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1 Introduction

Population ageing is playing havoc with the public pension schemes of many western coun-

tries. In a celebrated sequence of international comparative studies, Gruber and Wise (1999,

2004, 2005) and their collaborators have established a number of stylized facts pertaining to

a subset of OECD countries. These facts are:

(SF1) For most developed countries, the pay-as-you-go social security system includes promises

that cannot be kept without significant system reforms. In the absence of reform, cur-

rent systems are fiscally unsustainable.

(SF2) From the 1960s until the mid 1990s, the trend was for older people to leave the labour

force at ever younger ages. Retirement is a normal good in the sense that the demand

for years of retirement rises as agents’ income rises (Barr and Diamond, 2006, p. 27)

(SF3) Only a very small fraction of the labour force retires before the earliest age at which

public retirement benefits are available, the so-called early eligibility age (EEA hereafter).

The EEA typically is in the range of 60-62 years of age. Similarly, only very few people

work until the normal retirement age (NRA hereafter), which is typically 65 for most

countries (Duval, 2003, p. 35). Together this implies that most people retire either at

the EEA or somewhere in between the EEA and the NRA.

(SF4) Most social security programs contain strong incentives for older workers to leave the

labour force. In most countries it simply does not pay to work beyond the EEA because

adjustments are less than actuarially fair. The present value of expected social security

benefits declines with the retirement age, so there is a high implicit tax on working

beyond the EEA.

(SF5) In many European countries disability programs and age-related unemployment pro-

visions essentially provide early retirement benefits, even before the EEA.

In our view, a formal analysis of issues surrounding ageing, retirement, and pensions

can only be successful if it is able to accommodate at least some, but preferably all, of these

stylized facts. In this paper we study the consumption, saving, and retirement decisions

of individual agents facing lifetime uncertainty, or longevity risk. In addition, we also de-

termine the macroeconomic consequences of individual behaviour and policy changes. We

construct a simple analytical overlapping generations model and assume that the country in

question is small in world capital markets and thus faces an exogenous world interest rate,

which we take to be constant.

Our analysis makes use of modelling insights from two important branches of the lit-

erature. First, in order to allow for overlapping generations, we employ the generalized
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Blanchard-Yaari model developed in our earlier papers (Heijdra and Romp, 2008a, forth-

coming). In this model disconnected generations are born at each instant and individual

agents face an age-dependent probability of death at each moment in time. By allowing the

mortality rate to depend on age, the model can be used to investigate the micro- and macro-

economic effects of a reduction in adult mortality, another well know phenomenon occurring

in many western countries over the last century or so. Finitely-lived agents fully insure

against the adverse affects of lifetime uncertainty by purchasing actuarially fair annuities.

The second building block of our analysis concerns the labour market participation deci-

sion of individual agents. Following the seminal contribution by Sheshinski (1978) and much

of the subsequent literature, we assume that labour is indivisible (the agent either works full

time or not at all), that the retirement decision is irreversible, and that the felicity function

is additively separable in consumption and leisure. All agents are blessed with perfect fore-

sight and maximize an intertemporal utility function subject to a lifetime budget constraint.

Workers choose the optimal retirement age, taking as given the time- and age profiles of

wages, the fiscal parameters, and the public pension system. Not surprisingly, like Mitchell

and Fields and many others we find that “the optimal retirement age . . . equates the mar-

ginal utility of income from an additional year of work with the marginal utility of one more

year of leisure” (1984, p. 87).

The two papers most closely related to ours are Sheshinski (1978) and Boucekkine et

al. (2002).1 We extend the analysis of Sheshinski (1978) in two directions. First, as was al-

ready mentioned above, we incorporate a realistically modelled lifetime uncertainty process,

rather than a fixed planning horizon. Second, we embed the model in the context of a small

open economy and are thus able to study the macroeconomic repercussions of ageing and

pension reform. We generalize the analysis of Boucekkine et al. (2002) by including a con-

cave, rather than linear, felicity function, and by modelling a public pension system with

realistic features such as an EEA which differs from the NRA and non-zero implicit tax

rates. Furthermore, we conduct our theoretical analysis with a general description of the

demographic process, whereas they use a specific functional form for this process through-

out their paper.

The remainder of this paper is organized as follows. In Section 2 we present the model

and demonstrate its main properties. Consumption is proportional to total wealth, consist-

ing of financial and human wealth. With a realistic demography, the marginal propensity to

consume out of wealth is increasing in the agent’s age because the planning horizon short-

ens as one grows older and the agent does not wish to leave any bequests. We derive the

first-order condition for the optimal retirement age and show that it depends not only on the

mortality process but also on the features of the fiscal and pension systems. The mortality

1In the interest of brevity, we refer the interested reader to the literature surveys on retirement and ageing by

Lazear (1986), Hurd (1990, 1997), and Weil (1997). For a recent literature survey on pension reform, see Lindbeck

and Persson (2003).
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process, in combination with the birth rate, also determines a unique path for the population

growth rate.

In Section 3 we abstract from the public pension system and study the comparative static

effects on the optimal retirement age of various age-related shocks. A reduction in the disu-

tility of working leads to an increase in the optimal retirement age. In contrast, an upward

shift in the age profile of wages causes a negative wealth effect but a positive substitution

effect, rendering the total effect on the optimal retirement age ambiguous. A reduction in

adult mortality increases the expected remaining lifetime for everyone, though more so for

older agents. We confirm the results of related papers by Chang (1991) and Kalemli-Ozcan

(2002), in that the effect of increased longevity on the optimal retirement age is ambiguous in

general. Intuitively, this is because the lifetime-income effect cannot be signed a priori. For

realistic scenarios, however, the increased longevity only starts to matter quantitatively at

ages exceeding the NRA so that the lifetime-income effect works in the direction of increas-

ing the optimal retirement age.

Section 3 also presents the graphical apparatus that we use throughout the paper. We

demonstrate that the optimal retirement decision is best studied in terms of its consequences

for lifetime income and the transformed retirement age. This transformed age is a monoton-

ically increasing transformation of the calender age and captures the notion of an agent’s

economic (rather than biological) age. Our graphical apparatus has the attractive feature

that indifference curves are convex and that the budget constraint is concave. We believe

that our graphical representation is more intuitive than the conventional one based on bio-

logical years.

In Section 4 we re-introduce the public pension system and determine its likely conse-

quences for the retirement decision of individual agents. Using data from Gruber and Wise

(1999) for nine OECD countries, we compute conservative estimates for standardized life-

time income profiles and find that these profiles are concave in the transformed age domain.

For at least six of these countries, the lifetime income profile features a kink at the EEA as a

result of non trivial implicit tax rates. Combined with convex indifference curves, it is not

surprising that many agents choose to retire at the EEA, conform stylized facts (SF3) and

(SF4).

In Section 5 we take the concavity of lifetime income profiles for granted and discuss

the comparative static effects on the optimal steady-state retirement age of various changes

in taxes or the public pension system. We restrict attention to interior solutions because an

optimum occurring at the kink in the lifetime income profile is insensitive to small changes.

An increase in the poll tax leads to a reduction in lifetime income and an increase in the op-

timal retirement age. Retirement is thus a normal good in our model, conform stylized fact

(SF2). Not surprisingly, an increase in the labour income tax has an ambiguous effect on the

retirement age because the substitution effect is negative and the wealth effect is positive.

Holding constant the slope of the pension benefit curve, an increase in its level unambigu-
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ously leads to a decrease in the retirement age—the wealth effect and the substitution effect

operate in the same direction. In contrast, an increase in the slope of the benefit curve, hold-

ing constant its level, leads to an increase in the optimal retirement age as a result of the

positive substitution effect.

In Section 6 we calibrate the model to capture the salient features of a typical small open

economy such as the Netherlands. Our postulated demographic process, when fitted to

Dutch data, outperforms the one suggested by Boucekkine et al. (2002). The overall fit of

our process is better and it also provides a better estimate for the population weight of older

agents. We use this quantitative model to compute and visualize the general equilibrium

effects of various large demographic shocks and several assumed policy reform measures.

Conform stylized fact (SF3), we postulate that in the initial steady state individuals are stuck

at the early retirement kink. Because both the shocks and the policy reform measures are in-

framarginal, we simulate a plausibly calibrated version of our model to compute the impact-,

transitional-, and long-run effects on the macro-economy.

Finally, in Section 7 we present some concluding thoughts and give some suggestions

for future research. Heijdra and Romp (2008b) contains the key mathematical derivations,

data on implicit tax rates and replacement rates for a number of OECD countries, as well as

further supplementary material.

2 The model

2.1 Households

From the perspective of time t, the (remaining) lifetime utility function for an agent born at

time v (v ≤ t) is written as:

Λ(v, t) ≡ eM(u)
∫

∞

t
[U(c̄ (v, τ)) − I (τ − v, R (v)) D (τ − v)] e−[θ(τ−t)+M(τ−v)]dτ, (1)

where u ≡ t − v is the agent’s age in the planning period and I (τ − v, R (v)) is an indicator

function capturing the agent’s labour market status:

I (τ − v, R (v)) =

{
1 for 0 < τ − v < R (v) (working)

0 for τ − v ≥ R (v) (retired)
(2)

In equation (1), U (·) is a concave consumption-felicity function (to be discussed below),

c̄ (v, τ) is goods consumption, D (·) is the age-dependent disutility of working, R (v) is

the retirement age (see below), θ is the constant pure rate of time preference (θ > 0), and

e−M(τ−v) is the probability that the agent is still alive at time τ. The cumulative mortality rate

is defined as M (τ − v) ≡
∫ τ−v

0 m (s) ds, where m (s) is the instantaneous mortality rate of a

household of age s. Several features of the lifetime utility function are worth noting. First, as

was pointed out by Yaari (1965), future felicity is discounted not only because of pure time
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preference (as θ > 0) but also because of life-time uncertainty (as M (τ − v) > 0). Second,

following the standard convention in the literature, the instantaneous utility function is as-

sumed to be additively separable in goods consumption and labour supply.2 Previous to

retirement the agent works full time, and inelastically supplies its unitary time endowment

to the labour market. After retirement the agent does not work at all. Hence, we model the

labour market participation decision (rather than an hours-of-work decision). Leaving the

labour force is assumed to constitute an irreversible decision.3 As a result, the age at which

the agent chooses to withdraw from the labour market, which we denote by R (v), can be

interpreted as the voluntary retirement age. Third, we assume that the disutility of working

is non-decreasing in age, i.e. D′ (τ − v) ≥ 0. This captures the notion that working may

become more burdensome as one grows older (cf. Boucekkine et al., 2002, p. 346).

The budget identity is given by:

∂ā (v, τ)

∂τ
= [r + m (τ − v)] ā (v, τ) + I (τ − v, R (v)) w̄ (τ − v) [1 − tL (τ)]

+ [1 − I (τ − v, R (v))] p̄ (v, τ, R (v)) − c̄ (v, τ) − z̄ (τ) , (3)

where ā (v, τ) is real financial wealth, r is the exogenously given (constant) world rate of

interest, w̄ (τ − v) is the age-dependent before-tax wage rate, tL is the labour income tax,

p̄ (·) is the public pension benefit, and z̄ is the poll tax (see below). Following Yaari (1965)

and Blanchard (1985), we postulate the existence of a perfectly competitive life insurance

sector which offers actuarially fair annuity contracts. As a result, the annuity rate of interest

facing an agent of age τ − v is given by r + m (τ − v).4

The public pension system is modelled as follows. The government cannot force people

to work, i.e. the voluntary retirement age, R (v), is chosen freely by each individual agent.

However, there exists an early eligibility age (EEA hereafter), which we denote by RE. The

EEA represents the earliest age at which social retirement benefits can be claimed. An agent

who chooses to retire before reaching the EEA (R (v) < RE) will only get a public pension

benefit from age RE onward, i.e. this agent will derive income only from financial assets dur-

ing the age interval [R (v) , RE]. The pension benefits someone ultimately receives depends

2See, for example, Sheshinski (1978), Burbidge and Robb (1980), Mitchell and Fields (1984), Kingston (2000),

Boucekkine et al. (2002), Kalemli-Ozcan and Weil (2002), and d’Albis and Augeraud-Véron (2008).
3Apart from lifetime uncertainty there are no other stochastic shocks in our model and agents are blessed with

perfect foresight. The empirical literature models retirement under uncertainty using the option-value approach.

See, for example, Stock and Wise (1990a, 1990b), Lumsdaine, Stock, and Wise (1992), and the recent survey by

Lumsdaine and Mitchell (1999).
4We thus ignore imperfections in the annuity market as well as credit constraints. Both of these features,

though realistic and potentially important for the issues under consideration, are beyond the scope of the present

paper.
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solely on that person’s retirement age:5

p̄(v, τ, R (v)) =





0 if τ − v < RE

B(R (v)) if τ − v ≥ RE

(4)

where B(R (v)) is non-decreasing in the retirement age, i.e. B′ (R (v)) ≥ 0. Note that

B(R (v)) might be discontinuous at some retirement ages, but if it exists such a jump is

positive by assumption.

Lifetime income (or human wealth) is defined as the present value of after-tax non-asset

income using the annuity rate of interest for discounting. For a working individual, whose

age in the planning period falls short of the desired retirement age (t − v < R (v)), lifetime

income is given by:

li (v, t, R (v)) ≡ eru+M(u)

[∫ R(v)

u
w̄(s)e−[rs+M(s)]ds −

∫
∞

u
z̄ (v + s) e−[rs+M(s)]ds

]

+SSW(v, t, R (v)), (5)

where SSW(v, t, R (v)) represents the value of social security wealth:

SSW(v, t, R (v)) = eru+M(u)

[
B(R (v))

∫
∞

max{RE,R(v)}
e−[rs+M(s)]ds

−
∫ R(v)

u
tL(v + s)w̄(s)e−[rs+M(s)]ds

]
. (6)

Intuitively, social security wealth represents the present value of retirement benefits minus

contributions, again using the annuity rate of interest for discounting. By integrating the

budget identity (3) for τ ∈ [t, ∞) and imposing the No-Ponzi-Game (NPG) condition,6 we

obtain the lifetime budget constraint:

eru+M(u)
∫

∞

t
c̄(v, τ)e−[r(τ−v)+M(τ−v)]dτ = ā(v, t) + li(v, t, R (v)). (7)

The present value of current and future consumption is equated to total wealth, which equals

the sum of financial wealth and human wealth.

The agent of vintage v chooses a time path for consumption c̄ (v, τ) (for τ ∈ [t, ∞)) and

a retirement age R (v) in order to maximize lifetime utility (1) subject to the lifetime budget

constraint (7), taking as given (i) the level of financial assets in the planning period, ā (v, t),

and (ii) the irreversibility of the retirement decision. Due to the separability of preferences,

the optimization problem can be solved in two steps.

5We thus assume a pure defined benefit system, i.e. previous payments into the pension system do not influence

the benefit. Sheshinski (1978, p. 353) assumes that pension benefits also depend on characteristics of the worker’s

wage profile before retirement, e.g. the arithmetic average wage, w̄R ≡ (1/R)
∫ R

0 w̄ (s) ds, or the maximum

earned wage, w̄R ≡ max {w̄ (s)} for 0 ≤ s ≤ R. We have abstracted from this dependency to keep the analysis

as simple as possible.
6The NPG condition is limτ→∞ ā(v, τ)e−r(τ−t)−M(τ−v)+M(t−v) = 0.
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Consumption In the first step, we solve for optimal consumption conditional on total

wealth. We use the following iso-elastic consumption-felicity function:

U(c̄ (v, τ)) ≡






c̄ (v, τ)1−1/σ − 1

1 − 1/σ
for σ 6= 1

ln c̄ (v, τ) for σ = 1

(8)

where σ is the intertemporal substitution elasticity (σ > 0). The level and time profile for

consumption are given by:

c̄(v, t) =
ā(v, t) + li(v, t, R (v))

∆(u, r∗)
, (9)

c̄(v, τ) = c̄(v, t)eσ(r−θ)(τ−t), for τ ≥ t, (10)

where r∗ ≡ r − σ (r − θ).7 The general definition for the ∆ (·) term, appearing in (9), is:

∆ (u, λ) ≡ eλu+M(u)
∫

∞

u
e−[λs+M(s)]ds, for u ≥ 0, (11)

where u ≡ t − v and s ≡ τ − v denote, respectively, the agent’s age in the planning period

t and at some later time τ, and λ is a parameter of the function. In our earlier paper we

established a number of properties of the ∆ (u, λ) function, which we restate for convenience

in Proposition 1.

Proposition 1 Let the demographic discount function, ∆ (u, λ), be defined as in (11), assume

that the mortality rate is non-decreasing, i.e. m′ (s) ≥ 0 for all s ≥ 0, and that λ + m (s) > 0

for some s. Then the following properties can be established for ∆ (u, λ):

(i) decreasing in λ,
∂∆ (u, λ)

∂λ
< 0;

(ii) non-increasing in the agent’s age,
∂∆ (u, λ)

∂u
≤ 0;

(iii) strictly positive, ∆ (u, λ) > 0 for u < ∞;

(iv) lim
λ→∞

∆ (u, λ) = 0;

(v) for m′ (s) > 0 and m′′ (s) ≥ 0, the inequality in (ii) is strict and lim
u→∞

∆ (u, λ) = 0.

Proof: see Heijdra and Romp (2008a). �

Equation (9) shows that consumption in the planning period is proportional to total

wealth, with 1/∆(u, r∗) representing the marginal propensity to consume. It follows from

7The derivation of equations (9)–(11) is explained in detail in Heijdra and Romp (2008b).
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Proposition 1(v) that the consumption propensity is an increasing function of the individ-

ual’s age in the planning period. Old agents face a relatively short expected remaining life-

time, due to increasing mortality rates, and thus consume a larger fraction of their wealth in

each period. Equation (10) states the time path for consumption. In order to avoid having

to deal with a taxonomy of cases, we assume throughout the paper that r > θ, i.e. we study

a small nation populated by relatively patient agents. It follows from (10) that the desired

consumption profile is exponentially increasing over time.

Retirement In the second step of the maximization problem the optimal retirement age is

chosen. This in turn determines optimal lifetime income. The retirement decision is only

relevant for a working individual, because labour market exit is an absorbing state. By sub-

stituting (9)–(10) into (1) we obtain the expression for lifetime utility of a working individual:

Λ̄(v, t) ≡ eθu+M(u)
∫

∞

u

[
U

(
ā(v, t) + li(v, t, R (v))

∆(u, r∗)
eσ(r−θ)(s−u)

)
e−[θs+M(s)]ds

−
∫ R(v)

u
D (s) e−[θs+M(s)]ds

]
, for u < R (v) . (12)

Borrowing terminology from econometrics, we refer to Λ̄(v, t) as the concentrated utility func-

tion, i.e. it is a transformation of the original lifetime utility function with the maximized

solution for the consumption path incorporated in it. As a result, the concentrated utility

function only depends on total wealth (including lifetime income) and on the retirement

age. Every working individual maximizes (12) by choosing li(v, t, R (v)) and R (v) subject

to the definition of lifetime income (5), taking as given the stock of financial assets in the

planning period.8 This is a simple two-dimensional optimization problem with a single con-

straint. The optimal retirement age, R∗ (v), is the implicit solution to the following first-order

condition:9

D (R (v)) e−[θ(R(v)−u)+M(R(v))−M(u)] = U′ (c̄ (v, v + u)) ·
dli(v, v + u, R (v))

dR (v)
, (13)

where we have used t ≡ v + u, and note that c̄ (v, v + u) = c̄ (v, t) is given in (9) above. The

optimal retirement age is chosen such that the marginal disutility of postponing retirement

(left-hand side) is equal to the marginal utility of the additional income that results from

the decision to continue working (right-hand side). The comparative static effects of the

optimal retirement age with respect to ageing and pension shocks are studied in detail in

Sections 3 and 5 below. One important property of the solution is immediately apparent from

8After retirement, R (v) is fixed and lifetime income is no longer a choice variable. Each individual simply

chooses consumption such that the lifetime budget constraint is just satisfied.
9Similar expressions can be found in Sheshinski (1978, p. 354) and Burbidge and Robb (1980, p. 424). Our

expression differs from theirs because we allow for lifetime uncertainty, whereas they assume that agents have

fixed lifetimes.
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(13): no rational agent will choose a retirement age at which lifetime income is downward

sloping. Because the marginal utility of consumption and the disutility of working are both

strictly positive, the optimal solution must be situated on the upward sloping part of the

li(v, t, R (v)) function. A direct corollary to this argument is as follows. If there exists a

lifetime-income maximizing retirement age, say RI , then this age is an upper bound for the

utility-maximizing retirement age, i.e. it is never optimal to retire after age RI .
10

2.2 Demography

We allow for non-zero population growth by employing the analytical framework devel-

oped by Buiter (1988). This framework was subsequently generalized by Heijdra and Romp

(2008a, forhtcoming) to account for an age-dependent mortality rate and to allow for a non-

stationary population. In order to study ageing shocks below, we assume that different co-

horts may face different mortality profiles. In particular, we postulate that the instantaneous

mortality rate can be written as m (s, ψm (v)), where ψm (v) is a parameter that only depends

on the cohort’s time of birth. The corresponding cumulative mortality rate is written as

M (u, ψm (v)) ≡
∫ u

0 m (s, ψm (v)) ds. Where no confusion arises, we drop the dependency of

ψm on v, and the dependency of m and M on ψm.

The birth rate is exogenous but may vary over time. The size of a newborn generation at

time v is proportional to the current population at that time, i.e. L(v, v) = b (v) L(v), where

b (v) and L(v) are, respectively the crude birth rate (b (v) > 0) and the population size at

time v. The size of cohort v at some later time τ is given by:

L (v, τ) = L (v, v) e−M(τ−v,ψm(v)) = b (v) L (v) e−M(τ−v,ψm(v)). (14)

By definition, the total population at time t satisfies the following expressions:

L (t) ≡
∫ t

−∞

L (v, t) dv ≡ L (v) eN(v,t), (15)

where n (τ) is the instantaneous growth rate of the population at time τ, and N (v, t) ≡∫ t
v n (τ) dτ is the cumulative growth factor over the interval t − v. Finally, by combining

(14)–(15) we obtain:

l (v, t) ≡
L (v, t)

L (t)
= b (t) e−[N(v,t)+M(t−v,ψm(v))], t ≥ v, (16)

1 =
∫ t

−∞

b (v) e−[N(v,t)+M(t−v,ψm(v))]dv. (17)

Equation (16) shows the population share of the v-cohort at some later time t. Equation (17)

implicitly determines n (t) for given demographic parameters (see also Section 6).11

10See also footnote 20 below. As is pointed out by Kingston (2000, p. 834f5), Lazear (1979) assumes that the

disutility of labour is zero, so that retirement occurs at the point where lifetime income is maximized. Since this

typically occurs late in life, Lazear uses this result to rationalize the existence of mandatory retirement.
11For an economy which has faced the same demographic environment for a long time (i.e., b(v) = b0 and
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2.3 Firms

Perfectly competitive firms rent physical capital and efficiency units of labour from house-

holds in order to produce a homogeneous commodity, Y (t), that is traded internationally.

The technology is represented by the following Cobb-Douglas production function:

Y (t) = K (t)ε [AY H (t)]1−ε , 0 < ε < 1, (18)

where AY is a constant index of labour-augmenting technological change, K (t) is the ag-

gregate stock of physical capital, and H (t) is employment in efficiency units. Following

Blanchard (1985, p. 235) and Gomme et al. (2005, p. 431) we assume that labour productiv-

ity is age dependent, i.e. a surviving worker of age τ − v is assumed to supply one unit of

“raw” labour and E (τ − v) efficiency units of labour. The efficiency profile is exogenous.12

Aggregate employment in efficiency units is thus given by:

H (t) ≡
∫ t

−∞

L (v, t) E (t − v) I (t − v, R (v)) dv. (19)

Profit maximizing behaviour yields the standard expressions for the factor demand equa-

tions:

r + δ = ε

(
AYh (t)

k (t)

)1−ε

=
∂Y (t)

∂K (t)
, (20)

w (t) = (1 − ε) AY

(
AYh (t)

k (t)

)−ε

=
∂Y (t)

∂H (t)
, (21)

where δ is the depreciation rate on capital (δ > 0), w (t) is the rental price on efficiency units

of labour, h (t) ≡ H (t) /L (t), and k (t) ≡ K (t) /L (t). For each factor of production, the

marginal product is equated to the rental rate. Since the fixed world interest rate pins down

the ratio between h (t) and k (t), it follows from (21) that the rental rate on efficiency units

of labour is time-invariant, i.e. w (t) = w.13 Hence, both physical capital and output are

M(t − v, ψm (v)) = M
(
t − v, ψ0

m

)
), the population growth rate is constant (n(τ) = n0) and equation (17) reduces

to 1/b0 = ∆(0, n0). This is the expression reported in Heijdra and Romp (2008a).
12The comparative static effects of changes in the E (τ − v) function on the retirement decision are studied in

Section 3 below. Note that there exists a large literature on life-cycle labour supply and human capital accumu-

lation. See, for example, Ben-Porath (1967), Razin (1972), Weiss (1972), Heckman (1976), Driffill (1980), Gustman

and Steinmeier (1986), Heckman et al. (1998), Mulligan (1999), and Kenc (2004). Boucekkine et al. (2002) and

Heijdra and Romp (forthcoming), inter alia, model an optimally chosen education period at the beginning of the

agent’s life.
13The small open economy assumption is absolutely crucial because it renders factor prices exogenous (and

fixed, provided the world interest rate is fixed, as we assume). In a closed economy setting, factor prices are

endogenous, and hardly any analytical results can be obtained. The analysis of a such an economy must be

purely numerical.
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proportional to employment at all time:

k (t) = AY

(
ε

r + δ

)1/(1−ε)

h (t) , (22)

y (t) = AY

(
ε

r + δ

)ε/(1−ε)

h (t) , (23)

where y (t) ≡ Y (t) /L (t). Finally, since efficiency units of labour are perfectly substitutable

in production, cost minimization of the firm implies that the wage rate for a worker of age u

is equal to:

w̄ (u) = wE (u) . (24)

Despite the fact that w is constant, the wage facing individual workers is age-dependent

because individual labour productivity is.14

3 Retirement and ageing in the absence of pensions

In this section we study the comparative static effect on the optimal retirement age of various

ageing shocks. In order to build intuition, we abstract from a public pension system and

restrict attention to a comparison of steady states. A supplementary aim of this section is

to introduce the graphical apparatus with which the effects of pensions and ageing can be

visualized in an economically intuitive manner.

3.1 The retirement decision

In the steady state, we have tL (s) = tL, z̄ (s) = z̄, ā (v, t) = ā (u), R (v) = R, li (v, t, R (v)) =

li (u, R). As a result, both the concentrated lifetime utility function and the expression for

lifetime income can be written solely in terms of the individual’s actual age, u, and the

planned retirement age, R:

Λ̄(u) ≡ eθu+M(u)

[ ∫
∞

u
U

(
ā(u) + li(u, R)

∆(u, r∗)
eσ(r−θ)(s−u)

)
e−[θs+M(s)]ds

−
∫ R

u
D (s) e−[θs+M(s)]ds

]
, (25)

li (u, R) = eru+M(u)
∫ R

u
w̄(s)e−[rs+M(s)]ds − z̄∆ (u, r) , (26)

14Hu (1995) stresses the importance of productivity growth on the retirement decision. It is easy to include

exogenous labour-augmenting technological change in our model. Let γ ≡ dAY(t)/dt
AY(t)

denote the constant tech-

nological growth rate. The world interest rate fixes the ratio AY (t) h (t) /k (t). It follows that the rental rate on

labour grows exponentially over time, i.e. w (τ) = w (t) eγ(τ−t). The wage for an agent of age u now depends

both on time and on age, i.e. w̄ (t, u) = w (t) E (u). For ease of exposition we abstract from technological change

in the paper. Heijdra and Romp (2008b) provide details on the case with technological change.
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where z̄∆ (u, r) represents the present value of poll tax payments for an agent of age u.

In principle, it is possible to analyze the steady-state optimization problem directly in

(li, R)-space, but the solution is difficult to visualize because both indifference curves and

the budget constraint are ill-behaving, i.e. indifference curves are S-shaped or concave (see

Heijdra and Romp, 2008b). This is not a problem, in and of itself, because it can be shown

that, under mild restrictions, the budget constraint is always more curved in an interior

solution than the indifference curves are. However, for the sake of simplicity and to facilitate

the graphical exposition, it is more convenient to use a monotonic transformation of the

retirement age (rather than R itself) as the retirement choice variable. In particular, we define

the auxiliary variable S, which we refer to as the transformed retirement age, as follows:

S(u, R) = eru+M(u)
∫ R

0
e−[rs+M(s)]ds, for 0 ≤ u ≤ R. (27)

Clearly, S is a continuous, monotonically increasing transformation of R for a given age u,

which ensures that the inverse function, R = R(u, S), also exists. In the bottom right-hand

panel of Figure 1 the transformation from R to S for a newborn (i.e. S (0, R)) is illustrated,

using a Gompertz-Makeham (G-M hereafter) mortality process. The solid line depicts the

transformation fitted to the cohort born in the Netherlands in 1920 (the dashed lines are

discussed below).15 The concave shape of the transformation stretches the S intervals for

young ages and compacts these intervals for old ages.

For a general demography, the inverse function, R(u, S), is only defined implicitly by

equation (27). The derivative of this inverse function is given by:

∂R

∂S
= e−ru−M(u)erR(u,S)+M(R(u,S)) > 0. (28)

Where no confusion arises we drop the dependency of R on S and u from here on. For future

reference we note that the EEA, utility-maximizing, and lifetime-income maximizing values

for S are given by, respectively, SE = S (u, RE), S∗ = S (u, R∗), and SI = S (u, RI).

The slope and curvature of the indifference curves in (li, S)-space are obtained by implicit

15For the G-M process, the instantaneous mortality rate is m (s) = µ0 + µ1eµ2s, and the cumulative mortality

factor is M (u) ≡ µ0u + (µ1/µ2) (eµ2u − 1). In the model, agents start to make economic decisions at model age

u = 0 which corresponds to biological age 20. Using data from biological age 20 onward, we find the following

parameter estimates: µ̂0 = 0.343 × 10−2, µ̂1 = 0.264 × 10−3, and µ̂2 = 0.103. These estimates are slightly

different from the ones reported in Heijdra and Romp (2008a) because there we use data from biological age

zero onward. The estimated survival function fits the data rather well. It predicts an average mortality rate of

1.43% per annum.
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Figure 1: Optimal retirement and the transformed retirement age
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differentiation of equation (25):

dli

dS

∣∣∣∣∣
Λ̄0

≡ −
∂Λ̄/∂R

∂Λ̄/∂li
·

∂R

∂S
= e(r−θ)(R−u)D(R)

[
ā(u) + li

∆(u, r∗)

]1/σ

> 0, (29)

d2li

dS2

∣∣∣∣∣
Λ̄0

=



 1

σ[ā(u) + li]
·

dli

dS

∣∣∣∣∣
Λ̄0

+

(
D′(R)

D(R)
+ r − θ

)
∂R

∂S



 ·
dli

dS

∣∣∣∣∣
Λ̄0

> 0. (30)

The indifference curves are upward sloping, since postponing retirement causes additional

disutility of labour which must be compensated with a higher lifetime income. By assump-

tion D′(R) ≥ 0 and r > θ, so the indifference curves are convex. In the top left-hand panel of

Figure 1 an indifference curve for a newborn is illustrated—see the solid curve labelled Λ̄
∗
0 .

By differentiating (26), noting (24) and (28), we find that the slope and curvature of the

li (u, S) curve are given by:

dli

dS
= w̄ (R) = wE (R) > 0, (31)

d2li

dS2
= w̄′ (R)

∂R

∂S
= wE′ (R)

∂R

∂S
⋚ 0. (32)

By increasing the (transformed) retirement age slightly, lifetime income is increased by an

amount equal to the wage rate facing an agent of age R. Depending on the age profile of

wages, the budget constraint may contain convex segments (for w̄′ (R) > 0), linear seg-

ments (for w̄′ (R) = 0), and concave segments (for w̄′ (R) < 0). The economically relevant

case, however, appears to be that the wage is either constant or declining with age around

the optimal age of retirement—see OECD (1998, p. 133) for empirical evidence on OECD

countries.16 To streamline the discussion, we adopt the following assumption.

Assumption 1 The wage schedule is non-increasing at the optimal retirement age and be-

yond, i.e. w̄′ (R) ≤ 0 for R ≥ R∗.

In the top left-hand panel of Figure 1 we illustrate the linear budget constraint that results

for the special case of an age-invariant wage rate (w̄′ (R) = 0 for all R). The optimum is

located at point E0, where there exists a tangency between the lifetime budget line and an

indifference curve. The top right-hand panel shows the same equilibrium in (li, R)-space.

3.2 Ageing effects

Our model distinguishes both biological and productive age dependencies. A biological age-

ing effect involves changes in the mortality structure, as captured by the mortality function

16If the productivity profile is hump-shaped, E′ (u) > 0 for low u and E′ (u) < 0 for high u, and the li (u, S) is

S-shaped. In principle, there could be multiple solutions for the retirement decision in this case. In the remainder

of the paper we ignore this possibility, i.e. we implicitly assume that the retirement is unique also for a hump-

shaped productivity profile.
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Figure 2: Productive ageing shocks

M (u, ψm), where ψm is a shift parameter (see section 2.2 and below). Productive ageing, on

the other hand, refers to changes in the disutility of working or in the efficiency of labour

over the life cycle, as captured by the functions D (u, ψd) and E (u, ψe), respectively, where

ψd and ψe are the associated shift parameters. In the remainder of this section we focus on

the retirement decision of a newborn, i.e. we set u = ā (u) = 0 in equations (25)–(26). This

entails no loss of generality because the agent’s plans are dynamically consistent, i.e. the

optimal retirement age is age-invariant. Following an exogenous shock, not only newborns

but all workers change their retirement age in such a way that (25) is maximized subject to

(26), taking as given ā (u).

Productive ageing In Figure 2(a) we illustrate the effect on lifetime income and the optimal

retirement age of a change in the disutility of labour, i.e. ∂D (u, ψd) /∂ψd ≤ 0 for all u,

with strict inequality around u = R∗. Such a preference shock leaves the budget constraint

unchanged, but changes the slope of the indifference curves. Indeed, it follows from (29)

that:

∂

∂ψd

[
dli

dS

]

Λ̄0

= e(r−θ)(R−u)

[
li

∆(0, r∗)

]1/σ
∂D(R, ψd)

∂ψd

< 0. (33)

The indifference curves become flatter and the agent chooses a higher retirement age as a

result—see the move from E0 to E1 in Figure 2(a).

In Figure 2(b) we depict the comparative static effect of a change in the age profile of

labour efficiency, i.e. ∂E (u, ψe) /∂ψe ≥ 0 with strict inequality for u = R∗. Indifference
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curves are not affected by this shock but the budget constraint is. Indeed, the effects of

such a shock are complicated because there are offsetting wealth- and substitution effects. It

follows from (26) that the budget constraint shifts up:

∂li

∂ψe

= w
∫ R

0

∂E(s, ψe)

∂ψe

e−[rs+M(s)]ds > 0, (34)

and from (31) that it becomes steeper:

∂

∂ψe

[
dli

dS

]
= w

∂E (R, ψe)

∂ψe

> 0. (35)

In Figure 2(b) we illustrate the case for which the optimal retirement age increases. The

budget constraint rotates in a counter-clockwise direction and the optimum shifts from E0

to E1. The total effect can be decomposed into a negative wealth effect (from E0 to E′) and a

positive substitution effect (from E′ to E1).

Biological ageing Two types of demographic shocks are considered in our analysis, namely

a change in the birth rate and a change in the mortality process. Clearly, in view of (25)–(26),

the birth rate does not directly affect the retirement choice of individual agents.17 The mor-

tality process, however, does affect the ∆ (u, λ) function (defined in (11) above) and thus the

optimal retirement choice. As we pointed out in section 2.2 above, we write the instanta-

neous mortality rate as m (s, ψm), where ψm is a shift parameter.18 In order to investigate the

effects of a change in ψm we make the following assumptions.

Assumption 2 The mortality function has the following properties:

(i) m (s, ψm) is non-negative, continuous, and non-decreasing in age,
∂m (s, ψm)

∂s
≥ 0;

(ii) m (s, ψm) is convex in age,
∂2m (s, ψm)

∂s2
≥ 0;

(iii) m (s, ψm) is non-increasing in ψm for all ages,
∂m (s, ψm)

∂ψm

≤ 0;

(iv) the effect of ψm on the mortality function is non-decreasing in age,
∂2m (s, ψm)

∂ψm∂s
≤ 0.

17Of course, in general equilibrium the birth rate may affect the retirement choice via the fiscal system. See

section 6 for a further analysis.
18In the Blanchard case, which has only one parameter, µ0 could be −ψm or any decreasing function of ψm.

The G-M process, stated in footnote 15, depends on three parameters. Hence, the parameter vector is a function

of ψm, i.e. (µ0, µ1, µ2) = f (ψm). An increase in ψm should result in such a change that the G-M mortality

function decreases for all ages as ψm increases.
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(a) Mortality rate, m(u) = µ0 + µ1eµ2u (b) Surviving fraction, SF(u) = e−M(u)
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Figure 3: Reduced adult mortality

An example of a mortality shock satisfying all the requirements of Assumption 2 consists

of a decrease in µ1 or µ2 of the G-M mortality function. In terms of Figure 3(a), the shock

shifts the mortality function downward, with the reduction in mortality being increasing

in age. In panel (b) the function for the surviving fraction of the population shifts to the

right. The shock that we consider can thus be interpreted as a reduction in adult mortality.

Of course, in view of the terminology of Assumption 2, an increase in ψm leads to an in-

crease in the expected remaining lifetime for all ages. Assumption 2 enables us to establish

Proposition 2.

Proposition 2 Define M (u, ψm) ≡
∫ u

0 m (s, ψm) ds and ∆ (u, λ, ψm) ≡ eλu+M(u,ψm) ×∫
∞

u e−[λs+M(s,ψm)]ds. Under Assumption 2, the following results can be established.

(i)
∂M (u, ψm)

∂ψm

≤ 0;

(ii)
∂∆ (u, λ, ψm)

∂ψm

> 0.

Proof: see Heijdra and Romp (forthcoming). �

The effect of biological ageing on the retirement decision can now be studied. We prove

in Heijdra and Romp (2008b) that a change in adult mortality affects the optimal retirement

age according to:

dR∗

dψm

= ω1 ·

[
∂∆ (0, r∗, ψm) /∂ψm

∆ (0, r∗, ψm)
−

∂li (0, R∗, ψm) /∂ψm

li (0, R∗, ψm)

]
R 0, (36)

where ω1 is a positive constant. As is clear from (13), the retirement decision depends criti-

cally on the marginal utility of consumption, U′ (c̄ (0)), where c̄ (0) ≡ li (0, R, ψm) /∆ (0, r∗, ψm)
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is consumption of a newborn. Ageing thus affects both the denominator and the numerator

of the expression for c̄ (0). Clearly, the sign of the comparative static effect is determined by

the term in square brackets on the right-hand side of (36). Using Proposition 2(ii) we find

that ∂∆ (0, r∗, ψm) /∂ψm > 0 so the propensity effect operates in the direction of increasing the

retirement date. Ceteris paribus lifetime income, an increase in ∆ (0, r∗, ψm) reduces c̄ (0)

and increases U′ (c̄ (0)). This boosts the marginal benefit of retiring later.

The lifetime-income effect is, however, ambiguous in general:

∂li (0, R∗, ψm)

∂ψm

= −
∫ R∗

0
w̄(s)

∂M (s, ψm)

∂ψm

e−[rs+M(s,ψm)]ds − z̄
∂∆ (0, r, ψm)

∂ψm

R 0. (37)

The first term on the right-hand side is positive (see Proposition 2(i)), i.e. as a result of

reduced discounting of wage income, lifetime income increases. But lighter discounting also

increases the lifetime burden of the poll tax, i.e. the second term on the right-hand side is

also positive. As a result, the wage effect moves in the opposite direction of the tax effect

and the net effect of ageing on lifetime income cannot be signed a priori. Of course, in the

absence of poll taxes, the lifetime-income effect is positive and thus works in the direction

of decreasing the retirement age. There is a strong presumption, however, that the first

term on the right-hand side of (37) is rather small. Indeed, as can be gleaned from Figure

3(a), an adult mortality shock starts to matter quantitatively for age levels at which most

agents have already retired in advanced countries. Hence, even in the absence of a poll

tax, the retirement age is likely to increase as longevity increases because propensity effect

dominates the lifetime-income effect, i.e. dR∗/dψm > 0 in realistic scenarios.19

In Figure 1 we illustrate the comparative static effects of increased longevity. The sit-

uation before and after the shock is depicted by, respectively, solid and dashed lines. In

panel (d), the mortality shock increases the transformed retirement age at all values of R,

though more so for higher ages. Intuitively, by making the transformation curve steeper,

a post-shock octogenarian is “younger” than his/her pre-shock counterpart. As a result,

the indifference curves in panel (a) flatten out so that, with a linear budget constraint (with

w̄′ (R) = 0), the equilibrium shifts from E0 to E1. In panel (b) the same comparative static

effect is shown in (li, R)-space.

4 Realistic pension system

In this section we re-introduce the public pension system and investigate its likely conse-

quences for the trade-offs facing workers in advanced economies. As in the previous sec-

tion, we continue to assume that the pension system is in a steady state. As a result, social

19We are aware of two other papers showing an ambiguous effect on the retirement decision of increased

longevity. Chang (1991) demonstrates the result in a partial equilibrium model, both with and without perfect

annuities, but assuming a constant probability of death. Kalemli-Ozcan and Weil (2002) abstract from annuities

and provide quantitative simulations using actual US demographic data.
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security wealth (6) can be written as follows:

SSW(u, R) = eru+M(u)

[
B (R)

∫
∞

max{R,RE}
e−[rs+M(s)]ds − tL

∫ R

u
w̄(s)e−[rs+M(s)]ds

]
. (38)

By incorporating social security wealth into the steady-state budget constraint (26) and dif-

ferentiating with respect to the transformed retirement age we obtain:

dli

dS
=





(1 − tL) w̄ (R) + B′ (R) Π(R, RE, ∞, r) > 0 for S < SE

(1 − tL) w̄ (R) + B′ (R) ∆(R, r) − B (R) ≥ 0 for SE ≤ S ≤ SI

(39)

where RE and RI (SE and SI) are, respectively, the (transformed) EEA and lifetime-income

maximizing retirement age—see the discussion below equation (28).20 The Π (·) term ap-

pearing in the upper branch of (39) is defined in general terms as:

Π(u, u, ū, λ) = eλu+M(u)
∫ ū

u
e−[λs+M(s)]ds. (40)

In economic terms, Π(u, u, ū, λ) represents the present value of an annuity that one receives

during the age interval (u, ū), evaluated at age u, using the discount rate λ. The demographic

discount function, ∆ (u, λ), defined in (11) above, is a special case of Π(u, u, ū, λ), with u = u

and ū = ∞. As is evident from (39), the shape, slope, and curvature of the budget constraint

are all complicated by the existence of the EEA. If B (R) and B′ (R) are both continuous at

R = RE, then the budget constraint is continuous but features a kink at that point equal to

−B (RE). The kink represents the retirement benefit that is foregone by not retiring at RE but

at some later age.

The curvature of the lifetime income function is ambiguous in general, i.e. it cannot be

inferred from theoretical first principles whether or not it is concave in the relevant region.

Our reading of the empirical comparative-institutional literature for OECD countries, how-

ever, give us enough confidence to formulate the following assumption which is defended

in Heijdra and Romp (2008b).

Assumption 3 In the relevant calender age domain of 55 to 70, the lifetime income function

is concave in the transformed retirement age S. It may feature a single kink at the EEA.

5 Tax and pension shocks

In this section we study the comparative static effects on the optimal steady-state retirement

age of various marginal changes in the tax system or the public pension scheme. In view

20In the presence of a public pension system, RI is defined implicitly by ∆ (RI , r) = B (RI) − (1 − tL) w (RI).

Since B′ (RI) ≥ 0, w̄′ (RI) ≤ 0 (Assumption 1) and ∂∆ (RI , r) /∂RI < 0 (Proposition 1(v)), it follows that there

exists a unique value for RI .
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dR∗

dz̄
= ζ1∆(0, r) > 0, (T1.1)

dR∗

dtL
= −

w̄ (R∗)

ζ0

+
ζ1

∫ R∗

0 w̄(s)e−[rs+M(s)]ds

ζ0

⋚ 0, (T1.2)

dR∗

dB (R)
= −

1

ζ0

−
ζ1

∫
∞

R∗ e−[rs+M(s)]ds

ζ0

< 0, (T1.3)

dR∗

dB′ (R)
=

∆(R∗, r)

ζ0

> 0. (T1.4)

Note: ζ0 > 0 and ζ1 > 0. See Heijdra and Romp (2008b).

Table 1: Taxes, the pension system, and the optimal retirement age

of Assumption 3 and because indifference curves are convex in (li, S)-space, the optimum

retirement age is unique. If there is no kink in the lifetime income profile, then there will

be an interior solution. In the presence of a single kink, however, there are three possible

outcomes. First, if the agent’s disutility of labour is high, and indifference curves are rela-

tively steep, then the interior optimum occurs to the left of the kink, i.e. the agent chooses

R∗ < RE, contra stylized fact (SF3). Second, if labour disutility is moderate, then indifference

curves are relatively flat and there will be a corner solution at the kink, i.e. R∗ = RE. Third,

if labour disutility is very low then there will be an interior solution to the right of the EEA,

i.e. R∗ > RE. The second and third cases are not inconsistent with reality.

In this section we focus on the interior solutions because an optimum occurring at the

kink in the lifetime income profile is insensitive to small changes. In addition, we assume

that the retirement age is strictly larger than the EEA (R∗ > RE). For convenience, we sum-

marize the comparative static results in Table 1, and provide details of the derivations in

Heijdra and Romp (2008b).

Taxes Changes in the tax system affect the optimal retirement age in the following way.

First, an increase in the poll tax leads to a reduction in lifetime income and an increase in the

retirement age; see equation (T1.1). Intuitively, the tax change induces a pure wealth effect.

Because consumption and leisure are both normal goods, labour supply is increased, i.e. the

agent retires later in life.

Second, a change in the labour income tax rate has an ambiguous effect; see equation

(T1.2). The first term on the right-hand side of (T1.2) represents the substitution effect, which

is negative. A higher tax discourages working and thus encourages retiring earlier in life via

that effect. The second term is the positive wealth effect. The tax increase makes the agent
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poorer and thus provides incentives to retire later in life. In summary, the labour income tax

increase operates qualitatively like a decrease in labour efficiency (see equations (34)–(35)

and Figure 2(b)).

Pension system Changes in the pension system affect the retirement decision as follows.21

First, holding constant the slope of the retirement benefit curve, the effect of a change in

its level is negative; see equation (T1.3). In this case the wealth- and substitution effects

operate in the same direction. The first term on the right-hand side of (T1.3) is the negative

substitution effect: by increasing the public retirement benefit the rewards to working longer

are reduced, i.e. the lower branch of the budget constraint (39) is rotated in a clockwise

fashion. The second term on the right-hand side of (T1.3) is the negative wealth effect. The

benefit increase boosts lifetime income and thus induces agents to work less and to retire

earlier in life. In graphical terms, the wealth effect leads to an upward ship of the lifetime

budget constraint.

Second, ceteris paribus the level of the benefit function, a change in its slope causes a

positive substitution effect; see equation (T1.4). Intuitively, the steeper slope of the benefit

function induces agents to postpone retirement somewhat. In graphical terms, the budget

constraint rotates counter-clockwise and the optimal retirement age shifts to the right.

6 Demographic change and policy reform

In this section we compute and visualize the general equilibrium computational results of

various demographic shocks and their assumed fiscal reform measures. We restrict attention

on measures characterizing the aggregate economy. Per capita consumption, for example, is

computed as c (t) ≡
∫ t
−∞

l(v, t)c̄(v, t)dv, where the relative cohort weight, l(v, t), is defined

in equation (16) above, and individual consumption, c̄ (v, t), is given in (9). Other per capita

variables are defined in a similar fashion. Details of the macroeconomic model closure are

found in Heijdra and Romp (2008b).

In accordance with stylized fact (SF4), we calibrate the model in such a way that the

initial optimum retirement age is at the EEA, i.e. the budget constraint features a kink at

the EEA and individual agent are ‘stuck’ in this corner solution. The main demographic

and economic features of the calibrated model are as follows. The mortality process is as

mentioned in footnote 15. It represents the fitted G-M process for the cohort born in 1920 in

the Netherlands. Life expectancy at birth for this cohort is 67.9 years. The crude birth rate

is set at 3.22% per annum (b = 0.0322). In combination, the demographic parameters imply

21Following Sheshinski (1978, pp. 357-8), we write the pension benefit as B (R, ψb), where ψb is a shift para-

meter. The first pension shock assumes ∂B/∂ψb > 0 and ∂2B/∂ψb∂R = 0. The second shock sets ∂B/∂ψb = 0

and ∂2B/∂ψb∂R > 0.
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an initial steady-state population growth rate equal to 1.79% per annum (n̂0 = 0.0179)–see

column (1) of Table 2.

We calibrate the model to capture the salient features of the Dutch economy. We set

the depreciation rate of capital at 8% per annum (δ = 0.08) and the labour share parame-

ter in the production function at 30% (ε = 0.3). We postulate some targeted ratios, namely

the consumption-GDP ratio is 75%, the investment-GDP ratio is 25.5%, and the aggregate

lifetime-income to financial assets ratio is 5.50. These values are commonly used in the liter-

ature. To fit the model to these data, we calibrated the values of σ, θ and r. This resulted in

a value for σ = 0.49, which is rather close to the value suggested by Epstein and Zin (1991)

of 0.5. The rate of time preference is 1.59% per annum (θ = 0.0159) (Altig et al. (2001) and

Bovenberg and Knaap (2005) use 1.50%). Finally, the calibrated real interest rate is 3.44% per

annum (r = 0.0344) whilst the capital-ouput ratio is k̂/ŷ = 2.622.

The pension parameters are determined by the implicit tax rate, which we set at 60% at

the early entitlement age of RE = 60, and the net replacement rate, which we fix at 80%. In

the base scenario we set the government deficit and the lumpsum tax both to zero. This, in

combination with the pension parameters, fixes the labour income tax at tL = 0.1284. Finally

the disutility of working is set such that the slope of the indirect utility function is the average

of the left-hand and right-hand slopes of the budget constraint at the early entitlement age,

which ensures that people want to retire at the kink.

Column (1) in Table 2 shows the main features of the initial steady state. The dependency

ratio, d̂r, representing the number of retirees per worker, is equal to 0.184. The macroeco-

nomic participation rate, p̂r, is 0.845. The output shares of consumption, investment, and

net exports (n̂x) are, respectively, 73.5%, 25.7%, and 0.88%.

The comparative dynamic exercises performed throughout this section take the follow-

ing form. Starting from the initial steady state, the economy is hit by one of two types of

demographic change occurring at time t = 0, namely a baby bust or an increase in longevity

(reduced adult mortality).22 In both cases, the demographic shock renders the public pen-

sion system fiscally unsustainable in the long run, conform stylized fact (SF1). At time t = 0,

however, the policy maker announces a policy reform—to be implemented at some later

date, TR > 0—which restores fiscal sustainability. The announcement is believed by individ-

ual agents as the policy maker has been credible in the past.

We study the effects of three types of policy reform. In section 6.1 we assume that the

policy maker engineers a once-off change in the poll tax, z̄, at time t = TR which maintains

government solvency. The policy response is the same for the two types of demographic

change. In keeping the poll tax time-invariant, both before and after the reform, the govern-

ment engages in tax smoothing.

22For convenience, we study stepwise demographic changes in the paper. Heijdra and Romp (2008b) report

the results for gradual demograpic changes. The two sets of results are qualitatively and quantitatively very

similar.
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(1) (2) (3) (4) (5)

Initial Baby bust Mortality Baby bust Mortality

st. st. z̄ adjusts z̄ adjusts tL adjusts RE adjusts

µ1 2.64 · 10−4 1.32 · 10−4 1.32 · 10−4

µ2 0.103 0.0925 0.0925

∆(0, 0) 67.87 77.74 77.74

b 0.0322 0.0242 0.0242

n̂ 0.0179 0.0056 0.0222 0.0056 0.0222

tL 0.1284 0.1974

R∗ 60 62.81

RE 60 62.81

RR(RE) 80 86.88

IT(RE) 60 73.76 63.3

d̂r 0.184 0.272 0.254 0.272 0.209

p̂r 0.845 0.786 0.798 0.786 0.827

z̄ 0 0.048 0.022

ĉ/ŷ 0.735 0.762 0.748 0.754 0.747

ı̂/ŷ 0.257 0.225 0.268 0.225 0.268

n̂x/ŷ 0.009 0.014 −0.016 0.022 0.015

l̂i/ŷ 11.507 10.759 13.114 10.896 10.896

â/ŷ 2.092 2.336 2.965 2.069 2.860

d̂/ŷ 0 0.196 −0.967 0.192 −0.996

f̂ /ŷ −0.530 −0.482 1.310 −0.745 1.233

ŷ 1 0.932 0.944 0.931 0.979

Bold entries: Exogenous shocks

Italic entries: Policy instruments

Table 2: Initial steady state and long-run effects

In section 6.2 we assume that the policy maker uses different instruments to address

the two types of demographic change. For the baby bust, the policy response consists of a

once-off increase in the labour income tax rate, tL, occurring at time t = TR. This is again

a tax smoothing scenario as tL is time-invariant both before and after the reform. For the

longevity shock, the policy response consists of a permanent increase in the EEA, occurring

at time t = TR, which maintains solvability without any further tax changes.

In all three policy reform scenarios, the resulting path of public debt is a passive con-

sequence of the behavioral reactions of economic agents to the policy shock, not a policy

reaction by the public agency administering the public pension scheme.

Following the shock (at time t = 0), the non-predetermined (or “jumping”) variables im-

mediate react. These variables are consumption, lifetime income, and the retirement decision

of pre-shock workers. (Post-shock retirees stay retired as labour market exit is an absorbing
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state.) At impact, the predetermined variables ā (v, 0), d̄ (v, 0), k̄ (v, 0), a (0), d (0), k (0), and

L (0) all stay constant. These variables form the initial conditions for the dynamic system.

6.1 Tax reform

Throughout this subsection the announced policy reform consists of a future once-off change

in the poll tax which makes government finances healthy again.

Baby bust The effects of a once-off decrease in the birth rate occurring at time t = 0 are

visualized in Figures 4 and 5(a). The quantitative results are reported in column (2) of Table

2. In this table, a blank entry means that the initial steady-state value in column (1) is used.

The baby bust consists of a twenty-five percent decrease in the birth rate, from b0 = 0.0322

to b1 = 0.0242. It is assumed that policy reform is implemented twenty years after the baby

bust, i.e. TR = 20 in these figures. Since this reform has no effect on the kink in the lifetime

income profile, individuals continue to retire at the EEA. The shock changes the steady-

state age composition of the population, i.e. the mass of the distribution is moved from

younger to older ages (see Heijdra and Romp, 2008b). This explains why the dependency

ratio increases from 0.184 to 0.272. The solid lines in Figure 4(a) depict the demographic

transition due to the baby bust.23 There is an immediate drop in the population growth

rate because the arrival rate of new agents has decreased permanently, i.e. n (0) − n̂0 =

b1 − b0 < 0. Following the initial jump, n (t) adjusts in a non-monotonic fashion to the new

demographic equilibrium at n̂1 = 0.0056.

Figure 4(b) illustrates the transition path for the macroeconomic participation rate. In

the long run, the participation rate drops substantially, from p̂r0 = 0.845 to p̂r1 = 0.786, or

almost 5.9 percentage points. Similarly, the dependency ratio increases from d̂r0 = 0.184 to

d̂r1 = 0.272. These results are easy to understand: the population gets older but still retires

at the EEA. During transition, the participation rate declines in a non-monotonic fashion.

There is a steady decline in pr (t) for the first four decades following the shock, both because

fewer workers enter the labour force than before the shock and because the larger pre-shock

cohorts retire. At about time t = 40, the path for pr (t) starts to rise again because the flow

of retirees consists entirely of relatively small post-shock cohorts. Beyond t = 40, the path

for the participation rate converges in a cyclical fashion to the new steady state.

Figure 4(c) depicts the adjustment path for per capita consumption. At impact, consump-

tion falls because all pre-shock generations anticipate the future poll tax increase and cut

their consumption level accordingly. During the first two decades following the shock con-

sumption rises due to a strong numerator effect caused by the reduction in the population

growth rate. Consumption reaches a peak at the point where the weight of the relatively rich

23As is shown by Heijdra and Romp (forthcoming), equation (17) is a linear Volterra equation of the second

kind which can be solved by numerical means.
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(a) Population growth (n(t)) (b) Participation rate
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Figure 4: Aggregate effect of a stepwise demographic shocks
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(a) Baby bust (b) Mortality shocks
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Figure 5: Welfare effects of stepwise shocks

pre-shock cohorts starts to dwindle as a result of mortality. Consumption declines thereafter

because post-shock generations have a lower consumption level due to the heavier poll tax

burden they are faced with during their lifetimes. The path of asset income, depicted in Fig-

ure 4(d) shows the strong savings response that occurs during the time period 0 < t < TR.

Agents anticipate the higher taxes from TR onward and save more than before the shock.

At time TR, the slope of the asset path is reversed because the tax increase is implemented.

Eventually, the last of the relatively large pre-shock cohorts enter retirement and start to

dissave so that aggregate assets fall somewhat. The long-run effect of the baby bust is an

increase in the assets-output ratio from (â/ŷ)0 = 2.092 to (â/ŷ)1 = 2.336–see column (2) of

Table 2.

Figure 4(e) illustrates the path of per capita government debt. The baby bust “destabi-

lizes” the public pension system and leads to a gradual build up of government debt in the

pre-reform period, 0 < t < TR. At time TR, the poll tax is increased and the government

can redeem some of its outstanding debt obligations. Interestingly, the post-reform transi-

tion path is non-monotonic because the relatively large pre-shock cohorts die and thus stop

paying taxes. In the long run, the baby bust leads to an increase in debt-output ratio from

(d̂/ŷ)0 = 0 to (d̂/ŷ)1 = 0.196.

Finally, in Figure 4(f) we plot the adjustment path for net foreign assets. Obviously, since

a (t) = k (t) + d (t) + f (t), the path for net foreign assets mirrors that of total assets, the

capital stock, and government debt. During the first three decades of adjustment, agent’s

strong savings response (panel (d)) coincides with the accumulation of net foreign assets.

Note that at time TR the government starts to redeem public debt, i.e. both k (t) and d (t) are

falling immediately after TR. Despite the fact that total assets are also falling, foreign asset

accumulation continues quite vigorously even after the tax reform has taken place. The long-

run effect of the baby bust consists of an increase in net foreign assets from ( f̂ /ŷ)0 = −0.530
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to ( f̂ /ŷ)1 = −0.482.

In Figure 5(a) we illustrate the change in welfare experienced by the different gener-

ations. To facilitate the interpretation of the effects, we present equivalent-variation (EV)

measures expressed in terms of initial wealth level. For pre-shock generations (v ≤ 0) we

compute the change in lifetime utility from the perspective of the shock period (t = 0), i.e.

we plot the EV-value of dΛ̄ (v, 0) for v ≤ 0. In contrast, for post-shock generations (v > 0),

we compute the welfare change from the perspective of their birth date, i.e. we plot the

EV-value of dΛ̄ (v, v) for v > 0 in Figure 5. The welfare effects of the baby bust are straight-

forward. All generations lose out as a result of the poll tax increase. For old pre-shock

generations the welfare effect is small. These generations have a very short time horizon

and for them the tax increase that will occur only at time TR = 20 hardly poses any burden

at all. The younger the pre-shock generations are, the heavier the burden of the anticipated

tax increase become. Similarly, for post-shock generations the welfare loss becomes larger

the closer they are born to the time at which the tax increase takes place. Worst off are those

generations born at or after TR: the welfare loss is about 6 percent of initial wealth for them.

Increased longevity The effect of an embodied24 longevity shock occurring at time t = 0

are visualized in Figures 4 (dashed lines) and 5(b) (solid lines). The quantitative results are

summarized in column (3) of Table 2. The effect on the mortality rate itself is illustrated

Figure 3(a). The increased longevity is parameterized by reducing the µ1 parameter of the

G-M process by 50 percent and the µ2 parameter by 10 percent. This results in a substantial

increase in life expectancy at birth from 67.9 to 77.7. Again the shock affects the long-run age

composition of the population, i.e. the population pyramid is squeezed for ages up to about

65, but is thickened for higher ages (see Heijdra and Romp, 2008b). Figure 4(a) shows that

the demographic transition, following an embodied longevity shock, is rather slow. Indeed,

even 20 years after the shock the population growth rate is still virtually at its initial steady-

state level.25 Just as for the baby bust, the tax reform has no effect on the retirement choice,

i.e. pre-shock and post-shock agents all retire at the EEA. It follows that post-shock agents

expect a much longer retirement period than pre-shock agents do.

The key features of the transition paths in Figure 4 are as follows. In Figure 4(b), the

participation rate is virtually constant until the tax reform takes place (at time TR = 20) and

rises slightly thereafter. People live longer so the inflow into the labour market exceeds the

outflow. Eventually, there is a sharp decrease in the participation rate because the post-shock

cohorts start to retire. Because their longevity is higher than for the pre-shock cohorts, the

retiring cohorts are relatively large and the outflow from the labour market is huge. In the

24An embodied mortality shock is such that it only affects generations born after the shock. The mortality

process for pre-shock generations is unaffected. See Heijdra and Romp (forthcoming).
25For a disembodied longevity shock, transition would be much faster as such a shock also affects existing

generations.
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new steady state, the participation rate is permanently lower because the weight of retirees

is larger than before. In quantitative terms, the participation rate falls from p̂r0 = 0.845 to

p̂r1 = 0.798, or 4.7 percentage points. People live longer but they do not work for a longer

period of time.

Figure 4(c) depicts the adjustment path for consumption. In addition to featuring a

downward jump at impact, per capita consumption falls over time because post-shock new-

borns consume less than pre-shock newborns, i.e. the negative horizon effect dominates the

positive lifetime-income effect. Adjustment is non-monotonic and rather slow. In the new

steady state, consumption falls by almost 4 percent. Figure 4(d) shows that per capita as-

sets rise substantially during the transition. As is illustrated in Heijdra and Romp (2008b),

the individual age profile for assets is increasing up to age u = RE. The longevity shock

implies that larger population fractions ultimately reach the EEA and beyond. As a result,

per capita assets increase. In quantitative terms, the steady-state asset-output ratio increases

from (â/ŷ)0 = 2.092 to (â/ŷ)1 = 2.965.

Figure 4(e) shows that public debt is virtually constant for 0 < t < TR. This is because the

longevity shock takes a long time before it starts to seriously affect the government finances.

Were the government to do nothing, debt would ultimately explode, conform stylized fact

(SF1). However, our fiscally responsible government slightly increases the poll tax from

TR onward, thus making room for higher future outlays on pension payments. Figure 4(f)

shows that net foreign assets rise during the transition.

The welfare effects of the longevity shock are visualized in Figure 5(b). Just as for the

baby bust, (a) all generations lose out as a result of the poll tax increase and (b) welfare

losses are increasing in the generations index, v. Because the tax increase is much smaller

than for the baby bust scenario, the welfare losses are smaller for all generations.

6.2 Pension reform

In this subsection the announced pension reform is assumed to be specific to the type of

demographic shock hitting the economy. Indeed, we assume that tL is increased following a

baby bust, whereas the EEA is increased in reaction to increased longevity.

Baby bust The quantitative long-run effects of the baby bust have been reported in column

(4) of Table 2. A crucial feature of the solution is that the increase in the labour income tax is

not sufficiently large to induce individuals to retire at an age beyond the EEA. Indeed, both

pre-shock and post-shock agents continue to retire at the EEA, and as a result the labour

income tax operates just like a poll tax. The only difference between the two scenarios is

that retirees do not have to pay the labour income tax, whereas they do pay the poll tax. For

this reason, the welfare profiles are slightly different for the two scenarios. Glancing at the

dashed lines in Figure 5(a) we observe that the welfare loss is zero for all pre-shock cohorts
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older than RE − TR in the labour tax scenario. These generations will be retired from the

labour force by the time the tax reform is implemented.

Increased longevity In column (5) of Table 2, and Figures 4 (dash-dotted lines) and 5(b)

(dashed lines) we characterize the effects of the longevity shock. The EEA is increased at

time TR in such a way that the government maintains solvency. This implies that the EEA

rises from RE0 = 60 to RE1 = 62.8. For 0 < t < TR agents continue to retire at age RE0 but

thereafter agents retire almost 3 years later in life, at RE1. As is shown in Figure 4, the main

differences between the poll-tax and EEA scenarios are found in the adjustment paths for

the participation rate and consumption (panels (b) and (c), respectively). In Figure 4(b) there

is a sharp increase in the participation rate at time TR because nobody retires at that time.

Some pre-shock generations delay their retirement somewhat. Since new cohorts continue

to enter the labour market, the participation rate rises sharply. This is followed by a sharp

decline at t = RE1 as the first of the post-shock cohorts retire. In contrast to the lump-sum

tax scenario, the long-run effect on the participation rate is rather small in the EEA scenario,

i.e. it changes from p̂r0 = 0.845 to p̂r1 = 0.827, or 1.8 percentage points. A similar conclusion

holds for consumption.

Figure 5(b) shows that the welfare effects are rather different for the two scenarios. Five

groups of cohorts can be identified. Group 1 consists of cohorts whose generations index

satisfies v < TR − RE1. These cohorts have either already retired at the time of the shock

(t = 0) or will be just old enough at the time of the policy reform (TR) to retire at that time

and receive benefits immediately. This means that at time t = TR such agents must be at least

RE1 years of age. For these generations there is no welfare loss as a result of the anticipated

EEA perform. They continue to retire at age RE0.

Groups 2 and 3 are cohorts for which TR − RE1 < v < TR − RE0. Agents in this group

face a choice. Option A: they can either retire early at age RE0 (the old EEA) and be without

income for a brief period of time because they retire too early under the new regime. Option

B: they can adjust their planned retirement age from RE0 to RE1. It turns out that the oldest

generations will choose option A whereas the youngest generations will choose option B,

with the pivotal generation index being at v∗ = −20.5. Agents in both groups experience

a welfare loss as a result of the reform. Interestingly, the welfare loss is increasing in v for

TR − RE1 < v < v∗ but decreasing in v for v∗ < v < TR − RE0.

Group 4 consists of cohorts for which TR − RE0 < v < 0. People in this group did not

have any real choice. At time TR they are too young to retire with benefits under the under

the old regime and thus have to retire at age RE1. Their delayed pension is compensated

partially by higher a level of lifetime income because they have a longer working life. The

welfare loss for agents in this group is decreasing in v.

Finally, group 5 consists of post-shock cohorts for which v > 0. Agents in this group are

all affected equally. They all choose the retirement age RE1 and they all face the same initial
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conditions in life.

6.3 Discussion

The key findings of this section are as follows. First, although both a baby bust and a

longevity boost have an adverse effect on the government’s budget, there is a striking dif-

ference in the speed with which such effects become apparent. Indeed, for the baby bust the

adverse effects show up immediately. Government debt starts to rise immediately after the

shock because the flow of tax payers dwindles. In contrast, for the longevity shock it takes a

very long time before any effect on the government’s balances can be observed.

Second, even though we simulated very large demographic changes, wealth effects are

simply too weak to get agents to move out of the kink and to postpone retirement beyond

the EEA. For a realistic calibration, the implicit tax rates are rather high, ranging from −20%

just before age 60, jumping to 60% at that age, and subsequently rising to 71.5% at age 70.

The kink in the lifetime income profile acts as a kind of early retirement trap. Changes in

the poll tax or the labour income tax are insufficiently powerful instruments to get agents

out of the trap.26 The welfare costs of the tax increase are non-trivial. Indeed, our baby bust

simulations show that post-shock agents experience a welfare loss in the range of 6 to 8% of

initial wealth. For a longevity shock, the welfare loss is smaller but still about 3% of initial

wealth.

Third, an increase in the EEA itself constitutes a rather good policy measure. By increas-

ing the EEA, the kink in the lifetime income profile is shifted to right, and agents retire later

on in life despite the existence of high implicit tax rates. We show that the welfare effects of

the EEA increase are relatively small: post-shock agents experience a welfare loss that is the

equivalent of about 1.6% of initial wealth as a result of the EEA increase. The EEA increase

thus constitutes a double-edged sword as it maintains fiscal balance and reduces the welfare

loss due to longevity.

7 Conclusions

We have studied the microeconomic and macroeconomic effects of ageing in the context of a

small open economy populated by disconnected generations of finitely-lived agents facing

age-dependent mortality and constant factor prices. From a policy perspective, our main

finding is as follows. Most actual pension systems induce a kink in the lifetime income

function which acts as an early retirement trap. Fiscal changes are not potent enough to get

individuals out of the trap. Increasing the early entitlement age appears to be a low cost

26It is an open issue whether this result extends to a model recognizing within-cohort differences in ability.

In such a model, a policy shock may not affect the average worker but nevertheless change some workers’

behaviour.
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policy measure to counteract the adverse effects of the various demographic shocks.

Our analysis is subject to a number of potentially important limitations, some of which

we will address in the near future. First, in this paper the age profile of labour efficiency is

exogenous, i.e. there is no endogenous human capital accumulation decision. In a compan-

ion paper we include an endogenous education decision taking place at the beginning of an

agent’s life; see Heijdra and Romp (forthcoming). We have chosen to study start-up educa-

tion and retirement in separate papers in order to obtain simple and intuitive results. It is, of

course, quite feasible to combine the two decisions in a single computable general equilib-

rium (CGE). The results in our separate studies can then be of assistance in interpreting the

effects of ageing, pensions, and taxes on the various macroeconomic variables. In our view,

highly stylized analytical models and detailed CGE models are complementary tools for the

public economist.

Second, we have focused attention of mortality and have ignored the equally important

issue of morbidity. One of the main functions of a social security system is to support people

who are incapable of working due to old-age related diseases. Asymmetric information

problems arise if health is not perfectly observable to the policy maker. The risk exists that

either social security becomes too expensive because too many people make use of it, while

they are perfectly capable of working, or that people who cannot work are kept out of the

system.
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