per capita consump-

tion of type j agents, cj (t) ≡
∫ t

t−D̄j
lj (v, t) c̄j (v, t) dv, can be written as:

cj (t)

w (t)
= βjπj ·

[

c̄j(v, v)

w (v)

∫ S̄j

0
e(r−n−g−ρ)s−2Mj(s)+Pj(s)ds +

∫ D̄j

S̄j

e−ns−Mj(s)ds

]

. (9)

By aggregating over all health types, per capita consumption is obtained, i.e. c (t) ≡
∑

j cj (t).

In a similar fashion we find that per capita asset holdings of type j agents, aj (t) ≡
∫ t

t−D̄j
lj (v, t) āj (v, t) dv, evolves over time according to:

ȧj (t) = (r − n) aj (t)+πjw (t)−cj (t)+

∫ t

t−D̄j

[

pj (t − v) − µj (t − v)
]

lj (v, t) āj (v, t) dv. (10)

It follows that per capita assets, a (t) ≡
∑

j aj (t), satisfy the following differential equation:

ȧ (t) = (r − n) a (t) + w (t) − c (t) + Ξ (t) , (11)

where Ξ (t) is defined as follows:

Ξ (t) ≡
∑

j

∫ t

t−D̄j

lj (v, t) ·
[

pj (t − v) − µj (t − v)
]

· āj (v, t) dv. (12)
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2.2 Firms

In the spirit of Romer (1989), we assume that there exist strong external effects operating

between private firms in the economy. The economy features a large and fixed number, N0,

of identical, perfectly competitive firms. The technology available to firm i is given by:

Yi (t) = Ω (t)Ki (t)
ε Li (t)

1−ε , 0 < ε < 1, (13)

where Yi (t) is output, Ki (t) is the capital input, Li (t) is the labour input, and Ω (t) represents

the general level of factor productivity which is taken as given by individual firms. The

competitive firm hires factors of production according to the following marginal productivity

conditions:

w (t) = (1 − ε) Ω (t) ki (t)
ε , (14)

r (t) + δ = εΩ(t) ki (t)
ε−1 , (15)

where ki (t) ≡ Ki (t) /Li (t) is the capital intensity. The rental rate on each factor is the

same for all firms, i.e. they all choose the same capital intensity and ki (t) = k (t) for all

i = 1, · · · , N0. This feature enables us to aggregate the microeconomic relations to the

macroeconomic level.

Generalizing the insights of Saint-Paul (1992, p. 1247) and Romer (1989) to a non-constant

population, we assume that the inter-firm externality takes the following form:

Ω (t) = Ω0k (t)1−ε , (16)

where Ω0 is a positive constant, k (t) ≡ K (t) /L (t) is the economy-wide capital intensity,

K (t) ≡
∑

i Ki (t) is the aggregate capital stock, and L (t) ≡
∑

i Li (t) is aggregate employ-

ment. According to (16), total factor productivity depends positively on the economy-wide

capital intensity, i.e. if an individual firm i raises its capital intensity, then all firms in the

economy benefit somewhat as a result because the general productivity indicator rises for all

of them. Using (16), equations (13)–(15) can now be rewritten in aggregate terms:

Y (t) = Ω0K (t) , (17)

w (t)L (t) = (1 − ε) Y (t) , (18)

r (t) = r = εΩ0 − δ, (19)
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where Y (t) ≡
∑

i Yi (t) is aggregate output and we assume that capital is sufficiently produc-

tive, i.e. εΩ0 > n + δ. The macroeconomic technology is linear in the capital stock and the

interest rate is constant and exceeds the rate of population growth.

3 Balanced growth path

In this section we study the steady-state features of the general equilibrium growth model.

We adopt the following set of assumptions regarding the market for annuities.

Assumption (A1) The annuity market is perfectly competitive. A large number of firms

offer annuity contracts to individuals. Firm entry and exit is unrestricted.

Assumption (A2) Annuity firms do not use up any real resources.

Assumption (A3) The annuitant’s health status is private information and cannot be ob-

served by the annuity companies. Annuity firms know all the features of the mortality

process of each health group.

Assumption (A4) The annuitant’s age is public information and can thus be observed by

the annuity companies.

Assumption (A5) Annuitants can buy multiple annuities for different amounts and from

different annuity firms. Individual annuity firms cannot observe an annuitant’s holdings

with their competitors.

The existence of a pooling equilibrium depends critically on the joint validity of assump-

tions (A3) and (A5). Under these assumptions, annuity firms cannot distinguish between

healthy and unhealthy annuitants. Even though healthy annuitants are richer than unhealthy

annuitants (both in reality and in our model), and thus feature a higher total demand for an-

nuities, they can nevertheless hide this fact by buying small amounts from several companies.

By assumption (A4), annuity firms can observe each annuitant’s age, u, so in the pooling

equilibrium there is a single pooling rate, p̄ (u), for healthy and unhealthy annuitants of age

u. There is market segmentation in the sense that the annuity market consists of separate

submarkets for each age group or cohort. By assumption (A1), the expected profit in each

submarket is zero. With large cohorts, probabilities and frequencies coincide so that actual
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profit in each submarket is also zero. Finally, assumption (A2) ensures that there is no loading

factor on annuities.

Before turning to a detailed study of the pooling equilibrium in subsection 3.2, we first

discuss the benchmark case for which assumption (A3) is violated and annuity firms can

observe each annuitant’s health type. This is the separating equilibrium studied in subsection

3.1.

Although the model has been constructed to allow for an arbitrarily large number of

health types, we simplify the discussion from here on by distinguishing only two health groups,

namely healthy agents (j = H) and unhealthy agents (j = U). We furthermore adopt the

mortality process of Boucekkine et al. (2002) which takes the following form:

e−Mj(s) ≡
η0 − eη1js

η0 − 1
, 0 ≤ s ≤ D̄j ≡

1

η1j

ln η0, (20)

where η0 > 1 and η1j > 0. The implied instantaneous mortality rate for this demography is

given by:

µj (s) ≡ M ′
j (s) =

η1je
η1js

η0 − eη1js . (21)

This mortality process satisfies the assumption made in the text below equation (1). To

capture the relative health status of the two groups we set η1U = θη1H with θ > 1. This

parameterization implies that the maximum attainable age for the healthy exceeds the one for

the unhealthy, i.e. D̄H = θD̄U . Furthermore, the instantaneous mortality rate is uniformly

higher for the unhealthy, i.e. µU (u) > µH (u) for 0 ≤ u ≤ D̄U . See Figure 1 below for a

visualization of these results. In that figure and throughout the paper an “economic age” of

u = 0 corresponds to a biological age of 18 years, i.e. we assume that independent economic

decision making starts at the age of maturity (see also below).

3.1 Separating equilibrium

If annuity firms are able to observe an annuitant’s health type, then they will set the net

return on annuities equal to the relevant mortality rate, pj (τ − v) = µj (τ − v) and thus also

Pj(τ − v) = Mj (τ − v). It follows from (3), (5), and (8) that:

˙̄cj(v, v + u)

c̄j(v, v + u)
= r − ρ, (22)

āj (v, v + u)

w (v)
· e−ru−Mj(u) =

∫ u

0
e−(r−g)s−Mj(s)ds −

c̄j (v, v)

w (v)

∫ u

0
e−ρs−Mj(s)ds, (23)
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Figure 1: Demographics

where u ≡ t−v is the agent’s age at time t. The instantaneous mortality rate does not feature

in (22) because households fully insure against the unpleasant effects of lifetime uncertainty

(Yaari, 1965). It is easy to see from (23) that financial assets are strictly positive throughout

the agent’s life.

Proposition 1. Consider the separating equilibrium (SE) in which annuity firms can observe

the health type of annuitants. Provided the growth-corrected interest rate exceeds the pure rate

of time preference, r − g > ρ, agents of all health types are net savers throughout life, i.e.

āj(v, v) = āj(v, v + D̄j) = 0 and āj(v, v + u) > 0 for 0 < u < D̄j.

Proof. See Appendix A.

The key equations of the separating general equilibrium model are collected in Table 1.

The expressions in (T1.1) follow in a straightforward fashion from (4) and (8) above. Equation

(T1.2) is obtained by setting S̄j = D̄j in (9) and noting the definition of c (t). The growth

expression, equation (T1.3), follows readily from (11) by noting two features of the model.

First, since claims on the capital stock are the only financial assets available, capital market

equilibrium ensures that a (t) = k (t). Second, since pj (t − v) = µj (t − v) it follows from (12)

that Ξ (t) = 0 for all t. There is no redistribution between health groups because each group

12



Table 1: Balanced growth in the separating equilibrium

(a) Microeconomic relationships:

c̄j (v, v)

w (v)
=

∫ D̄j

0 e−(r−g)s−Mj(s)ds
∫ D̄j

0 e−ρs−Mj(s)ds
, j ∈ {H, U} (T1.1)

(b) Macroeconomic relationships:

c (t)

w (t)
=

∑

j∈{H,U}

βjπj ·
c̄j (v, v)

w (v)
·

∫ D̄j

0
e(r−n−g−ρ)s−Mj(s)ds (T1.2)

g ≡
k̇ (t)

k (t)
= r − n +

[

1 −
c (t)

w (t)

]

·
w (t)

k (t)
(T1.3)

w (t)

k (t)
= (1 − ε)Ω0 (T1.4)

Notes. (a) Endogenous are c̄j(v, v)/w(v), g, w(t)/k(t), and c(t)/w(t). (b) There are two types of

agents, healthy (subscript H) and unhealthy (subscript U). (c) Mj(s), D̄j , βj , and πj stand for,

respectively, the cumulative mortality rate at age s, the maximum attainable age, the crude birth

rate, and the population fraction of type j agents. n is the population growth rate, ρ is the rate

of time preference, ε is the capital coefficient in the technology, and Ω0 is the scale factor in the

technology. The interest rate is r ≡ εΩ0 − δ, where δ is the depreciation rate of capital.

receives the net return befitting its mortality profile. Finally, equation (T1.4) is obtained by

combining equations (17)–(18).

The model features a two-way interaction between the microeconomic decisions and the

macroeconomic outcomes. On the one hand, for a given macroeconomic growth rate g, (T1.1)

determines scaled consumption at birth for the two health types. On the other hand, for given

values of scaled consumption at birth, (T1.2)–(T1.4) yield general equilibrium solutions for

c (t) /w (t), g, and w (t) /k (t).

In order to visualize the properties of the model and to quantify the effects of informational

asymmetries and adverse selection on the general equilibrium allocation, we calibrate the

model in a plausible fashion. We take the demographic parameters for the healthy group

from Heijdra and Mierau (2009). They use data from biological age 18 onward for the cohort

born in the Netherlands in 1960 and estimate the parameters appearing in (20). This gives
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the following estimates (with t-statistic in brackets): η0 = 122.643 (11.14) and η1H = 0.068

(48.51). It follows that D̄H = 70.754. We furthermore assume that θ = 1.1, so that η1U =

0.075 and D̄U = 64.322. There is a substantial difference between the maximum attainable

age for the two health types of about 6.432 years. Figure 1 shows the key features of the

mortality processes of the two health types.

We assume that the rate of population growth is one percent per annum (n = 0.01). In

view of the demographic equilibrium condition (6) and the demographic features discussed

above, this gives crude birth rates of βH = 0.0234 and βU = 0.0251. The capital depreciation

rate is ten percent per annum (δ = 0.10), the interest rate is six percent (r = 0.06), and

the rate of time preference is three and a half percent (ρ = 0.035). We postulate that in the

(hypothetical) separating equilibrium (SE) the economy features a steady-state growth rate of

two percent per annum (g = 0.02). In the core case, we assume equal fractions of healthy and

unhealthy individuals in the population, i.e. πH = πU = 1
2 . We use the efficiency parameter

of capital as a calibration parameter and find ε = 0.1744. It follows that the constant in

the production function is equal to Ω0 = (r + δ) /ε = 0.9174. In summary, the SE has the

following features: c̄H (v, v) /w (v) = 0.9094, c̄j (v, v) /w (v) = 0.9139, c (t) /w (t) = 1.0396,

g = 2, and w (t) /k (t) = 0.7574. For convenience these values are restated in column (a) in

Table 2.

Figure 2 visualizes a number of life-cycle features of the SE. Panel (a) depicts the age

profiles for scaled consumption. The paths for the two health types are virtually on top of

each other. As is clear from (22), consumption grows exponentially with age at a rate equal

to r − ρ. Panel (b) of Figure 2 shows the life-cycle pattern of scaled cohort assets (individual

assets display a rather similar pattern). As is to be expected, the healthy cohort is also the

relatively wealthiest of the two health types. The difference is most pronounced after age 25,

because from that age onward the instantaneous mortality rates start to deviate strongly (see

Figure 1(b)).

3.2 Pooling equilibrium

If we reinstate assumption (A3), so that annuity firms are not able to observe an annuitant’s

health type, then the best such a firm can do is to set net return on annuities equal to a

14



Table 2: Growth and adverse selection in the annuity market: quantitative effects

Core Case (A) Unhealthy (B) Healthy

πH = 1
2 , πU = 1

2 πH = 1
4 , πU = 3

4 πH = 3
4 , πU = 1

4

(a) SE (b) PE (c) NAE (d) SE (e) PE (f) SE (g) PE
c̄H (v, v)

w (v)
0.9094 0.8815 0.8530 0.9058 0.8704 0.9128 0.8971

c̄U (v, v)

w (v)
0.9139 0.9053 0.8653 0.9104 0.8961 0.9172 0.9187

S̄H (years) D̄H D̄H 57.31 D̄H D̄H D̄H D̄H

S̄U (years) D̄U 55.23 50.75 D̄U 57.04 D̄U 53.56

c (t)

w (t)
1.0396 1.0411 1.0484 1.0399 1.0416 1.0393 1.0402

g (%year) 2.00 1.89 1.33 1.98 1.85 2.02 1.95

w (t)

k (t)
0.7574 0.7574 0.7574 0.7574 0.7574 0.7574 0.7574

ΛH(v0, v0) 9.4936 8.8818 6.7127 9.3962 8.7257 9.5832 9.2166

ΛU (v0, v0) 8.6919 8.1449 6.1396 8.6022 8.0012 8.7744 8.4367

Notes. (a) πj is the population share of health type j people, S̄j is the age from which type j

faces a borrowing constraint. (b) SE is the separating equilibrium, PE the pooling equilibrium, and

NAE stands for the equilibrium without annuities. (c) Maximum attainable ages are D̄H = 70.75

and D̄U = 64.32. (d) c̄j(v, v)/w(v) is scaled newborn consumption by type j, c(t) is per capita

consumption, w(t) is the wage rate, k(t) is the capital stock per worker, and g is the steady-state

growth rate. See also notes in Table 1.
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(a) scaled individual consumption (b) scaled cohort assets
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Figure 2: Separating equilibrium
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common, age-dependent, pooling rate p̄ (u). This pooling rate takes the following form:

p̄ (u) =











µH (u) · aH (v, v + u) + µU (u) · aU (v, v + u)

aH (v, v + u) + aU (v, v + u)
for 0 < u ≤ D̄U

µH (u) for D̄U < u < D̄H

(24)

Annuity firms know that the unhealthy cannot live beyond age D̄U so for D̄U < u ≤ D̄H no

pooling is possible and p̄ (u) coincides with the instantaneous mortality rate of the healthy

individuals. For 0 < u ≤ D̄U , however, both health types are alive and (potentially) active on

the annuity market. The zero-profit condition for annuity firms furnishes the expression for

the pooling rate in that case. It is the cohort-asset weighted sum of instantaneous mortality

rates–see Sheshinski (2008, p. 71).

Using (3), (5), and (8) and ignoring borrowing constraints for the time being, we obtain

the age profiles for consumption and assets for the two health types:

˙̄cj(v, v + u)

c̄j(v, v + u)
= r + p̄ (u) − µj (u) − ρ, (25)

āj (v, v + u)

w (v)
· e−ru−P̄ (u) =

∫ u

0
e−(r−g)s−P̄ (s)ds −

c̄j (v, v)

w (v)

∫ u

0
e−ρs−Mj(s)ds, (26)

where P̄ (u) ≡
∫ u

0 p̄ (s) ds for 0 ≤ u ≤ D̄U and P̄ (u) ≡ P̄
(

D̄U

)

+
∫ u

D̄U
µH (s) ds for D̄U ≤

u ≤ D̄H . Figure 2(c) provides a strong hint that this is not a complete description of the

pooling equilibrium. To construct Figures 2(c)-(d), we use the cohort asset paths for the SE

to compute the “implied” pooling rate p̄ (u). Note that this is not an equilibrium rate because

it is not consistent with the assumptions. Panel (d) shows that the healthy benefit a lot from

pooling–their excess rate peaks at over 2.5 percentage points per annum around age 60. In

contrast, as panel (c) shows, the unhealthy lose out as a result of pooling. For the unhealthy

the pooling rate becomes so low that they want to borrow at that rate. But in doing so, they

would reveal their health status to annuity firms who would only be willing to lend them the

funds at a punitively high rate equal to their mortality rate. But at that rate they would like

to be savers, as the SE suggests. It follows that the best option for the unhealthy is to impose

a binding borrowing constraint on themselves from age S̄U < D̄U onward. We summarize as

follows.

Proposition 2. Consider the pooling equilibrium (PE) in which annuity firms are unable

to observe the health type of annuitants and assume that the growth-corrected interest rate

exceeds the pure rate of time preference, r − g > ρ. Then: (i) healthy agents are net savers
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throughout life, i.e. āH(v, v) = āH(v, v + D̄H) = 0 and āH(v, v + u) > 0 for 0 < u < D̄H ;

(ii) unhealthy agents are net savers until age S̄U < D̄U after which they adopt a self-imposed

borrowing constraint to stay in the pooling equilibrium, i.e. āU (v, v) = 0, āU (v, v + u) > 0 for

0 < u < S̄U , and āU (v, v + u) = 0 and c̄U (v, v + u) = w (v + u) for S̄U ≤ u ≤ D̄U .

Proof. See Appendix B.

In the pooling equilibrium, we must redefine P̄ (u) ≡ P̄
(

S̄U

)

+
∫ u

S̄U
µH (s) ds for S̄U ≤ u ≤

D̄H . Equations (25)–(26) are valid for the healthy throughout life (0 ≤ u ≤ D̄H), and for the

unhealthy only until they hit the self-imposed borrowing constraint (0 ≤ u ≤ S̄U ). Beyond

age S̄H the unhealthy simply consume their wage income.

The key equations of the pooling general equilibrium model are collected in Table 3.

Equations (T3.1)–(T3.2) are obtained by using (8) in (4) and noting that the integrals only

run up to age S̄U for the unhealthy. Equation (T3.3) is the smooth-connection condition:

consumption at age S̄U must connect without discontinuity with the level implied by the

solved Euler equation under pooling.6 Equations (T3.4)–(T3.6) are the cohort asset paths

under pooling, taking account of the self-imposed borrowing constraint for the unhealthy.

Equation (T3.7) states the expression for the pooling rate. Equation (T3.8) is obtained

from (9) by setting S̄H = D̄H , Pj (s) = P̄ (s), and noting the definition of c (t). The growth

expression, equation (T3.9), again follows readily from (11) because a (t) = k (t) and Ξ (t) = 0.

In the PE, redistribution between health groups does take place but it washes out in the

aggregate as the annuity firms break even. Hence, the growth equation is the same as in the

SE. Finally, equation (T3.10) is the same as before.

Using the parameter values discussed above, we can compute the pooling equilibrium using

an iterative solution algorithm.7 The results are reported in column (b) of Table 2 for the core

case. Relative to the SE, newborn consumption for both health types is slightly lower in the

PE. Similarly, the economic growth rate is somewhat less in the PE – 1.89 percent per annum

6Solving equation (25) for the unhealthy gives (for 0 ≤ u ≤ S̄U ): c̄U (v, v+u) = c̄U (v, v)e(r−ρ)u−MU (u)+P̄ (u).

For S̄U ≤ u ≤ D̄U we have: c̄U (v, v + u) = w (v) egu. For u = S̄U these two expressions must coincide. This

furnishes equation (T3.3) in Table 3.
7We drop equation (T3.3) and perform a grid search over SU which solves the remaining general equilibrium

system. To get the iterations started we use the pooling rate “implied by” the SE. See Figures 2(c)-(d). The

iterations are stopped once a value for SU is found which solves (T3.3).
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Table 3: Balanced growth in the pooling equilibrium

(a) Microeconomic relationships:

c̄H (v, v)

w (v)
=

∫ D̄H

0 e−(r−g)s−P̄ (s)ds
∫ D̄H

0 e−ρs−MH(s)ds
(T3.1)

c̄U (v, v)

w (v)
=

∫ S̄U

0 e−(r−g)s−P̄ (s)ds
∫ S̄U

0 e−ρs−MU (s)ds
(T3.2)

c̄U (v, v)

w (v)
= e−(r−g−ρ)S̄U+MU(S̄U)−P̄(S̄U) (T3.3)

aH (v, v + u)

w (v)
= βHπHe(r−n)u−MH(u)+P̄ (u) ·

[
∫ u

0
e−(r−g)s−P̄ (s)ds

−
c̄H (v, v)

w (v)

∫ u

0
e−ρs−MH(s)ds

]

, (0 ≤ u ≤ D̄H) (T3.4)

aU (v, v + u)

w (v)
= βUπUe(r−n)u−MU (u)+P̄ (u) ·

[
∫ u

0
e−(r−g)s−P̄ (s)ds

−
c̄U (v, v)

w (v)

∫ u

0
e−ρs−MU (s)ds

]

, (0 ≤ u ≤ S̄U ) (T3.5)

aU (v, v + u)

w (v)
= 0, (S̄U ≤ u ≤ D̄U ) (T3.6)

p̄ (u) =
µH (u) · aH (v, v + u) + µU (u) · aU (v, v + u)

aH (v, v + u) + aU (v, v + u)
(T3.7)

(b) Macroeconomic relationships:

c (t)

w (t)
= βHπH ·

c̄H (v, v)

w (v)
·

∫ D̄H

0
e(r−n−g−ρ)s−2MH(s)+P̄ (s)ds

+βUπU ·

[

c̄U (v, v)

w (v)

∫ S̄U

0
e(r−n−g−ρ)s−2MU (s)+P̄ (s)ds +

∫ D̄U

S̄U

e−ns−MU (s)ds

]

(T3.8)

g ≡
k̇ (t)

k (t)
= r − n +

[

1 −
c (t)

w (t)

]

·
w (t)

k (t)
(T3.9)

w (t)

k (t)
= (1 − ε)Ω0 (T3.10)

Notes. (a) Endogenous are c̄j(v, v)/w(v), aj(v, v + u)/w(v), p̄(u), S̄U , g, w(t)/k(t), and c(t)/w(t).

(b) P̄ (s) is the cumulative pooling rate at age s, and u ≡ t − v. See also notes in Table 1.
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instead of 2 percent. Interestingly, the unhealthy encounter the borrowing constraint fairly

early on in life, namely at economic age 55.23 which is 9.09 years less than their maximum

attainable age. In a number of papers, Leung (1994, 2007) has found a related result. He uses

a partial equilibrium model in which annuities are absent altogether and there is only one

health type and shows that individuals expect to run out of assets if they live long enough. In

contrast, in our approach, annuitization opportunities vanish endogenously for the unhealthy

but remain in place for the healthy.

Figure 3 visualizes the key life-cycle features of the PE for the two health groups. Panel (a)

shows that scaled consumption for the unhealthy reaches a local peak just before encountering

the borrowing constraint at S̄U . This is because the pooling rate is rather low (due to the

predominance of the healthy in the annuity market), and the mortality rate of the healthy

starts to rise. In terms of (25), consumption falls for a while because the gross annuity rate,

r + p̄ (u), falls short of the “effective impatience rate” due to time preference and mortality,

ρ + µU (u), for u near S̄H . At u = S̄U , the surviving unhealthy reach the Keynesian part of

their consumption profile and simply consume their wage income.

Comparing the asset paths for the SE and PE cases in, respectively, Figures 2(b) and 3(b),

we observe that the healthy save much more and the unhealthy save much less in the PE than

in the SE. This is in part because the relative pooling rate, p̄j (u)− µj (u), is positive for the

healthy and is negative for the unhealthy. This is visualized in panels (c)–(d) in Figure 3. In

a sense, the healthy benefit from the presence of the unhealthy in the annuity market and are

thus able to obtain an annuity rate of interest on their assets that is more than actuarially

fair.

As a robustness check we consider two alternative cases in Table 2 (panels (d)–(g)) and

in Figure 4. In the case labeled “Unhealthy” in Table 2 we keep all but one of the model

parameters unchanged but assume that the proportion of unhealthy people is 3
4 rather than

1
2 . A number of features stand out. First, comparing panels (d) and (a) (or indeed, (e) and

(b)) we observe that the effects on individual and aggregate consumption as well as growth

are rather small. Second, for the PE case the unhealthy encounter the borrowing constraint

later in life (at S̄U = 57.04) in an unhealthy economy than under the core case (for which

case S̄U = 55.23). Intuitively, as Figure 4(b) shows, though modest savers at the individual

level, the cohort asset share of the unhealthy is dominant for a large age domain. This implies
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Figure 3: Pooling equilibrium
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(A) Unhealthy population: πH = 1 − πU = 1
4

(a) relative pooling rate (H) (b) scaled cohort assets
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Figure 4: Pooling equilibrium with unequal health group sizes

22



that the pooling rate remains relatively close to the mortality rate of the unhealthy which

postpones the borrowing age somewhat – compare Figures 3(d) and 4(a). Third, a comparison

between panels (d) and (e) of Table 2 yields virtually identical conclusions as were obtained

for the core case.

Finally, in panels (f)–(e) of Table 2 and Figures 4(c)–(d) we characterize the “Healthy”

case, in which the unhealthy are a minority (πH = 3
4 and πU = 1

4). The conclusions from this

case are the mirror images of those from the “Unhealthy” case.

3.3 Welfare analysis

In the previous subsection we have shown that the growth effects of “pooling versus sepa-

ration” are rather small even though the difference in mortality risks faced by healthy and

unhealthy individuals is rather large especially at older ages (see Figure 1(b)). But economic

growth is not the only relevant indicator. A key question is, to what extent does it matter to

individuals whether or not the annuity markets are perfect (SE) or imperfect (PE)?

To address this question, the last two rows of Table 2 report the lifetime utility scores

for newborns (of both health type) at some base year v0. We normalize the wage rate for

that generation to unity, w (v0) = 1. As Table 2 reveals, welfare is higher under the SE than

under the PE, i.e. ΛSE
j (v0, v0) > ΛPE

j (v0, v0) for j ∈ {H, U}. In order to obtain some feel

for the significance of these differences, we compute lost growth years under annuity market

equilibrium i relative to the separating equilibrium as follows:

LGY i
j =

1

gi
·
ΛSE

j (v0, v0) − Λi
j (v0, v0)

∫ D̄j

0 e−ρs−Mj(s)ds
. (27)

Intuitively, LGY i
j is equal to v1 − v0 such that ΛSE

j (v0, v0) = Λi
j (v1, v1). How far into the

future must a newborn arrive under annuity market i in order to be equally well off as a base-

year newborn in the SE? Since wage growth explains why newborn lifetime utility increases

over time, the macroeconomic growth rate under annuity market i features in (27).

For i = PE the comparison is between the PE and the SE and we find that LGY PE
H =

1.3478 years and LGY PE
U = 1.2439 years. By all accounts the annuity market imperfection due

to pooling is rather small in welfare terms. At birth, the unhealthy have a life expectancy8

of 56.62 years and for them the lost growth years amount to about 14.9 months. For the

8Life expectancy at birth for type j individuals is equal to
∫ D̄j

0
e−Mj(s)ds.
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Figure 5: Equilibrium with missing annuity market

healthy the results are 16.2 months of lost growth on an expected lifetime at birth of 51.48

years. These are not of an order of magnitude that should worry the policy maker.

At first sight it might appear as though the above results imply that the pooling equilib-

rium does not exist. Both the unhealthy agents and the healthy agents as a group are better

of by truthfully signaling their health status to the annuity firms. As a separating equilibrium

gives them higher utility, this announcement would be credible. However, each healthy agent

as an individual has an incentive to deviate from the optimal group strategy. Once the sepa-

rating equilibrium is realized, posing as an unhealthy (low risk) agent and receiving the higher

annuity premium is optimal given that the other agents are honest in their health claim. In-

deed, a cheating healthy individual would attain a welfare level of ΛSE ,C
H (v0, v0) = 10.4983

which far exceeds the truth-telling value of ΛSE
H (v0, v0) = 9.4936. There thus exists a free-

rider problem: as each healthy agent has an incentive to cheat and they cannot coordinate

their actions, the pooling equilibrium will be the inevitable, yet suboptimal, outcome.

The crucial thing to note is that in the PE, individuals are able to insure themselves

against longevity risk. Even with imperfect insurance opportunities, the welfare gains due to

annuitization are huge. To illustrate this phenomenon, we compute the general equilibrium

outcome for the core case when no annuities are available at all. We label this no-annuities
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equilibrium NAE, report it in Table 2(c), and visualize it in Figure 5. Panel (c) of Table 2

reveals that in the NAE the growth rate is only 1.33 percent per annum and that both health

groups encounter binding borrowing constraints rather early on in life. Not surprisingly, the

lost growth year indicators are very large. For the healthy we find LGY NAE
H = 8.6764 years,

whilst for the unhealthy we obtain LGY NAE
U = 8.2202 years.

4 Conclusions

We have constructed a consistent general equilibrium model featuring endogenous economic

growth and overlapping generations of heterogeneous agents distinguished by health status.

Since an individual’s health status and annuity purchases are private information, competi-

tive annuity firms offer linear contracts so that a risk pooling equilibrium emerges. In this

equilibrium the healthy (high-risk) individuals benefit from the market presence of unhealthy

(low-risk) annuitants. The model gives a partial explanation for the annuity puzzle. At high

ages, low-risk individuals cease to purchase annuities and impose a borrowing constraint on

themselves. Interestingly, the growth and welfare effects of the annuity market imperfec-

tion due to adverse selection are rather small. The annuity puzzle may be quantitatively

unimportant after all.

In future works we hope to pursue the following extensions. First, we wish to endogenize

the labour supply decision in order to investigate the retirement effects of annuity market

imperfections. In that context we will also introduce social annuity schemes such as a PAYG

pension system. Second, we wish to model the optimal schooling decision by individuals in

an adverse selection setting and study the effects on aggregate human capital formation and

macroeconomic growth. Finally, we want to extend the model to include multiple health

types and study the emergence of joint pooling equilibria for annuities and life-insurance.
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Appendix A: Proof of Proposition 1

In a separating equilibrium we have Mj(u) = Pj(u) for all 0 ≤ u ≤ D̄U as pj(u) = µj(u) for

all 0 ≤ u ≤ D̄j . Since ρ < r − g we find:

c̄j(v, v)

w(v)
=

∫ D̄j

0 e−(r−g)u−Mj(u) du
∫ D̄j

0 e−ρu−Mj(u) du
< 1. (A.1)

Let u ∈ [0, D̄j ] be the age of the consumer. Then we can write:

āj(v, v + u)

w(v)
e−ru−Mj(u) = Γj(u), (A.2)

where Γj : [0, D̄j ] → R is defined by:

Γj(u) =

∫ u

0
e−(r−g)s−Mj(s)ds −

c̄j(v, v)

w(v)

∫ u

0
e−ρs−Mj(s)ds. (A.3)

As Γj is a continuous function defined on a closed and bounded interval [0, D̄j ], we know that

Γj has a global maximum and a global minimum on its domain. Candidates for these extreme

points are the boundaries of the domain and the interior critical points. For the boundary

points we find Γ(0) = Γ(D̄j) = 0 as āj(v, v) = āj(v, v + D̄j) by the initial condition and the

property of nonsaturation.

Using Leibnitz’ rule, we find that the first order derivative of Γ is given by:

Γ′
j(u) = e−(r−g)u−Mj(u) −

c̄j(v, v)

w(v)
e−ρu−Mj(u)

= e−Mj(u)

[

e−(r−g)u −
c̄j(v, v)

w(v)
e−ρu

]

. (A.4)

The unique interior root of this equation is:

u∗ ≡ −
1

r − g − ρ
· ln

(

c̄j(v, v)

w(v)

)

, (A.5)

where u∗ > 0 as c̄j(v, v)/w(v) < 1 and r − g > ρ by assumption. We find that Γ′
j(u) > 0 for

0 ≤ u < u∗ and Γ′
j(u) < 0 for u∗ < u < D̄j . We conclude that Γj has a global maximum

at u∗ and a global minimum at 0 and D̄j . As this global minimum equals zero, we find

āj(v, v + u) > 0 for all u ∈ (0, D̄j). �
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Appendix B: Proof of Proposition 2

The pooling equilibrium only exists if the health types cannot be distinguished. The case with

only borrowers (āH (v, v + u) ≤ 0 and āU (v, v + u) ≤ 0) is inconsistent with a macroeconomic

equilibrium in a closed economy. This leaves us with the alternative case, with some savers,

i.e. āH (v, v + u) ≥ 0 and āU (v, v + u) ≥ 0 with strict equality for some type and/or u. The

feasible pooling rate is defined as:

p̄ (u) =











µH (u) · aH (v, v + u) + µU (u) · aU (v, v + u)

aH (v, v + u) + aU (v, v + u)
for 0 < u ≤ D̄U

µH (u) for D̄U < u < D̄H

.

It follows that:

µH (s) ≤ p̄ (s) ≤ µU (s) , for 0 < s ≤ D̄U ,

MH (u) ≤ P̄ (u) ≤ MU (u) , for 0 < u ≤ D̄U ,

P̄ (u) = P̄
(

D̄U

)

+

∫ u

D̄U

µH (s) ds, for D̄U < u ≤ D̄H .

For type H individuals we easily find:

(

c̄H (v, v)

w (v)

)PE

=

∫ D̄H

0 e−(r−g)s−P̄ (s)ds
∫ D̄H

0 e−ρs−MH(s)ds
=

∫ D̄H

0 f (s) · e−(r−g)s−MH(s)ds
∫ D̄H

0 e−ρs−MH(s)ds
,

where the superscript “PE” stands for pooling equilibrium and f (s) is defined as follows:

f (s) ≡ eMH(s)−P̄ (s) ≤ 1 for 0 < s ≤ D̄H ,

f (0) = 1,

f ′ (s) = [µH (s) − p̄ (s)] · f (s) ≤ 0.

It follows immediately that:

(

c̄H (v, v)

w (v)

)PE

≤

(

c̄H (v, v)

w (v)

)SE

< 1,

(

˙̄aH (v, v)

w (v)

)PE

= 1 −

(

c̄H (v, v)

w (v)

)PE

≥

(

˙̄aH (v, v)

w (v)

)SE

= 1 −

(

c̄H (v, v)

w (v)

)SE

> 0,

the superscript “SE” stands for the separating equilibrium. The H-types start saving more

vigorously at the start of life. The assets of H-individuals satisfy:

āH (v, t)

w (v)
·e−ru−P̄ (u) =

(

c̄H (v, v)

w (v)

)PE

·

∫ D̄U

u

e−ρs−MH(s)ds−

∫ D̄U

u

f (s) e−(r−g)s−MH(s)ds ≡ ΞH (u) ,
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with ΞH (0) = ΞH

(

D̄H

)

= 0. Taking the first derivative we obtain:

Ξ′
H (u) = e−MH(u) ·

[

f (u) e−(r−g)u −

(

c̄H (v, v)

w (v)

)PE

e−ρu

]

.

Hence, the stationary point, u∗
H , is such that:

(

c̄H (v, v)

w (v)

)PE

· e(r−g−ρ)u∗

H = f (u∗
H) . (B.1)

The second derivative (evaluated at u∗
H) is:

Ξ′′
H (u∗

H) = −e−MH(u∗

H)−(r−g)u∗

H ·
[

(r − g − ρ) f (u∗
H) − f ′ (u∗

H)
]

< 0,

so we have a unique interior maximum, and ΞH (u) > 0 for 0 < u < D̄H . We conclude that:

āH (v, v)

w (v)
=

āH

(

v, v + D̄H

)

w (v)
= 0,

āH (v, v + u)

w (v)
> 0 for 0 < u ≤ D̄H .

Except at the start and the end of life, the H-types keep positive assets throughout. It

follows that we can establish the strict inequalities p̄ (s) < µU (s) and P̄ (u) < MU (u) for

0 < s, u ≤ D̄U .

For type U individuals we find:

(

c̄U (v, v)

w (v)

)PE

=

∫ D̄U

0 e−(r−g)s−P̄ (s)ds
∫ D̄U

0 e−ρs−MU (s)ds
=

∫ D̄U

0 h (s) · e−(r−g)s−MU (s)ds
∫ D̄U

0 e−ρs−MU (s)ds
,

where h (s) is given by:

h (s) ≡ eMU (s)−P̄ (s) > 1 for 0 < s ≤ D̄U ,

h (0) = 1,

h′ (s) = [µU (s) − p̄ (s)] · h (s) > 0.

It follows that type U individuals consume more at birth in the pooling equilibrium than in

the separating equilibrium:

(

c̄U (v, v)

w (v)

)PE

>

(

c̄U (v, v)

w (v)

)SE

.

We can rule out that the left-hand side is greater than one, because then the U-types would

start to borrow immediately (which is inconsistent with the PE). The assets of type U indi-

viduals satisfy:

āU (v, t)

w (v)
·e−ru−P̄ (u) =

(

c̄U (v, v)

w (v)

)PE ∫ D̄U

u

e−ρs−MU (s)ds−

∫ D̄U

u

h (s) e−(r−g)s−MU (s)ds ≡ ΞU (u) ,
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with ΞU (0) = ΞU

(

D̄U

)

= 0. Taking the first derivative we obtain:

Ξ′
U (u) = e−MU (u) ·

[

h (u) e−(r−g)u −

(

c̄U (v, v)

w (v)

)PE

e−ρu

]

.

Hence, a stationary point, u∗
U is such that:

(

c̄U (v, v)

w (v)

)PE

· e(r−g−ρ)u∗

U = h (u∗
U ) . (B.2)

Note that both sides are increasing in u∗
U opening up the possibility of multiple equilibria.

The second derivative (evaluated at u∗
U ) is:

Ξ′′
U (u∗

U ) = −h (u∗
U ) e−MU(u∗

U)−(r−g)u∗

U ·
[

(r − g − ρ) − [µU (u∗
U ) − p̄ (u∗

U )]
]

S 0,

where we have used the fact that h′ (u∗
U ) = [µU (u∗

U ) − p̄ (u∗
U )] ·h (u∗

U ). There are two interior

optima. Since r − g > ρ and µU (u) − p̄ (u) ≈ 0 for low u, the first stationary point u∗
U1 is a

maximum (Ξ′′
U (u∗

U1) < 0). But limu→D̄U
[µU (u) − p̄ (u)] → ∞ so the second optimum u∗

U2 is

a minimum (Ξ′′
U (u∗

U2) > 0). Since both sides of (B.2) are convex exponential functions, there

can only be two stationary points so the second optimum is associated with negative assets.

We conclude that:

āU (v, v + u)

w (v)
= 0 (for u = 0 and S̄U ≤ u ≤ D̄U ),

āU (v, v + u)

w (v)
> 0 (for 0 < u < S̄U ).

Type U individuals deplete their assets before reaching the maximum attainable age. �
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