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Abstract

In this paper we construct an overlapping generations model for the small open economy

incorporating a realistic description of the mortality process. With age-dependent mortal-

ity, the typical life-cycle pattern of consumption and saving results from the maximizing

behaviour of individual households. Our “Blanchard-Yaari-Modigliani” model is used to

analytically study a number of typical shocks affecting the small open economy, namely a

balanced-budget public spending shock, a temporary Ricardian tax cut, and an interest

rate shock. The demographic details matter a lot—both the impulse-response functions

and the welfare profiles (associated with the different shocks) are critically affected by

them. These demographic details furthermore do not wash out in the aggregate. The

model is flexible and can be applied to a wide variety of theoretical and policy issues.
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1 Introduction

It is possible that death may be the consequence of two generally co-existing

causes; the one, chance, without previous disposition to death or deterioration; the

other, a deterioration or an increased inability to withstand destruction. (Gom-

pertz, 1825)

The opening quotation is a verbal introduction to a phenomenon that is now often called

Gompertz’ Law of mortality. In his path-breaking paper, Benjamin Gompertz1 (1825) iden-

tified two main causes of death, namely one due to pure chance and another depending on

the person’s age. He pointed out that if only the first cause were relevant, then “the intensity

of mortality” would be constant and the surviving fraction of a given cohort would decline

in geometric progression. In contrast, if only the second cause would be relevant, and “if

mankind be continually gaining seeds of indisposition, or in other words, an increased lia-

bility to death” then the force of mortality would increase with age. Gompertz’ Law was

subsequently generalized by Makeham (1860) who argued that the instantaneous mortality

rate depends both on a constant term (first cause) and on a term that is exponential in the

person’s age (second cause).2

The microeconomic implications for consumption behaviour of lifetime uncertainty—

resulting from a positive death probability—were first studied in the seminal paper by Yaari

(1965). He showed that, faced with a positive mortality rate, individual agents will discount

future felicity more heavily due to the uncertainty of survival. Furthermore, with lifetime

uncertainty the consumer faces not only the usual solvency condition but also a constraint

prohibiting negative net wealth at any time—the agent is simply not allowed by capital mar-

kets to expire indebted. Yaari assumes that the household can purchase (annuity) or sell (life

insurance) actuarial notes at an actuarially fair interest rate. In the absence of a bequest

motive, the household will use such notes to fully insure against the adverse effect of lifetime

uncertainty.

The Yaari insights were embedded in a general equilibrium growth model by Blanchard

(1985). In order to allow for exact aggregation of individual decision rules, Blanchard sim-

plified the Yaari model by assuming a constant death probability, i.e. only the first cause of

death is introduced into the model and households enjoy a perpetual youth. Because of its

flexibility, the Blanchard-Yaari model has achieved workhorse status in the last two decades.3

1As Hooker (1965) points out, Benjamin Gompertz can be seen as one of the founding fathers of modern

demographic and actuarial theory. See also Preston et al. (2001, p. 192). Blanchard (1985, p. 225) and

Faruqee (2003, p. 301) incorrectly refer to the non-existing “Gomperty’s Law.”
2The continuous-time version of the Gompertz-Makeham Law of mortality takes the form m (u) = µ0 +

(µ1/µ2) [eµ2u
− 1], where m (u) is the instantaneous mortality rate of a person with age u and the µ′

is are

non-negative. This form is estimated below using US demographic data.
3For the purpose of this paper, the most important extension is due to Buiter (1988) who allows for non-

zero population growth by using the insights of Weil (1989). For a textbook treatment of the Blanchard-Yaari
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As Blanchard himself points out, his modelling approach has the disadvantage that it can-

not capture the life-cycle aspects of consumption and saving behaviour—the age-independent

mortality rate ensures that the propensity to consume out of total wealth is the same for all

households.4

Blanchard’s modelling dilemma is clear: exact aggregation is “bought” at the expense of

a rather unrealistic description of the demographic process.5 Of course, in a closed-economy

context, the aggregation step is indispensable because equilibrium factor prices are determined

in the aggregate factor markets. However, in the context of a small open economy, factor prices

are typically determined in world markets so that the aggregation step is not necessary and

life-cycle effects can be modelled. The main objective of this paper is to elaborate on exactly

this point. As we demonstrate below, it is quite feasible to construct and analytically analyze

a Blanchard-Yaari type overlapping-generations model incorporating a realistic description

of demography. In addition we show that such a model gives rise to drastically different

impulse-response functions associated with various macroeconomic shocks—the demographic

realism matters.

The remainder of this paper is organized as follows. Section 2 sets out the model. Fol-

lowing Calvo and Obstfeld (1988) and Faruqee (2003), we assume that the mortality rate

is age-dependent and solve for the optimal decision rules of the individual households.6 We

establish that the propensity to consume out of total wealth is an increasing function of the

individual’s age provided the mortality rate is non-decreasing in age. Next, we postulate a

constant birth rate and characterize both the population composition and the implied aggre-

gate population growth rate associated with the demographic process. Still using the general

demographic process we characterize the steady-state age-profiles for consumption, human

wealth, and asset holdings.

In Section 3 we employ (projected) US demographic data to estimate a number of paramet-

ric mortality models. In addition to the Blanchard model, we also estimate three additional

models that allow for age-dependent mortality. Not surprisingly, the Gompertz-Makeham

model provides by far the best fit with the data. Interestingly, however, the key aspects of

the Gompertz-Makeham Law are also captured quite well by our so-called piece-wise linear

model, see Blanchard and Fischer (1989, ch. 3) or Heijdra and van der Ploeg (2002, ch. 16).
4Blanchard shows that a “saving-for-retirement” effect can be mimicked by assuming that labour income

declines wih age. Faruqee and Laxton (2000) use this approach in a calibrated simulation model.
5Blanchard suggests that a constant mortality rate may be more reasonable if the model is applied to

dynastic families rather than to individual agents (1985, p. 225, fn.1). Under this interpretation the mortality

rate refers to the probability that the dynasty becomes extinct.
6The relationship between these papers and ours is as follows. Calvo and Obstfeld (1988) recognize age-

dependent mortality but do not solve the decentralized model. Instead, they characterize the dynamically

consistent social optimum in the presence of time- and age-dependent lump-sum taxes. Faruqee (2003) models

age-specific mortality in a decentralized setting but is ultimately unsuccessful. Indeed, he confuses the cumu-

lative density function with the mortality rate (by requiring the death rate to go to unity in the limit; see

(2003, p. 302)). Furthermore, he is unable to solve the transitional dynamics.
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model which distinguishes two “phases” of life, namely youth and old-age. During youth, the

mortality rate is constant and quite low, but during old-age it rises linearly with age. In our

view, the piece-wise linear model is interesting in itself for two reasons. First, it presents a

continuous-time generalization of the Diamond (1965) model, allowing for individuals to differ

even within each “phase” of life. Second, it gives rise to relatively simple analytical expres-

sions for the propensity to consume and the steady-state age profiles for consumption, human

wealth, and financial assets. In the remainder of the section we show that the piece-wise

linear and Gompertz-Makeham models both give rise to bell-shaped age profiles of financial

assets (Modigliani’s life-cycle pattern).

In Section 4 we compute and visualize the effects on the key variables of three typical

macroeconomic shocks affecting the small open economy, namely a balanced-budget spending

shock, a temporary tax cut (Ricardian equivalence experiment), and an interest rate shock.

We compare and contrast the results obtained for the Blanchard and piece-wise linear models.

In the second part of Section 4 we also present the welfare effects associated with the shocks

and demonstrate that the piece-wise linear model may give rise to non-monotonic welfare

effects on existing generations, something which is impossible in the Blanchard case. We

conclude Section 4 by showing that the two models also give rise to significantly different

impulse-response functions for the aggregate variables (especially for asset holdings)—the

heterogeneity does not “wash out” in the aggregate.

Finally, in Section 5 we mention a number of possible applications of and extensions to the

model and draw some conclusions. The paper is concluded with a brief Appendix containing

the main derivations and proofs.

2 The model

2.1 Households

2.1.1 Individual consumption

From the perspective of birth, the expected lifetime utility of a household is given by:

Λ(v, v) ≡
∫ ∞

v
[1 − Φ(τ − v)] ln c̄(v, τ)eθ(v−τ)dτ, (2.1)

where v is the birth date, c̄ (v, τ) is consumption of a vintage-v agent at time τ (≥ v), and θ is

the constant pure rate of time preference (θ > 0). Intuitively, 1 − Φ(τ − v) is the probability

that an agent born at time v is still alive at time τ (at which time the agent’s age is τ − v).

The instantaneous mortality rate (or death probability) of a household of age s is given by

the hazard rate of the stochastic distribution of the date of death:

m (s) ≡
φ (s)

1 − Φ(s)
, (2.2)
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where φ (s) and Φ (s) denote, respectively, the density and distribution (or cumulative density)

functions. These functions exhibit the usual properties, i.e. φ (s) ≥ 0 and 0 < Φ(s) < 1 for

s ≥ 0. Since, by definition, Φ′ (s) = φ (s) and Φ (0) = 0, it follows that the first term on the

right-hand side of (2.1) can be simplified to:7

1 − Φ(τ − v) = e−M(τ−v), (2.3)

where M (τ − v) is related to the mortality rate according to:8

M (τ − v) ≡
∫ τ−v

0
m (s) ds. (2.4)

By using (2.3) in (2.1) we find that the utility function of a newborn agent can be written as:

Λ(v, v) ≡
∫ ∞

v
ln c̄(v, τ)e−[θ(τ−v)+M(τ−v)]dτ. (2.5)

As was pointed out by Yaari (1965), future felicity is discounted both because of pure time

preference (as θ > 0) and because of life-time uncertainty (as M (τ − v) > 0).9

From the perspective of some later time period t, the utility function of the agent born at

time v takes the following form:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t
ln c̄ (v, τ) e−[θ(τ−t)+M(τ−v)]dτ, (2.6)

where the discounting factor due to life-time uncertainty (M (τ − v)) depends on the age of

the household at time τ .10 The household budget identity is given by:

˙̄a (v, τ) = [r + m (τ − v)] ā (v, τ) + w̄ (τ) − z̄ (τ) − c̄ (v, τ) , (2.7)

where ā (v, τ) is real financial wealth, r is the exogenously given (constant) world rate of

interest, w̄ (τ) is the wage rate, and z̄ (τ) is the lump-sum tax (the latter two variables are

assumed to be independent of age). Labour supply is exogenous and each household supplies

a single unit of labour. As usual, a dot above a variable denotes that variable’s time rate

7All derivations are documented in a separate Mathematical Appendix (see Heijdra and Romp, 2005). Some

key results are derived in a brief Appendix to the paper.
8The function M (s) is a primitive of m (s) if M ′ (s) = m (s) for every s in the relevant interval. The

indefinite integral is then
�

m (s) = M (s) + C, where C is some constant which drops out when the integral

is evaluated for a particular interval, s0 ≤ s ≤ s1.
9Yaari (1965, p. 143) attributes the latter insight to Fisher (1930, pp. 216-217).

10The appearance of the term eM(t−v) in front of the integral is a consequence of the fact that the distribution

of expected remaining lifetimes is not memoryless in general. Blanchard (1985) uses the memoryless exponential

distribution for which M (s) = µ0s (where µ0 is a constant) and thus M (t − v) − M (τ − v) = −M (τ − t).

Equation (2.6) can then be written in a more familiar format as:

Λ(v, t) ≡ � ∞

t

ln c̄ (v, τ) e−(θ+µ0)(τ−t)dτ.
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of change, e.g. ˙̄a (v, τ) ≡ dā(v, τ)/dτ . Following Yaari (1965) and Blanchard (1985), we

postulate the existence of a perfectly competitive life insurance sector which offers actuarially

fair annuity contracts to the households. Since household age is directly observable, the

annuity rate of interest faced by a household of age τ − v is equal to the sum of the world

interest rate and the instantaneous mortality rate of that household.

Abstracting from physical capital, financial wealth can be held in the form of domestic

government bonds (d̄ (v, τ)) or foreign bonds (f̄ (v, τ)).

ā (v, τ) ≡ d̄ (v, τ) + f̄ (v, τ) . (2.8)

The two assets are perfect substitutes in the households’ portfolios and thus attract the same

rate of return.

In the planning period t, the household chooses paths for consumption and financial

assets in order to maximize lifetime utility (2.6) subject to the flow budget identity (2.7) and

a solvency condition, taking as given its initial level of financial assets ā(v, t). The household

optimum is fully characterized by:

˙̄c (v, τ)

c̄ (v, τ)
= r − θ, (2.9)

∆ (u, θ) c̄ (v, t) = ā (v, t) + h̄ (v, t) , (2.10)

h̄ (v, t) ≡ eru+M(u)

∫ ∞

u
[w̄ (s + v) − z̄ (s + v)] e−[rs+M(s)]ds, (2.11)

where u ≡ t − v is the age of the household in the planning period and ∆ (u, λ) is defined in

general terms as:

∆ (u, λ) ≡ eλu+M(u)

∫ ∞

u
e−[λs+M(s)]ds, (for u ≥ 0, λ > 0). (2.12)

Equation (2.9) is the consumption Euler equation, relating the optimal time profile of con-

sumption to the difference between the interest rate and the pure rate of time preference.

The instantaneous mortality rate does not feature in this expression because households fully

insure against the adverse effects of lifetime uncertainty (Yaari, 1965). In order to avoid

having to deal with a taxonomy of different cases, we restrict attention in the remainder of

this paper to the case of a nation populated by patient agents, i.e. r > θ.11 Equation (2.10)

shows that consumption in the planning period is proportional to total wealth, consisting of

financial wealth (ā (v, t)) and human wealth (h̄ (v, t)). The proportionality factor is obtained

by evaluating (2.12) for λ = θ.12 Clearly, ∆ (u, θ) depends only on the household’s age in

the planning period and not on time itself. For future reference, Lemma 1 establishes some

important properties of the ∆ (u, λ) function. Finally, human wealth is defined in (2.11) and

11The results for the other cases (with r < θ or r = θ) are easily deduced from our mathematical expressions.
12As we demonstrate below, ∆ (u, λ) plays a very important role in the model. Evaluated for λ = θ,

1/∆ (u, θ) represents the marginal (and average) propensity to consume out of total wealth.
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represents the market value of the unit time endowment, i.e. the present value of after-tax

wage income, using the annuity rate of interest for discounting purposes. Unless after-tax

wage income is time-invariant, human wealth depends on both time and on the household’s

age in the planning period.

Lemma 1 Let ∆ (u, λ) be defined as in (2.12) and assume that the mortality rate is non-

decreasing, i.e. m′ (s) ≥ 0 for all s ≥ 0. Then the following properties can be established

for ∆ (u, λ): (i) decreasing in λ, ∂∆ (u, λ) /∂λ < 0; (ii) non-increasing in household age,

∂∆ (u, λ) /∂u ≤ 0; (iii) upper bound, ∆ (u, λ) ≤ 1/ [λ + m (u)]; (iv) ∆ (u, λ) > 0 for u < ∞;

(v) for λ → ∞, ∆ (u, λ) → 0.

Proof: see Appendix.

2.1.2 Demography

In order to allow for non-zero population growth, we employ the analytical framework de-

veloped by Buiter (1988) which distinguishes the instantaneous mortality rate m (s) and the

birth rate b (> 0) and thus allows for net population growth or decline. The population size at

time t is denoted by L(t) and the size of a newborn generation is assumed to be proportional

to the current population:

L(v, v) = bL(v). (2.13)

The size of cohort v at some later time τ is:

L (v, τ) = L (v, v) [1 − Φ(τ − v)] = bL (v) e−M(τ−v), (2.14)

where we have used (2.3) and (2.13). The aggregate mortality rate, m̄, is defined as:

m̄L (t) =

∫ t

−∞
m (t − v) L (v, t) dv, (2.15)

and it is assumed that m̄ is constant (see also below). Despite the fact that the expected

remaining lifetime of each individual is stochastic, there is no aggregate uncertainty in the

economy. In the absence of international migration, the growth rate of the aggregate popu-

lation, n, is equal to the difference between the birth rate and the aggregate mortality rate,

i.e. n ≡ b − m̄. It follows that L (v) = A0e
nv, L (t) = A0e

nt and thus L (v) = L (t) e−n(t−v).

Using this result in (2.14) we obtain the generational population weights:

l (v, t) ≡
L (v, t)

L (t)
= be−[n(t−v)+M(t−v)], t ≥ v. (2.16)

The key thing to note about (2.16) is that the population proportion of generation v at time

t only depends on the age of that generation and not on time itself.
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2.1.3 Per capita household sector

Per capita variables are calculated as the integral of the generation-specific values weighted by

the corresponding generation weights. For example, per capita consumption, c(t), is defined

as:

c(t) ≡
∫ t

−∞
l(v, t)c̄(v, t)dv, (2.17)

where l (v, t) and c̄(v, t) are defined in, respectively, (2.16) and (2.10) above. Exact aggregation

of (2.10) is impossible because both ∆ (u, θ) and the wealth components, ā (v, t) and h̄ (v, t),

depend on the generations index v. The “Euler equation” for per capita consumption can

nevertheless be obtained by differentiating (2.17) with respect to time and noting (2.9) and

(2.16):

ċ (t) = bc̄ (t, t) + (r − θ) c (t) −
∫ t

−∞
[n + m (t − v)] l (v, t) c̄ (v, t) dv. (2.18)

Per capita consumption growth is boosted by the arrival of new generations who start to con-

sume out of human wealth (first term on the right-hand side) and by individual consumption

growth (second term). The third term on the right-hand side of (2.18) corrects for population

growth and (age-dependent) mortality.13

Per capita financial wealth is defined as a(t) ≡
∫ t
−∞ l(v, t)ā(v, t)dv. By differentiating this

expression with respect to t we obtain:

ȧ (t) = (r − n) a (t) + w (t) − z (t) − c (t) , (2.19)

where w (t) = w̄ (t), z (t) = z̄ (t), and we have used equation (2.7) and noted the fact that

newborns are born without financial assets (ā (t, t) = 0). The interest rate net of population

growth is assumed to be positive, i.e. r > n. As in the standard Blanchard model, annuity

payments drop out of the expression for per capita asset accumulation because they constitute

transfers (via the life insurance companies) from those who die to agents who stay alive.

Finally, per capita human wealth is defined as h(t) ≡
∫ t
−∞ l(v, t)h̄(v, t)dv so that ḣ (t) can

be written as:

ḣ (t) = (r − n)h (t) + bh̄ (t, t) − w (t) + z (t) . (2.20)

In the standard Buiter model per capita human wealth is the same for all generations and

accumulates at the constant annuity rate of interest (r+m). In contrast, in the present model

the effects of the net interest rate (r−n) and the birth rate (b) are separate, with the former

applying to per capita human wealth and the latter applying to the human wealth of newborn

generations.

13If the mortality rate were constant, as in Blanchard (1985) and Buiter (1988), then n ≡ b−m and equation

(2.18) would simplify to:

ċ (t) = (r − θ) c (t) − b [c (t) − c (t, t)] .
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2.2 Firms, government, and foreign sector

Following Buiter (1988) we keep the production side of the model as simple as possible

by abstracting from physical capital altogether.14 Competitive firms face the technology

Y (t) = k (t)L (t) where k (t) is an exogenous productivity index and L (t) is the aggregate

supply of labour. The real wage rate is then given by w (t) = k (t).

The government budget identity is given by:

ḋ(t) = (r − n) d(t) + g (t) − z (t) , (2.21)

where d (t) ≡
∫ t
−∞ l(v, t)d̄(v, t)dv is the per capita stock of domestic bonds, and g (t) is

per capita government goods consumption. The government solvency condition is lim
τ→∞

d(τ)

e(r−n)(t−τ) = 0, so that the intertemporal budget constraint of the government can be written

as:

d(t) =

∫ ∞

t
[z (τ) − g (τ)] e(r−n)(t−τ)dτ. (2.22)

To the extent that there is outstanding debt (positive left-hand side), it must be exactly

matched by the present value of current and future primary surpluses (positive right-hand

side), using the net interest rate (r − n) for discounting purposes.

Finally, the evolution of the per capita stock of net foreign assets is explained by the

current account:

ḟ(t) = (r − n) f(t) + w(t) − c(t) − g(t), (2.23)

where we have used the fact that y (t) ≡ Y (t) /L (t) = w (t) and where f(t) ≡
∫ t
−∞ l(v, t)f(v, t)dv

denotes the per capita stock of foreign bonds in the hands of domestic households.

2.3 Steady-state equilibrium

It is relatively straightforward to characterize the steady state of the model. The steady-state

values for all variables are designated by means of a hat overstrike, e.g. ĉ is steady-state per

capita consumption. Where no confusion can arise, the time index is also suppressed. For

a constant level of technology, k (t) = k̂, the steady-state wage rate is time-invariant, i.e.

w (t) = ŵ = k̂. If the government variables are also held constant, so that z (t) = ẑ, g (t) = ĝ,

and d (t) = d̂ ≡ (ẑ − ĝ) / (r − n), then the economy settles into a unique saddle-point stable

steady-state equilibrium in which c (t) = ĉ, h (t) = ĥ, a (t) = â, and f (t) = f̂ .15

14In the context of a small open economy with firms facing convex investment adjustment costs, our approach

does not entail much loss of generality because the investment and savings systems decouple in that case. See

Matsuyama (1987), Bovenberg (1993, 1994), Heijdra and Meijdam (2002), and Heijdra and van der Ploeg

(2002, pp. 571-581).
15Saddle-point stability follows trivially from the fact that all agents in the economy satisfy their respective

solvency conditions. Consumption and human wealth are forward-looking (jumping) variables whilst total

financial assets and net foreign assets are predetermined (sticky) variables.
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In the steady-state equilibrium, all individual household variables can be rewritten solely

in terms of their age, u ≡ t − v (as is also the case outside the steady state for ∆ (u, θ)—see

equation (2.12) above). By substituting w (t) = ŵ and z (t) = ẑ into (2.11) we find the

expression for age-dependent human wealth:

ˆ̄h (u) ≡ ˆ̄h (v, t) = [ŵ − ẑ] ∆ (u, r) , (2.24)

where ∆ (u, r) is obtained from (2.12) by setting λ = r. Since a newborn has no financial

wealth, it follows from (2.10) that ˆ̄c (v, v) = ˆ̄h (0) /∆ (0, θ). The Euler equation (2.9) shows

that ˆ̄c (v, t) = ˆ̄c (v, v) e(r−θ)u so that, by combining the two results, we obtain:

ˆ̄c (u) ≡ ˆ̄c (v, t) =
ˆ̄h (0)

∆ (0, θ)
e(r−θ)u. (2.25)

Steady-state asset holdings can be computed by using (2.10):

ˆ̄a (u) = ∆ (u, θ) ˆ̄c (u) − ˆ̄h (u) . (2.26)

The steady-state per capita variables can be expressed in terms of individual variables.

Using equation (2.16), (2.17) and (2.25) we write steady-state per capita consumption as:

ĉ =
ˆ̄h (0)

∆ (0, θ)

∫ ∞

0
be−[(θ+n−r)u+M(u)]du =

ˆ̄h (0)

∆ (0, θ)
b∆ (0, θ + n − r) . (2.27)

From (2.20) we find the expression for steady-state per capita human capital:

ĥ =
ŵ − ẑ − bˆ̄h (0)

r − n
=

ŵ − ẑ

r − n
[1 − b∆ (0, r)] , (2.28)

where we have used equation (2.24) (for v = 0) to get to the second expression. Finally, from

equation (2.19) and the per capita version of (2.8) we obtain the expressions for steady-state

per capita financial assets:

â ≡ d̂ + f̂ =
ĉ + ẑ − ŵ

r − n
. (2.29)

Armed with these expressions it is straightforward to derive the long-run effects of various

shocks impacting the economy.16 A balanced-budget increase in government consumption

(dẑ = dĝ > 0) leads to a decrease in steady-state human wealth and consumption for all

cohorts:

dˆ̄h (u)

dẑ
= −∆ (u, r) < 0, (2.30)

dˆ̄c (u)

dẑ
=

dˆ̄h (0)

dẑ

e(r−θ)u

∆ (0, θ)
< 0. (2.31)

16The impact and transitional effects of these shocks are studied in Section 4 of the paper.
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Obviously, per capita steady-state consumption and human wealth also fall (see equations

(2.27) and (2.28)). It follows from (2.29) that per capita steady-state financial assets decline

because consumption is crowded out more than one for one:

dâ

dẑ
=

1

r − n

[
1 +

dĉ

dẑ

]
< 0. (2.32)

Finally, since government debt is unchanged (by design) it follows from the first equality in

(2.29) that df̂/dẑ = dâ/dẑ. The balanced-budget increase in government consumption thus

leads to a long-run reduction in financial assets and a reduction in net imports, just as in

the standard open-economy Blanchard (1985, p. 230-231) model with r > θ. (An decrease

in steady-state productivity (dŵ < 0) has the same effects on ˆ̄h (u), ˆ̄c (u), ĉ, â, and f̂ as a

balanced-budget increase in government consumption.)

A long-run tax-financed increase in public debt ((r − n) dd̂ = dẑ > 0) leads to a decrease

in generation-specific and per capita steady-state consumption and human wealth (see (2.30)-

(2.31)). It follows from (2.29) that:

(r − n)
df̂

dẑ
≡ − (r − n)

dd̂

dẑ
+

dĉ

dẑ
+ 1 =

dĉ

dẑ
< −1. (2.33)

As in the standard Blanchard model (with r > θ), government debt more than displaces

foreign assets in the households’ portfolios (1985, p. 242).

An increase in the world interest rate leads to higher discounting of after-tax wages and

a reduction in both individual and aggregate human wealth:

dˆ̄h (u)

dr
= [ŵ − ẑ]

∂∆ (u, r)

∂r
< 0, (2.34)

dĥ

dr
=

∫ ∞

0
l(u)

dˆ̄h(u)

dr
du < 0, (2.35)

where we have used Lemma 1(i) to establish the sign in (2.34). By using (2.25) we find for

the interest elasticity of individual consumption:

r

ˆ̄c (u)

dˆ̄c (u)

dr
= ru +

dˆ̄h (0)

dr

r

ˆ̄h (0)
= ru +

d∆ (0, r)

dr

r

∆ (0, r)
, (2.36)

where we have used (2.24) to get to the second expression. The effect on consumption depends

on the age of the household. Clearly, for newborns (u = 0) consumption falls because of the

drop in the level of human wealth. Since the interest elasticity of ∆ (0, r) is finite, however,

it follows from (2.36) that for sufficiently old households consumption will rise. The negative

level effect on consumption (operating via human wealth) is dominated by the positive growth

effect (operating via the Euler equation (2.9)).

The effect on aggregate consumption is thus also ambiguous in general. If the hazard rate

is very high around and after the point where the effect on individual consumption becomes
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positive, there will be very few people for whom consumption actually rises. The effect on

aggregate consumption is negative for such demographies. In contrast, if a lot of people are

still alive after the positive growth effect dominates the initial negative wealth effect, then

the weight of this positive effect dominates and the aggregate effect is positive.

The effect on individual financial asset holdings can be deduced from (2.26):

dˆ̄a (u)

dr
= ∆ (u, θ)

dˆ̄c (u)

dr
−

dˆ̄h (u)

dr
> 0, (for u > 0), (2.37)

and dˆ̄a (0) /dr = 0 (newborns possess no assets). Despite the ambiguity of the sign of

dˆ̄c (u) /dr, individual assets must increase for all generations.17 As a result, per capita fi-

nancial assets also increase unambiguously. In the absence of pre-existing government debt

(ẑ = ĝ and d̂ = 0), per capita net foreign assets increases by the same amount as total

financial assets, i.e. dâ/dr = df̂/dr > 0).

3 Demography

As was stressed by Blanchard (1985, p. 223), exact aggregation of the consumption function

is generally impossible because both the propensity to consume (our 1/∆ (u, θ)) and the

wealth components (our ā (v, t) and h̄ (v, t)) are age dependent. Blanchard cuts this Gordian

knot by assuming the mortality rate to be constant, i.e. m (s) = µ0 > 0 and M (u) = µ0u.

The advantages of his approach are its simplicity and its undoubted flexibility—the expected

remaining planning horizon is 1/µ0 so, by letting µ0 → 0, the infinite-horizon Ramsey model

is obtained as a special case. The main disadvantage of the Blanchard approach is that it

cannot capture the life-cycle aspect of consumption behaviour. In addition, the perpetual

youth assumption is of course easily refuted empirically as it runs foul of the Gompertz-

Makeham Law of mortality (see Preston et al. (2001) and below).

In the context of a small open economy, however, it is quite feasible to incorporate a

realistic demographic structure because the aggregation step is not necessary. The interest

rate is determined in world capital markets and is exogenous to the small open economy.

Conditional on the world interest rate, the factor price frontier pins down the real wage rate

(which may also depend on an exogenous productivity index). With factor prices determined,

the macroeconomic equilibrium can be studied directly at the level of individual households.

3.1 Estimates

In this paper we estimate the survival function (1−Φ(τ − v)) by using actual US projections

on expected survival rates for people born in 2001 (Arias et al., 2003, p. 26, Table 6, Column

3). Surviving fractions are reported for 5-year intervals and at birth. Denoting the actual

17This result follows from the fact that dˆ̄c (u) /dr is smallest for u = 0 at which point dˆ̄a (u) /dr = 0. As u

rises, dˆ̄c (u) /dr increases. Since dˆ̄h (u) /dr is negative for all u, the inequality in (2.37) follows readily.
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expected surviving fraction up until age ui of the people born in 2001 by S(ui), we can

estimate the parameters of a given parametric distribution function by means of non-linear

least squares. Denoting the parameter vector by µ, the model to be estimated is:

S(ui) = 1 − Φ(ui, µ) + εi = e−M(ui,µ) + εi, (3.1)

where M(ui) =
∫ ui

0 m(s,µ)ds and εi is the stochastic error term. The estimates are reported

in Table 1 for various specifications of the mortality process. In that table, σ̂ is the estimated

standard error of the regression, the t-statistics are given in round brackets below the esti-

mates, and ̂1 − Φ(100) represents the estimated proportion of centenarians. Finally, n̂ (b) is

the estimated population growth rate (in percent per annum), conditional on a given birth

rate b (which is held constant at 1.5% per annum). The growth rate of the population de-

pends on the form of the mortality process and is computed by combining (2.15) and (2.16)

and simplifying:

b =
1

∆ (0, n)
. (3.2)

For a given birth rate b, equation (3.2) implicitly defines the coherent solution for n and thus

for the aggregate mortality rate, m̄ ≡ b − n.18

We consider four different functional forms for the instantaneous mortality rate and the

associated M (ui) functions. The Blanchard model based on a constant mortality rate (model

1) yields an estimated mortality rate of 0.7% per annum and displays the worst fit of all cases

considered–the estimated standard error is 0.23 which far exceeds the standard errors for

the other models. Model 2 is based on the notion that the mortality rate increases with

age. This linear-in-age model fits a little better than the constant model but it predicts a

negative mortality rate for newborns. Constraining the constant to zero, the fit deteriorates

somewhat though it is still better than that of the constant model. Models 1 and 2 both

spectacularly overestimate the proportion of centenarians (almost 50% and 34% for models 1

and 2 respectively).

Model 3 postulates that the mortality rate is constant up to a certain age ū, after which it

increases linearly with age. The so-called piece-wise linear (PWL hereafter) model fits much

better than the first two models. The estimated standard error is 0.03 and the parameters are

highly significant. Interestingly, the model predicts quite realistically that mortality starts to

increase with age only after households reach the critical age of about 61 years. Finally, for

model 4 the mortality rate follows the Gompertz-Makeham (GM hereafter) process. The GM

model clearly displays the best fit of all cases considered–the estimated standard error is only

one-sixteenth that of the next-best (PWL) model and all coefficients are highly significant.19

Both models 3 and 4 yield reasonable predictions for the proportion of centenarians.

18For a constant mortality rate m, we have 1/∆ (0, n) = n + m so that (3.2) implies n = b − m. Blanchard

(1985) sets b = m so that n = 0 (constant population).
19This good fit may be a consequence of the fact that demographers often use the GM model to generate

demographic predictions especially at high ages. See Preston et al. (2001, p. 192) on this point.
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In the top panel of Figure 1 we illustrate the data points (stars) as well as the estimated

survival functions for the different models. The poor fit of models 1 and 2 is confirmed–the

surviving fraction is underestimated up to about age 80 and overestimated thereafter. Models

3 and 4 both track the data quite well. The key difference between these models lies in their

predicted mortality rates and expected remaining lifetimes that are plotted in, respectively,

the middle and bottom top panels of Figure 1. After about age 88, the mortality rate is

steepest for the GM model. It is this non-linear feature of the mortality process that the

PWL model fails to capture adequately. The expected remaining lifetimes for the GM and

PWL models are, however, quite similar.

3.2 Steady-state profiles

In Figure 2 we visualize (for all estimated models) the steady-state age profiles for the propen-

sity to consume (1/∆ (u, θ)), human wealth (ˆ̄h (u)), consumption (ˆ̄c (u)), and financial assets

(ˆ̄a (u)). The analytical expressions for these variables are given in, respectively, equations

(2.12), (2.24), (2.25), and (2.26). Especially the ∆ (u, λ) function (defined in (2.12)) plays

a key role in the model. For models 1-3, closed-form solutions for ∆ (u, θ) can be derived.

Indeed, for model 1 (the Blanchard case) it reduces to ∆ (u, θ) = 1/ (θ + µ0) and is thus

independent of the age of the household. For model 2, the solution is:

∆ (u, θ) ≡
√

π

2µ1

erfcx

(
µ1u +

θ + µ0

2µ1

)
, (3.3)

where erfcx(x) is the so-called scaled complementary error function (Kreyszig, 1988, p. A

78). The properties of this function and its close relatives are covered in Lemma 2. Since

erfcx (u) is a downward sloping function of the household’s age, it follows from (3.3) that the

marginal propensity to consume, 1/∆ (u, θ), increases with age. This is confirmed in the top

left-hand panel of Figure 2.

For the PWL model the expression for ∆ (u, θ) features two branches, depending on

whether the household is still “young” (0 < u < ū) or has entered “old age” (u > ū):

∆ (u, θ) =





1−e−(θ+µ0)(ū−u)

θ+µ0
+ e−(θ+µ0)(ū−u)

√
π

2µ1
erfcx

(
θ+µ0
2µ1

)
for 0 < u < ū

√
π

2µ1
erfcx

(
µ1 (u − ū) + θ+µ0

2µ1

)
for u ≥ ū

. (3.4)

Young households are still on the flat part of the mortality curve and for them ∆ (u, θ) can be

written as a weighed average of 1/ (θ + µ0) and ∆ (ū, θ), with respective exponential weights

1 − e−(θ+µ0)(ū−u) and e−(θ+µ0)(ū−u). Intuitively, ū − u measures how young such households

are, i.e. how far away they are from entering old age.20 For old households, whose u exceeds

ū, the lower branch of (3.4) is relevant. For such households, it matters how old they are, i.e.

20Obviously, if old age were to set in only after a very long time (ū → ∞), then one is back in the standard

Blanchard case with ∆ (u, θ) = 1/ (θ + µ0) indefinitely.
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how far along in old age they are as measured by u − ū. It follows readily from (3.4) that

∆ (u, θ) declines with age, i.e. the marginal propensity to consume increases with age. This

pattern is confirmed in the top left-hand panel of Figure 2.

Lemma 2 The error function (erf (x)), complementary error function (erfc (x)), and scaled

complementary error function (erfcx (x)) are defined as follows.

erf(x) =
2
√

π

∫ x

0
e−t2dt,

erfc (x) ≡
2
√

π

∫ ∞

x
e−t2dt = 1 − erf(x),

erfcx (x) ≡ ex2
erfc(x).

For non-negative values of x, these functions have the following properties:

(i) 0 < erf(x), erfc(x), erfcx < 1 for 0 < x � ∞.

(ii) erf(0) = 1 − erfc(0) = 1 − erfcx(0) = 0.

(iii) limx→∞ erf(x) = 1, limx→∞ erfc(x) = limx→∞ erfcx(x) = 0.

(iv) erf ′(x) > 0, erfc′(x) < 0, erfcx′(x) < 0.

(v) erfcx (x) ≈ 1/ (x
√

π) for large x.

For the GM model no closed-form solutions for ∆ (u, θ) can be obtained, and numerical

integration techniques must be used. As is shown in the top left-hand panel of Figure 2, the

marginal propensity to consume for these models closely tracks the solution for the PWL

model up to about age u = 80. Thereafter the non-linearity of the mortality rate starts to

cut in and 1/∆ (u, θ) increases more rapidly than is implied by the PWL model.

In the top right-hand panel of Figure 2 the age profile for steady-state human wealth (ˆ̄h (u),

defined in (2.24) above) is plotted for the different mortality models.21 For the standard

Blanchard model the annuity rate of interest is age-independent because the mortality rate

is constant. As a result, human wealth is age-independent also. For the linear model the

annuity rate of interest rises with age so that discounting of after-tax wage income is heavier

the older the household is. Human wealth gradually falls with age as a result. Indeed, it

follows from (2.24) that ˆ̄h (u) is proportional to ∆ (u, r) which is downward sloping in u for

any demography with a non-decreasing mortality rate (see Lemma 1).

The pattern for human wealth looks rather similar for the remaining models 3 and 4.

Exploiting the proportionality between ˆ̄h (u) and ∆ (u, r), we find that the slope of the human

21As parameter values we used b = 0.015, θ = 0.035, r = 0.04, w = 5, and z = 0. The implied values for

the population growth rate (n) are reported in Table 1. The simulation results are quite robust for different

parameter values.
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wealth profile is given by:

dˆ̄h (u)

du
= [ŵ − ẑ]

[
(r + m (u))∆ (u, r) − 1

]
< 0, (3.5)

where the term in square brackets on the right-hand side of (3.5) is equal to ∂∆ (u, r) /∂u.

During the early phase of life, the annuity rate r+m (u) is relatively low, ∆ (u, r) is relatively

high, and human wealth falls only slightly as young agents are still on the flat part of the

mortality curve. At high ages, r + m (u) is high, ∆ (u, r) is low, and dˆ̄h (u) /du is again

relatively low. The PWL and GM models both give rise to inverse-S-shaped profiles for

human wealth with a point of inflexion located at the approximate age of 60. Only after

about age 80 do the paths implied by the two models diverge somewhat, with the GM model

showing the sharpest decline.

In the bottom left-hand panel of Figure 2 the age profile of steady-state consumption

(ˆ̄c (u)) is visualized. As follows readily from (2.25), the slope of the consumption age profile is

the same for all models. Interestingly, the estimated mortality models all predict very similar

steady-state consumption paths (in level terms).

Finally, in the bottom right-hand panel of Figure 2 the age profile of steady-state financial

assets (ˆ̄a (u) as defined in (2.26) above) is visualized. For both models 1 and 2, financial assets

rise with age. Matters are vastly different for models 3 and 4. For these models financial

asset holdings follow the classic life-cycle pattern stressed by Modigliani and co-workers.

i.e. households save up until middle age after which dissaving takes place. Again the most

pronounced dissaving effect takes place for the GM model. Despite the fact that very old

agents have hardly any financial assets left, the annuity rate of interest is so high that a high

consumption level can nevertheless be maintained.

The upshot of the discussion so far is as follows. The constant and linear models track

the demographic data very poorly and predict unrealistic age patterns for the consumption

propensity, human wealth, and financial wealth. In contrast, the PWL and GM models

track the data rather well and predict the relevant life-cycle patterns. While the GM model

slightly outperforms the PWL model, it carries a (minor) disadvantage in that it can only be

analyzed numerically, whereas the PWL model can be solved analytically in terms of well-

known functions. Indeed, the salient features of the Gompertz-Makeham Law seem to be

approximated rather well by means of a piece-wise linear mortality rate. A further theoretical

advantage of the PWL model is that it enables a conceptual distinction between youth and

old age (just as is possible in the two-period Diamond (1965) model).

In Figure 3 we visualize the age profiles for the different variables at the cohort level.

Cohort-level variables are obtained by multiplying individual outcomes for members of a

given cohort by the relative population size of that cohort, e.g. for human wealth we have:

Ĥ (u) ≡ l (v, t) ˆ̄h (u) = [ŵ − ẑ] Ω (u, r) , (3.6)
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where l (v, t) is defined in (2.16) and Ω (u, λ) is given by:

Ω(u, λ) = be−nu−M(u)∆(u, λ)

= be(λ−n)u

∫ ∞

u
e−λτ−M(τ)dτ. (3.7)

Like ∆ (u, λ), the Ω (u, λ)-term depends critically on the parameters of the mortality process.

In addition, however, Ω (u, λ) also depends on the birth rate b and the rate of population

growth n because these parameters affect the population proportions of the cohorts.

The cohort-level values for consumption and financial wealth are defined as follows:

Ĉ(u) ≡ l (v, t) ˆ̄c (u) =
Ĥ(0)

∆(0, θ)
e(r−θ−n)u−M(u), (3.8)

Â(u) ≡ l (v, t) ˆ̄a (u) = ∆(u, θ)Ĉ(u) − Ĥ(u). (3.9)

In the top right-hand panel of Figure 3 cohort-level human wealth is visualized for the different

mortality models. For all models, cohort-level human wealth falls with the age of the cohort.

This is not surprising since individual human wealth either stays the same (model 1) or falls

(models 2-4) with age, and the population proportion falls with age (see top left-hand panel).

As was the case for individual human wealth, the results for models 3-4 are very similar. This

similarity also holds for the cohort-level results for consumption (bottom left-hand panel)

and financial assets (bottom right-hand panel). Note that even for models 1 and 2, Â (u)

ultimately goes to zero for very old household as the decline in the population share starts to

dominate the increase in individual asset holdings.

4 Visualizing Shocks with Realistic Demography

In this section we compute and visualize the effects on the different variables of a number

of prototypical shocks affecting a small open economy.22 The analytical expressions for the

general demographic model are reported in the Appendix to this paper. To cut down on

the number of illustrations, however, we restrict attention in this section to the visualization

of the main contrasts between the standard Blanchard case and the PWL model. As was

demonstrated above, the latter model captures the actual (expected) demography for the

United States rather well.

4.1 Shocks

4.1.1 Balanced-budget fiscal policy

The first shock consists of an unanticipated and (believed to be) permanent increase in gov-

ernment consumption which is financed by means of lump-sum taxes (i.e. dĝ = dẑ > 0). The

effects of this shock on individual human wealth (h̄ (v, t)) and financial assets (ā (v, t)) are

22These shocks do not have to be infinitesimal as no linearization techniques have been used.
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illustrated in Figure 4. In that figure, the left-hand panels depict the Blanchard case whilst

the right-hand panels illustrate the results for the PWL model.

In the Blanchard case, the increase in the lump-sum tax causes a once-off decrease in

human wealth which is the same for all existing and future generations. In stark contrast,

in the PWL model the fall in human wealth depends both on time and on the generations

index. The top right-hand panel of Figure 4 shows the effects for two existing households

(aged, respectively, 40 and 20 at the time of the shock) and two future households (born

respectively one second and 40 years after the shock). As a result of the shock there is a

once-off change in the age profile of human wealth. This profile itself does not depend on

time because there is no transitional dynamics in after-tax wages.

In the bottom two panels of Figure 4 the paths for financial assets are illustrated. In

the Blanchard case these assets rise monotonically over time for each household. The shock

induces a slight kink (at time t = 0) in the profile for each generation. For the PWL model

in the right-hand panel, the crowding-out effect due to the tax increase is much more visible.

The peak in financial asset holdings is higher, the older the existing household is (compare,

for example, the 40 and 20 year old households). The profiles for the future households born,

respectively, in 0 and 40 years time are identical in shape (Again, this is because of the lack

of transitional dynamics in after-tax wages).

4.1.2 Temporary tax cut

The second shock consists of a typical Ricardian equivalence experiment. At impact the

lump-sum tax is reduced and deficit financing is used to balance the budget. As a result, the

stock of government debt gradually increases over time. In order to ensure that government

solvency is maintained, the tax is gradually increased over time and ultimately rises to a level

higher than in the initial situation. The shock that is administered thus takes the following

form (for t ≥ 0):

dz (t) = −dz0e
−χt + dẑ[1 − e−χt], (4.1)

where 0 < χ � ∞, dz0 > 0, and dẑ = [(r − n) /χ] dz0 > 0. At impact, the lump-sum tax

falls by dz0 but in the long run it rises by dẑ. (The long-run effect on public debt equals

dd̂ = dz0/χ > 0.) In the simulations, the persistence parameter is set at χ = 0.1 implying

that the tax reaches its pre-shock level only after about 13 to 14 years.23

The effects on human and financial wealth are illustrated for the two cases in Figure 5. In

the Blanchard case, human wealth is age-independent. It nevertheless features transitional

23We compute time period t0 such that dz (t0) = 0. Using (4.1) we find:

t0 = −
1

χ
ln � r − n

r − n + χ� .

For the piece-wise linear case t0 = 13.2 years whilst for the Blanchard case we find t0 = 14.2 years.
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dynamics because the path of lump-sum taxes is time dependent. Human wealth increases

at impact (because of the tax cut), but during transition it gradually falls again (because of

the gradual tax increase). In the long run, the permanently higher taxes (needed to finance

interest payments on accumulated debt) ensure that human wealth is less than before the

shock.

In the PWL model, the effect on human wealth is both time- and age-dependent. At

impact, all existing households experience an increase in their human wealth because of the

tax cut. For each household, human wealth declines during transition both because of ageing

(gradual increase in the annuity rate of interest) and because the tax rises over time. For the

future household born 40 years after the shock, the human wealth profile is virtually in the

steady state again as most of the shock has worn out by then.

In the bottom panels of Figure 5 the profiles for financial assets are illustrated. In the

Blanchard case the tax cut causes a slight acceleration in asset accumulation at impact. This

kink also occurs for the PWL model in the bottom right-hand right panel. The PWL case

illustrates quite clearly that the Ricardian equivalence experiment redistributes resources from

distant future generations toward near future and existing generations. Especially members

of the generation born at the time of the shock react strongly to the tax cut as far as their

savings behaviour is concerned. Indeed, their maximum asset holding peaks at a much higher

level than that of 40 year old existing generations and generations born 40 years after the

shock.24

4.1.3 Interest rate shock

The final shock analyzed in this paper consists of an unanticipated and permanent increase in

the world interest rate (i.e. dr > 0 for t ≥ 0). The effects of this shock on human and financial

wealth are illustrated in Figure 6. In the Blanchard case the shock causes a once-off decrease

in age-independent human wealth. The higher annuity rate of interest leads to stronger

discounting of future after-tax wages. For the PWL model there is a once-off downward shift

in the age profile of human wealth. Like the shock itself, this age profile displays no further

transitional dynamics over time.

The bottom panels of Figure 6 illustrate the effects on financial assets. Whilst the effects

for the Blanchard case speak for themselves, those for the PWL model warrant some further

24The following temporary productivity shock features results that are very simular to those of the Ricardian

tax cut:

dw (t) = dw0e
−ξt, ( for t ≥ 0),

where 0 < ξ � ∞ and dw0 > 0. In the simulations (not shown), the persistence parameter is set at ξ = 0.1,

implying a half-life of the adjustment of about (1/ξ) ln 2 = 6.93 years. The equivalency between the two shocks

is not surprising, of course, because the temporary wage increases boosts human wealth just as a temporary

tax cut does.
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comment. For future generations, the age profile of financial assets features a once-off upward

shift at impact and displays no further transitional dynamics thereafter. In contrast, for

existing generations the time path of assets depends both on their age and on time. This

transitional dynamics is caused by the fact that the consumption path for such generations

depends on both t and v separately (see Appendix). Existing generations are affected by

the interest rate hike both via their human wealth and via their accumulated financial assets

which attract a higher rate of return after the shock.25

4.2 Welfare effects

The Blanchard model is often used to investigate the intergenerational welfare effects of

various policy measures.26 In this section we visualize the intergenerational welfare effects

associated with the three shocks studied above. For existing households, the change in welfare

from the perspective of the shock period t = 0 is evaluated (dΛ (v, 0) for v ≤ 0) whereas for

future agents the welfare change from the perspective of their birth date is computed (dΛ (v, v)

for v > 0). As is shown in the Appendix, the welfare effect for existing agents (v ≤ 0) can be

written as:

dΛ(v, 0) = dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ + ∆(−v, θ) ln ΓE(v), (for v ≤ 0), (4.2)

where ∆ (−v, θ) is defined in equation (2.12) above and where ΓE(v) is defined as:

ΓE(v) ≡
ˆ̄a(−v) + h̄(v, 0)

ˆ̄a(−v) + ˆ̄h(−v)
, (for v ≤ 0). (4.3)

Intuitively, ΓE(v) captures the effect of the impact change in human wealth for existing

generations. The welfare effect consists of two separate components. The first term on the

right-hand side of (4.2) represents the consumption growth effect and is only relevant for the

world interest rate shock (i.e., if dr > 0). Individual consumption growth is equal to r−θ and

an increase in r leads to a steeper consumption time profile. The mortality process exerts a

non-trivial influence on the consumption growth effect via the utility function. The second

term on the right-hand side of (4.2) summarizes the welfare effect of the change in the level

of consumption caused by the impact change in human wealth. This human wealth effect

25The bottom right-hand panel of Figure 6 also shows a slightly unattractive feature of the piece-wise linear

model, namely that individual assets start to rise again after about age 100. This is due to the fact that the

mortality rate does not rise sufficiently quickly after about age 85 for that model–see Figure 1. As a result,

human wealth does not fall quickly enough (see Figure 2) and assets start to rise again at high ages. Figure 3

confims, however, that assets of the old cohorts approach zero for the piece-wise linear model. There are very

few centenarians in the piece-wise linear model.
26See, for example, Bovenberg (1993, 1994) on capital taxation and investment subsidies, Bettendorf and

Heijdra (2001a, 2001b) on product subsidies and tariffs under monopolistic competition, and Heijdra and

Meijdam (2002) on government infrastructure. All these studies are set in the context of a small open economy.
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is relevant for all shocks and is equal to the product of ln ΓE(v) (defined in (4.3)) and the

inverse propensity to consume ∆ (−v, θ).

The welfare effect for future generations can be written as:

dΛ(v, v) = dr

∫ ∞

0
se−[θs+M(s)]ds + ∆(0, θ) ln ΓF (v), (for v > 0), (4.4)

where ∆ (0, θ) is the inverse propensity to consume of a newborn and ΓF (v) is defined as:

ΓF (v) ≡
h̄(v, v)

ˆ̄h(0)
, (for v > 0). (4.5)

Here, ΓF (v) represents the effect on the human wealth of a future newborn. Just as for existing

generations, the welfare effect for future generations consists of a consumption growth effect

(first term on the right-hand side of (4.5)) and a human wealth effect (second term).

The welfare effects of the different shocks are illustrated in Figure 7. The left-hand

panels present the results for the Blanchard case whilst the right-hand panels visualize those

for the PWL model. The welfare effects of balanced-budget fiscal policy are illustrated in

the top panels. All present and future generations experience a reduction in human wealth

and as a result the welfare effect is negative for all generations. The effect is the same

for all future generations because there is no transitional dynamics in human wealth (see

above). For existing generations the welfare loss declines with the age of the generation.

The human wealth effect decreases with age because both the inverse propensity to consume

(∆(−v, θ)) and the relative importance of human wealth (ln ΓE(v) in (4.2) above) decline with

age. The Blanchard and PWL models thus give qualitatively similar welfare results for the

spending shock. A key difference between the two models concerns the slope of the welfare

profile for existing generations. In the PWL model (right-hand panel) the welfare effect is

practically zero for all generations older than 100 years. In contrast, for the Blanchard case

(left-hand panel) there is still a noticeable welfare effect for 200 year old generations. This

low “generational adjustment speed” of the Blanchard model is also observed for the other

shocks. Intuitively, in the Blanchard case, old generations are not killed off rapidly enough

(see also the top panel of Figure 1).

The middle two panels of Figure 7 illustrate the welfare effects for the Ricardian tax cut

experiment. All existing generations as well as future generations born close to the time of

shock benefit at the expense of more distant future generations. For future generations the

welfare loss is larger the later they are born. For existing generations the welfare profile

is monotonically decreasing in age for the Blanchard case but non-monotonic for the PWL

model. In the Blanchard case, ∆ (−v, θ) = ∆ (0, θ) = 1/ (θ + µ0) is constant and ln ΓE (v)

declines monotonically with age. In contrast, for the PWL model, ∆ (−v, θ) decreases with

age but ln ΓE (v) is non-monotonic. Indeed, ln ΓE (v) is increasing in age for all generations

up to about 120 years and only decreases in age thereafter.27 As a result, the welfare profile

27Of course, there are virtually no centenarians predicted by the PWL model so the downward sloping part
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for existing generations displays a bump around the age of 60 in the middle right-hand panel

of Figure 7. At that point, the drop in ∆ (−v, θ) just matches the increase in ln ΓE (v).

In the bottom two panels of Figure 7 the welfare effects for the interest rate shock are

illustrated. Since the shock induces no transitional dynamics in the age profile of human

wealth for future generations, the welfare effect is the same for all future generations in both

models. For existing generations the welfare effect increases with age in the Blanchard model,

but is non-monotonic for the PWL model. For an interest shock both the consumption growth

effect and the human wealth effect are relevant. The shock induces a decrease in ln ΓE (v)

which falls with age in both models. In the Blanchard case, the consumption growth effect is

constant (and positive) for all generations. In contrast, for the PWL model, the consumption

growth effect is positive and constant for future generations, but falling in age for existing

generations. As a result, the total effect on welfare displays a bump around the age of 25 for

the PWL model (see the bottom right-hand panel of Figure 7).

4.3 Aggregate effects

As was pointed out above, Blanchard (1985) assumes a constant mortality rate in order to

allow for exact aggregation of the consumption function. With the more general mortality

processes considered in this paper, only numerical aggregation is possible. This subsection

visualizes the aggregate effects on the key variables of the three shocks considered above. To

what extent do the aggregate results predicted by the Blanchard and PWL models differ?

In Figure 8 we illustrate the effects on human wealth (first row), consumption (second

row), and financial assets (third row) for the spending shock (first column), the Ricardian tax

cut (second column), and the interest rate shock (third column). To facilitate the comparisons

between the two models, we report the percentage deviations from the steady state for all

variables, i.e. (h (t) − ĥ)/ĥ, (c (t) − ĉ)/ĉ, are plotted (a (t) − â)/â in Figure 8.

For the spending shock, the results for human wealth are identical and those for con-

sumption and financial assets are qualitatively very similar but differ in terms of the speed

of adjustment towards the new steady state. The slow speed of convergence is also a feature

of the Blanchard results for the other two shocks.

For the Ricardian tax cut, the effects on human wealth are again similar but those on con-

sumption and financial wealth are not. For the PWL model, the impact effect on consumption

is much larger, and the slope of the aggregate Euler equation is much steeper during transi-

tion, than for the Blanchard model. Similarly, the savings response is much more pronounced

for the PWL model.

Finally, for the interest rate shock the effect on human wealth is qualitatively the same

for the two models, though the Blanchard model overestimates the fall in human wealth. The

of the ln ΓE (v) function is practically irrelevant. In contrast, the estimated Blanchard demography predicts

that about 50 percent of newborns will still be alive at age 100. See the bottom panel of Figure 1.
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impact reduction in consumption is virtually the same for the two models but transition is

much faster for the PWL model. Again, the savings response at impact is stronger for the

PWL model.

4.4 Discussion

The key findings of this section are as follows. Incorporating a realistic demographic structure

is quite feasible in the context of a small open economy facing a constant world interest rate.

At the level of individual households, a realistic description of the mortality process reinstates

the classic life-cycle consumption-saving insights of Modigliani and co-workers.

The welfare effects associated with the different shocks are also potentially affected in

a non-trivial manner by the incorporation of a more realistic demography. Two key differ-

ence stand out between the Blanchard and PWL models. First, the PWL model predicts

a much faster (and in our view more realistic) “generational convergence speed” of the wel-

fare effects than the Blanchard model. Second, the PWL model incorporates more extensive

age-dependency and as a result may give rise to non-monotonic welfare effect on existing

generations—something which is impossible in the Blanchard case (for the shocks studied).

Finally, we have demonstrated that the demographic details do not “wash out” at the

aggregate level. The impulse-response functions for the different shocks are quite different for

the Blanchard and PWL models, especially the ones for per capita consumption and financial

assets.

In some applications of our model, it may the case that individual behaviour depends

in part on aggregate variables so that knowledge of the latter is crucial. For example, if

the revenue of a consumption tax (tC) is recycled in a lump-sum fashion to households (i.e.

z̄ (t) = z (t) = −tCc (t)) then individual consumption, human wealth, and financial assets

will all depend on the aggregate tax revenue. This complication can be easily dealt with by

using an iterative procedure in the simulations. In the first step the initial tax revenue and

implied lump-sum transfer are guessed and individual and aggregate consumption levels are

computed. In subsequent steps, the aggregate information is used to update the guess for

transfers until convergence is achieved.

5 Extensions and Conclusion

The framework developed in this paper can be extended in a number of directions, all of which

we plan to pursue in the near future. First, in order to investigate the effects of demographic

change, it is necessary to generalize the stochastic distribution for expected remaining life-

times. Two possibilities can be distinguished. Embodied demographic change can be studied

by writing the density function as φ (v, s), so that both the cumulative distribution, Φ (v, s),

and the instantaneous mortality rate, m (v, s), are generation specific. In contrast, disem-
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bodied demographic change can be modelled by writing the functions as φ (t, s), Φ (t, s), and

m (t, s), i.e. by postulating a time-dependent mortality process.

Second, the age profile for individual consumption could be generalized by introducing

shift factors in the utility function. In the current model (with r > θ) consumption is

increasing in the age of the household. There are reasons to believe that in reality consumption

is hump-shaped, i.e. c̄ (v, t) features a rising time profile early on in life followed by a falling

profile later on. A simple way to capture this effect is to assume that a household’s “needs”

get smaller the older they get. In the diminishing-needs model, lifetime utility is given by:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t

[
ē (v, τ)1−1/σ − 1

1 − 1/σ

]
e−[θ(τ−t)+M(τ−v)]dτ, (5.1)

where σ > 0 is the intertemporal substitution elasticity and ē (v, τ) is effective consumption:

ē (v, τ) ≡ c̄ (v, τ) exp

{
ζ0 (τ − v)1+ζ1

1 + ζ1

}
, (5.2)

with ζ0 > 0 and ζ1 > 0. According to (5.2), a given amount of actual consumption, c̄ (v, τ),

yields more effective consumption (featuring in the felicity function), the older the household

is. Using this specification of preferences, it is straightforward to show that the individual

consumption Euler equation (2.9) is generalized to:

˙̄c (v, τ)

c̄ (v, τ)
= σ (r − θ) − (1 − σ) ζ0 (τ − v)ζ1 . (5.3)

For the empirically relevant case (with 0 < σ < 1), consumption rises during the early phase

of life (τ − v low) and falls during the later stages of life (τ − v high).

A third extension endogenizes the household’s labour supply and retirement decisions.

The introduction of a leisure choice decision is straightforward. Focusing on a unitary in-

tertemporal substitution elasticity, lifetime utility is written as:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t
lnU [c̄ (v, τ) , 1 − n̄ (v, τ)] e−[θ(τ−t)+M(τ−v)]dτ, (5.4)

where U [·] is subfelicity depending on consumption, c̄ (v, τ), and labour supply, n̄ (v, τ). The

time endowment equals 1. Of course, labour supply features the restriction 0 ≤ n̄ (v, τ) ≤ 1,

with the lower bound reflecting the retirement decision.28 With endogenous labour supply,

the household budget identity (2.7) is modified to:

˙̄a (v, τ) = [r + m (τ − v)] ā (v, τ) + w̄ (τ) n̄ (v, τ) − z̄ (v, τ) − c̄ (v, τ) , (5.5)

where w̄ (τ) n̄ (v, τ) is wage income and z̄ (v, τ) represents an age-dependent lump-sum tax

(e.g. a pay-as-you-go pension system). For a small open economy facing a constant world

28Under the twin assumptions that (i) consumption and leisure are both normal goods and (ii) that n̄ (v, v) <

1 (newborns consume some leisure), the upper bound can be ignored as it is always satisfied.
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interest rate it is straightforward to compute the optimal retirement age implied by the model

and to study how it is affected by various shocks.29 The most interesting shocks that can be

studied with this extended model are ageing shocks and pension reform.

Whereas the first three extensions are relatively straightforward, the fourth and final one is

not. The introduction of a realistic mortality process in a closed economy is complicated by the

fact that exact aggregation of the consumption function is impossible (see above). Of course,

the steady state can still be characterized analytically quite easily (see Subsection 2.3 above).

The transitional and long-run effects of various shocks are, however, much more difficult to

compute due to the fact that equilibrium factor prices will generally change. In the near future

we wish to investigate whether approximate aggregation of the key behavioral relationships

is feasible for particular shock parameterizations. If that fails, numerical methods will be

employed to characterize transitional dynamics.

In conclusion, we express the sincere hope that the Blanchard-Yaari-Modigliani model

constructed in this paper will prove to be a useful addition to the toolbox of both theoretical

economists and policy practitioners alike. At least in the context of a small open economy,

there is no justification whatsoever to use models based on a blatantly unrealistic description

of demography. Had mortality not caught up with him, Benjamin Gompertz would probably

support that conclusion!

29The retirement date is that time period, tR, for which n̄ �v, tR� just becomes equal to zero. The retirement

age is then defined as tR
− v. Provided n̄ (v, t) is decreasing in t − v, all agents older that tR

− v are retired

also.
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Appendix

In this brief appendix we derive some key results used in the paper. More detailed derivations

are presented in Heijdra and Romp (2005).

Proof of Lemma 1

By definition, M (u) ≡
∫ u
0 m (s) ds so that M (0) = 0, M ′ (u) = m (u) ≥ 0, and M ′′ (u) =

m′ (u) ≥ 0. Since M (s) is a convex function of s we have M (s) ≥ M (u) + m (u) [s − u] and

thus:

∆ (u, λ) ≤ ∆̃ (u, λ) ≡ eλu+M(u)

∫ ∞

u
e−[λs+m(u)(s−u)+M(u)]ds =

1

λ + m (u)
. (A.1)

This establishes part (iii). Part (i) follows by straightforward differentiation:

∂∆(u, λ)

∂λ
= −eλu+M(u)

∫ ∞

u
[s − u]e−[λs+M(s)]ds < 0. (A.2)

Similarly, part (ii) is obtained by differentiating ∆ (u, λ) with respect to u:

∂∆(u, λ)

∂u
= [λ + m (u)]∆(u, λ) − 1 < 0, (A.3)

where the sign follows from (A.1). Parts (iv)-(v) are obvious. Q.E.D.

Macroeconomic shocks

All the shocks studied (or mentioned) in Section 4 of the paper can be expressed in terms of

the following functions:

w(t) =





ŵ for t < 0

ŵ + dw0e
−ξt for t ≥ 0

, (A.4)

r(t) =





r for t < 0

rN ≡ r + dr for t ≥ 0
, (A.5)

g(t) =





0 for t < 0

dĝ for t ≥ 0
, (A.6)

z(t) =





0 for t < 0

−dz0e
−χt + dẑ[1 − e−χt] for t ≥ 0

. (A.7)

Government consumption dĝ and the path of government debt are related to the other para-

meters according to:

dĝ =
χdẑ

r − n + χ
−

(r − n) dz0

r − n + χ
, (A.8)

d(t) =
dĝ + dz0

χ
[1 − e−χt]. (A.9)
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The time at which the shock occurs is normalized to zero.

The three shocks explicitly studied in the text are:

• Unanticipated and permanent balanced-budget increase in government consumption:

g (t) set as in (A.6), z (t) set according to (A.7) and (A.8) with χ → ∞, i.e. dĝ = dẑ.

No debt financing occurs, i.e. d (t) = 0 for all t ≥ 0.

• Ricardian equivalence experiment, temporary tax cut: g (t) = 0, z (t) set according to

(A.7) and (A.8) with 0 < χ � ∞, and the (stable) path of debt is set according to

(A.9).

• Unanticipated and permanent increase in the world interest rate: dr > 0 for t ≥ 0.

A fourth shock is only mentioned because its effects are very similar to those of the

temporary tax cut:

• Temporary productivity shock: g (t) = z (t) = d (t) = 0, w (t) set according to (A.4)

with 0 < ξ � ∞.

Post-Shock Profiles

The steady-state age profiles for the different variables before the shock occurs (t < 0) are

defined for individual households in (2.24)-(2.26) and for cohort-level variables in (3.6) and

(3.8)-(3.9). After the shock occurs (t ≥ 0), the paths for individual and cohort-level human

wealth are, respectively,

h̄(v, t) = ŵ∆ (t − v, rN ) + dw0e
−ξt∆(t − v, rN + ξ) − dẑ∆(t − v, rN )

+[dz0 + dẑ]e−χt∆(t − v, rN + χ), (A.10)

and:

H(v, t) = ŵΩ(t − v, rN ) + dw0e
−ξtΩ(t − v, rN + ξ) − dẑΩ(t − v, rN )

+[dz0 + dẑ]e−χtΩ(t − v, rN + χ). (A.11)

For households who were born before the shock (v < 0), the age index at the time of

the shock is −v > 0. For such households, the paths for consumption and asset holdings (at

individual and cohort level) after the shock (t ≥ 0) are given by:

c̄E(v, t) =
ˆ̄a(−v) + h̄(v, 0)

∆(−v, θ)
e(rN−θ)t, (A.12)

āE(v, t) = ∆(t − v, θ)c̄E(v, t) − h̄(v, t), (A.13)

CE(v, t) = eM(−v) Â(−v) + H(v, 0)

∆(−v, θ)
e(rN−θ−n)t−M(t−v), (A.14)

AE(v, t) = ∆(t − v)CE(v, t) − H(v, t), (A.15)
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where the subscript “E” denotes existing households (at the time of the shock).

For households that are born after the shock (v ≥ 0), the relevant age index at time t

(≥ v) is defined as t − v. For such households the paths for consumption and asset holdings

(at individual and cohort level) at time t (≥ 0) are given by:

c̄F (v, t) =
h̄(v, v)

∆(0, θ)
e(rN−θ)(t−v), (A.16)

āF (v, t) = ∆(t − v, θ)c̄F (v, t) − h̄(v, t), (A.17)

CF (v, t) =
H(v, v)

∆(0, θ)
e(rN−θ−n)(t−v)−M(t−v), (A.18)

AF (v, t) = ∆(t − v, θ)CF (v, t) − H(v, t), (A.19)

where the subscript “F” denotes future households.

Welfare Effects

The welfare effects of the different shocks are illustrated in Figure 7 in the text. For existing

agents the change in welfare from the perspective of the shock period t = 0 is evaluated

(dΛ (v, 0) for v ≤ 0) whereas for future agents the welfare change from the perspective of

their birth date is computed (dΛ (v, v) for v > 0).

Existing generations

Equation (4.2) is derived as follows. The effect on welfare of existing agents at t = 0 can be

written as a function of their age at that moment (−v):

dΛ(v, 0) =

∫ ∞

0
[ln c̄E(v, τ) − ln ˆ̄c(v, τ)]e−θτ−M(τ−v)+M(−v)dτ. (A.20)

Consumption after the shock can be written in terms of pre-shock consumption:

c̄E(v, τ) =
ˆ̄a(−v) + h̄(v, 0)

∆(−v, θ)
e(rN−θ)τ

= e(rN−r)τ

[
ˆ̄a(−v) + ˆ̄h(−v)

∆(−v, θ)
e(r−θ)τ +

h̄(v, 0) − ˆ̄h(−v)

∆(−v, θ)
e(r−θ)τ

]

= e(rN−r)τ

[
ˆ̄a(−v) + ˆ̄h(−v)

∆(−v, θ)
+

h̄(v, 0) − ˆ̄h(−v)

∆(−v, θ)

]
e(r−θ)τ

= e(rN−r)τ

[
1 +

h̄(v, 0) − ˆ̄h(−v)

ˆ̄a(−v) + ˆ̄h(−v)

]
ˆ̄c(−v)e(r−θ)τ

= e(rN−r)τ

[
ˆ̄a(−v) + h̄(v, 0)

ˆ̄a(−v) + ˆ̄h(−v)

]
ˆ̄c(v, τ). (A.21)
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By taking logarithms of (A.21) and rewriting we obtain:

ln c̄E(v, τ) − ln ˆ̄c(v, τ) = (rN − r) τ + lnΓE(v), (A.22)

where ΓE(v) is defined in (4.3). By substituting (A.22) into (A.20) and splitting the integral

we get:

dΛ(v, 0) = dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ +

[
eM(−v)

∫ ∞

0
e−θτ−M(τ−v)dτ

]
ln ΓE(v)

= dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ +

[
e−θv+M(−v)

∫ ∞

−v
e−[θs+M(s)]ds

]
ln ΓE(v)

= dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ + ∆(−v, θ) ln ΓE(v). (A.23)

Equation (A.23) coincides with (4.2) in the text.

Future generations

Equation (4.4) is derived as follows. For future households the welfare effect at birth is defined

as:

dΛ(v, v) =

∫ ∞

v
[ln c̄F (v, τ) − ln ˆ̄c(v, τ)]e−θ[τ−v]−M(τ−v)dτ. (A.24)

Next we express the post-shock consumption path in terms of the pre-shock path as:

c̄F (v, τ) =
h̄(v, v)

∆(0, θ)
e(rN−θ)(τ−v)

= e(rN−r)(τ−v) ĥ(v, v)

ˆ̄h(0)

ˆ̄h(0)

∆(0, θ)
e(r−θ)(τ−v)

= e(rN−r)(τ−v) h̄(v, v)

ˆ̄h(0)
ˆ̄c(v, τ). (A.25)

By taking logarithms of (A.25) and rewriting we obtain:

ln c̄F (v, τ) − ln ˆ̄c(v, τ) = (rN − r) (τ − v) + lnΓF (v), (A.26)

where ΓN (v) is defined in (4.5). By substituting (A.26) into (A.24) and splitting the integral

we get:

dΛ(v, v) = dr

∫ ∞

v
(τ − v) e−θ(τ−v)−M(τ−v)dτ +

[∫ ∞

v
e−θ(τ−v)−M(τ−v)dτ

]
ln ΓF (v)

= dr

∫ ∞

0
se−[θs+M(s)]ds +

[∫ ∞

0
e−[θs+M(s)]ds

]
ln ΓF (v)

= dr

∫ ∞

0
se−[θs+M(s)]ds + ∆(0, θ) ln ΓF (v). (A.27)

Equation (A.27) coincides with (4.4) in the text.



30

Table 1: Estimated Survival Functions

µ̂0 µ̂1 µ̂2
ˆ̄u σ̂ n̂ (b) ̂1 − Φ(100)

1. Constant 0.7026×10−2 – – – 0.2277 0.80 49.53

M (u) = µ0u (4.92)

2. Linear −0.8970×10−2 0.0152 – – 0.1199 – –

M (u) = µ0u + µ2
1u

2 (−3.83) (12.29)

– 0.0104 – – 0.1595 0.49 34.05

(13.66)

3. Piece-wise linear (PWL) 0.1544×10−2 0.0410 – 60.85 0.0294 0.37 6.57

M (u) = µ0u + δ (u)µ2
1 (u − ū)2 (6.41) (16.12) (43.08)

δ (u) =

{
0 for 0 < u < ū

1 for u ≥ ū

4. Gompertz-Makeham (GM) 0.5834×10−3 0.3419×10−4 0.0928 – 0.0018 0.37 1.69

M (u) = µ0u + (µ1/µ2) [eµ2u − 1] (24.76) (27.01) (193.71)
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Figure 1: Actual and Estimated Survival Rates
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Figure 2: Steady-State Profiles for Individuals
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Figure 5: Ricardian Equivalence Experiment: Temporary Tax Cut
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