Foundations of Modern Macroeconomics Second Edition Chapter 8: Search in the labour market

Ben J. Heijdra

Department of Economics, Econometrics & Finance University of Groningen

1 September 2009

Outline

2 Simple search model

- Firm behaviour
- Worker behaviour
- Wage setting and equilibrium

3 Further policy shocks in the search model

- Labour taxes
- Deposits on labour

Aims of this lecture

- How can we explain unemployment duration?
- What policies can be used to reduce equilibrium unemployment?
- Can the search model explain the persistence in the unemployment rate?

Firm behaviour Worker behaviour Wage setting and equilibrium

Searching and matching (1)

• Matching function:

$$XN = G(U_+^N, V_+^N),$$

- X is the matching rate.
- N is the number of workers.
- U is the unemployment rate.
- V is the vacancy rate.
- G(.,.) features CRTS (i.e. G(UN, VN) = NG(U, V) = NVG(U/V, 1). Example: Cobb-Douglas matching function: $XN = (UN)^{\alpha}(VN)^{1-\alpha}$.
- Further properties: $G_U, G_V > 0$; $G_{UU}, G_{VV} < 0$; $G_{UU}G_{VV} G_{UV}^2 > 0$.

Firm behaviour Worker behaviour Wage setting and equilibrium

Searching and matching (2)

• Instantaneous probability of a vacancy being filled:

$$\begin{array}{ll} q & \equiv & \displaystyle \frac{\text{number of matches}}{\text{number of vacancies}} = \displaystyle \frac{G(UN, VN)}{VN} \\ & = & \displaystyle \frac{VN \cdot G(UN/VN, 1)}{VN} = G(U/V, 1) \equiv q(\underline{\theta}), \end{array}$$

where θ is the indicator for labour market pressure:

$$\theta \equiv \frac{V}{U}$$

- If θ is high then there are relatively many vacancies so firms with a vacancy find it hard to get a match with an unemployed job seeker (q is low).
- If θ is low then there are relatively few vacancies so firms with a vacancy find it easy to get a match with an unemployed job seeker (q is high).

Firm behaviour Worker behaviour Wage setting and equilibrium

Searching and matching (3)

• Continued.

 $\bullet\,$ For later use: the elasticity of the $q(\theta)$ function:

$$\eta(\theta) \equiv -\frac{\theta}{q} \frac{dq}{d\theta} = \frac{G_U}{\theta q} \Rightarrow \quad 0 < \eta(\theta) < 1,$$

Instantaneous prob. of an unemployed job seeker finding a job:

$$\begin{split} f &\equiv \frac{\text{number of matches}}{\text{number of unemployed}} = \frac{G(UN, VN)}{UN} \\ &= \frac{VN \cdot G(UN/VN, 1)}{UN} = \theta q(\theta) \equiv f(\frac{\theta}{+}), \end{split}$$

- If θ is high then there are relatively few unemployed workers so unemployed job seekers find it easy to locate a firm with a vacancy (f is high).
- If θ is low then there are relatively many unemployed workers so unemployed job seekers find it hard to locate a firm with a vacancy (f is low).

Firm behaviour Worker behaviour Wage setting and equilibrium

Searching and matching (4)

- Continued.
 - $\bullet\,$ For later use: the elasticity of the $f(\theta)$ function:

$$\frac{\theta}{f}\frac{df}{d\theta} = \left[q(\theta) + \theta\frac{dq}{d\theta}\right]\frac{\theta}{\theta q(\theta)} = 1 + \frac{\theta}{q}\frac{dq}{d\theta} = 1 - \eta(\theta) > 0$$

- Note the intimate link between the probabilities facing the two searching parties, i.e. firms with a vacancy and unemployed job seekers. [Two sides of the same coin.]
- We now already have some duration definitions:
 - Expected duration of a job vacancy:

$$\frac{1}{q(\theta)}$$

• Expected duration of unemployment spell:

$$\frac{1}{f(\theta)}$$

Firm behaviour Worker behaviour Wage setting and equilibrium

Searching and matching (5)

• Inflow/outflow equilibrium

$$\underbrace{s(1-U)Ndt}_{(a)} = \underbrace{\theta q(\theta)UNdt}_{(b)},$$
(S1)

where s is the (exogenous) job destruction rate (due to idiosyncratic match-productivity shocks.

- (a) (expected) flow into unemployment.
- (b) (expected) flow out of unemployment.
- NB 1 Note: Large numbers, so frequencies and probabilities coincide.
- NB 2 Equation (S1) implies equilibrium unemployment rate:

$$U = \frac{s}{s + \theta q(\theta)} = \frac{s}{s + f(\theta)}$$

Firm behaviour Worker behaviour Wage setting and equilibrium

Remainder of the model solved as follows

- (A) Firm behaviour.
- (B) Worker behaviour.
- (C) Wage setting.
- (D) Market equilibrium.

Firm behaviour Worker behaviour Wage setting and equilibrium

(A) Firm behaviour (1)

- Analyze single-job firms (risk-neutral owner).
- Focus on intuitive "derivation".
- Firms with a vacancy have the following arbitrage equation:

$$\underbrace{rJ_V}_{(a)} = \underbrace{-\gamma_0 + q(\theta) \left[J_O - J_V\right]}_{(b)}$$

- J_V is the value of a (firm with a) vacancy; r is the interest rate
- γ_0 is the search cost of the firm with a vacancy
- J_O is the value of (a firm with) an occupied job
- (a) capital cost of the asset.
- (b) return on the asset: "dividend" [search costs] plus expected capital gain [finding a worker, upgrading from vacancy to a filled job].

Firm behaviour Worker behaviour Wage setting and equilibrium

(A) Firm behaviour (2)

• Assumption: free entry of firms with a vacancy:

$$J_V = 0 \Rightarrow 0 = -\gamma_0 + q(\theta)J_O \Rightarrow$$

$$J_O = \frac{\gamma_0}{q(\theta)}$$

Hence, the value of a filled job equals the expected cost of creating it [i.e. the cost of filling a vacancy].

• Firms with an occupied job have the following arbitrage equation:

$$\underbrace{rJ_O}_{(a)} = \underbrace{[F(K,1) - (r+\delta)K - w] - sJ_O}_{(b)}$$
(S2)

- F(K,1) is the output of the single-job firm (note L = 1 substituted).
- Firm rents capital at rental rate $r + \delta$.
- Firm hires labour at wage rate w [to be determined below].

Firm behaviour Worker behaviour Wage setting and equilibrium

(A) Firm behaviour (3)

Continued.

- (a) Capital cost of the asset.
- (b) Return on the asset, consisting of the "dividend" [profit, i.e. output left over after capital and labour have been paid] plus the expected capital gain [experiencing a shock by which the match is destroyed: downgrading from filled job to vacancy].
 - \rightarrow The firm hires capital such that J_O is maximized:

$$\max_{\{K\}} (r+s)J_O \equiv F(K,1) - (r+\delta)K - w \Rightarrow$$

$$F_K(K,1) = r+\delta$$
(S3)

Firm behaviour Worker behaviour Wage setting and equilibrium

(A) Firm behaviour (4)

• Since $J_O = \gamma_0/q(\theta)$ and $F(K, 1) = F_K K + F_L$ we can combine (S2) and (S3):

$\frac{(r+s)\gamma_0}{q(\theta)}$	=	F(K, 1)	$(1) - F_K(K, 1)K - w \Rightarrow$
$\underbrace{\frac{F_L(K,1)-w}{r+s}}_{(a)}$	=	$\underbrace{\frac{\gamma_0}{q(\theta)}}_{\scriptscriptstyle (b)}$	(ZP condition)

- (a) The value of an occupied job, equalling the present value of rents (accruing to the firm during the job's existence) using the risk-of-job-destruction-adjusted discount rate, r + s, to discount future rents.
- (b) Expected search costs.
- NB Since firm search costs are positive ($\gamma_0 > 0$) it follows that $w < F_L$ (workers do not get their marginal product!).

Firm behaviour Worker behaviour Wage setting and equilibrium

(B) Worker behaviour (1)

- Risk-neutral / infinitely-lived worker.
- Cares only for the present value of present and future income stream
- Receives wage w when employed and "unemployment benefit" z when unemployed.
- Unemployed worker's arbitrage equation is:

$$\underbrace{rY_U}_{(a)} = \underbrace{z + \theta q(\theta) \left[Y_E - Y_U\right]}_{(b)}$$
(S4)

- Y_U is the human wealth of the unemployed worker (who is looking for a job).
- $\bullet~Y_E$ is the human wealth of the employed worker.
- (a) Capital cost of the asset.
- (b) Return on the asset: "dividend" [unemployment benefits] plus expected capital gain [finding a job and upgrading from unemployment to being employed].

Firm behaviour Worker behaviour Wage setting and equilibrium

(B) Worker behaviour (2)

• Employed worker's arbitrage equation is:

$$\underbrace{rY_E}_{(a)} = \underbrace{w - s\left[Y_E - Y_U\right]}_{(b)} \tag{S5}$$

- Capital cost of the asset.
- Return on the asset, consisting of the "dividend" [the wage] plus the expected capital gain [losing one's job due to a shock and downgrading from being employed to being unemployed].
- Combining (S4) and (S5) yields:

$$rY_U = \frac{(r+s)z + \theta q(\theta)w}{r+s + \theta q(\theta)},$$

$$rY_E = \frac{sz + [r+\theta q(\theta)]w}{r+s + \theta q(\theta)} = \frac{r(w-z)}{r+s + \theta q(\theta)} + rY_U$$

Firm behaviour Worker behaviour Wage setting and equilibrium

(C) Wage setting (1)

- Generalized wage bargaining over the wage between the firm and the worker.
- Expected gain from striking a deal.
 - To the firm:

$$rJ_O^i = F(K_i, 1) - (r+\delta)K_i - w_i - sJ_O^i \Rightarrow J_O^i = \frac{F_L(K_i, 1) - w_i}{r+s}$$

• To the worker:

$$r\left(Y_E^i - Y_U\right) = w_i - s\left[Y_E^i - Y_U\right] - rY_U$$

Firm behaviour Worker behaviour Wage setting and equilibrium

(C) Wage setting (2)

• Bargaining is over a wage, w_i , which maximizes Ω :

$$\max_{\{w_i\}} \Omega \equiv \beta \ln \left[Y_E^i - Y_U \right] + (1 - \beta) \ln \left[J_O^i - \underbrace{J_V}_{=0} \right]$$

where $0 < \beta < 1$ represents the (relative) bargaining power of the worker and Y_U and $J_V = 0$ are the threat points of, respectively the worker and the firm.

• Maximization yields the rent sharing rule:

$$Y_E^i - Y_U = \frac{\beta}{1 - \beta} \left[J_O^i - J_V \right]$$
(S6)

Firm behaviour Worker behaviour Wage setting and equilibrium

(C) Wage setting (3)

- There are two ways to turn the rent sharing rule into a wage equation [details in the book].
 - 1) After some substitutions we get:

$$w_i = (1 - \beta)rY_U + \beta F_L(K_i, 1)$$

• Worker gets a weighted average of the reservation wage (rY_U) and the marginal product of labour (F_L) .

Firm behaviour Worker behaviour Wage setting and equilibrium

(C) Wage setting (4)

- Continued.
 - 2) In symmetric situation we have $K_i = K$ and $w_i = w$ for all firm/worker pairs:

$$w = (1 - \beta)z + \beta \left[F_L(K, 1) + \theta \gamma_0\right]$$
 (WS curve)

- Worker gets a weighted average of the unemployment benefit (z) and the match surplus $(F_L + \gamma_0 \theta)$.
- The match surplus consists of the marginal product of labour plus the expected search costs that are saved if the deal is struck [$\theta \equiv V/U$ so that $\gamma_0 \theta \equiv \gamma_0 V/U$ represents the average hiring costs per unemployed worker].

Firm behaviour Worker behaviour Wage setting and equilibrium

(D) Market equilibrium

• Summary of the model

$$F_K(K,1) = r + \delta \tag{T1}$$

$$\frac{\gamma_0}{q(\theta)} = \frac{F_L\left[K(r+\delta), 1\right] - w}{r+s} \tag{T2}$$

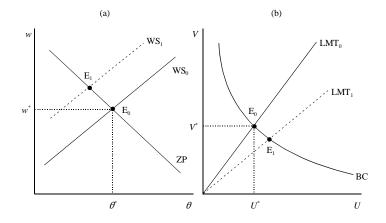
$$w = (1 - \beta)z + \beta \left[F_L\left(K(r + \delta), 1\right) + \theta\gamma_0\right]$$
(T3)

$$U = \frac{s}{s + \theta q(\theta)} \tag{T4}$$

- Endogenous: K, w, θ , and U. Exogenous: r, s, γ_0 , and δ .
- Model is recursive and can thus be solved sequentially:
 - (T1) yields K^* as a function of $r + \delta [K^* = F_K^{-1}(r + \delta)]$.
 - (T2)-(T3) with K = K* inserted only depend on (and determine) w* and θ*.
 - Once θ^* is known equation (T4) determines U^* .

Introduction Firm behaviour Simple search model Worker behaviour Further policy shocks Wage setting and equilibrium

Figure 8.1: Search equilibrium in the labour market



Firm behaviour Worker behaviour Wage setting and equilibrium

Graphical analysis (1)

- The model can be represented graphically in Figure 8.1.
- ZP curve: [equation (T2)] supply of vacancies under free entry/exit of firms.
 - Slopes downwards in (w, θ) space:

$$\left(\frac{dw}{d\theta}\right)_{ZP} = \frac{(r+s)\gamma_0}{q(\theta)^2}q'(\theta) < 0.$$

Intuition: $w \downarrow$ increases the value of an occupied job [raises the right-hand side of (T2)]. To restore the zero-profit equilibrium the expected search cost for firms (the left-hand side of (T2) must also increase, i.e. $q(\theta) \downarrow$ and $\theta \uparrow$.

• Shifts up as $\gamma_0 \downarrow$ or as $s \downarrow$.

Firm behaviour Worker behaviour Wage setting and equilibrium

Graphical analysis (2)

- WS curve: [equation (T3)] wage setting curve.
 - Upward sloping in (w, θ) space:

$$\left(\frac{dw}{d\theta}\right)_{WS}=\beta\gamma_0>0$$

Intuition: the worker receives part of the search costs that are foregone when he strikes a deal with a firm with a vacancy.

- Shifts up as $z\uparrow$ or $\gamma_0\uparrow$
- In panel (a) the intersection of ZP and WS yields the equilibrium (w^{*}, θ^{*}) combination. This is the ray from the origin in panel (b).

Firm behaviour Worker behaviour Wage setting and equilibrium

Graphical analysis (3)

• The Beveridge curve (BC) is given by equation (T4). It can be linearized in (V, U) space as follows:

$$\tilde{V} = \frac{1}{1-\eta}\tilde{s} - \frac{s+f\eta}{f\left(1-\eta\right)}\tilde{U}$$

where $\tilde{U} \equiv dU/U$, $\tilde{V} \equiv dV/V$, and $\tilde{s} \equiv ds/s$.

- BC slopes down: for a given unemployment rate, V ↓ leads to a fall in the instantaneous probability of finding a job (f ↓), i.e. for points below the BC curve the unemployment rate is less than the rate required for flow equilibrium in the labour market (U < s/(s + f)). To restore flow equilibrium the U ↑.
- Shifts to the right as $s \uparrow$.

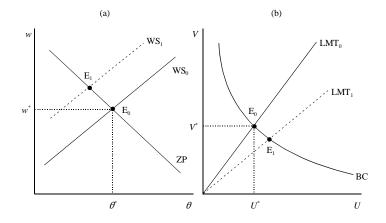
Firm behaviour Worker behaviour Wage setting and equilibrium

Shock 1: Increase in the unemployment benefit

- Suppose that $z \uparrow$.
- In Figure 8.1 this shock is illustrated.
 - WS curve to the left.
 - Equilibrium from E_0 to E_1 .
 - $w^* \uparrow \text{ and } \theta^* \downarrow$.
 - In panel (b) the LMT ratio rotates clockwise.
 - $V \downarrow$ and $U \uparrow$.

Introduction Firm behaviour Simple search model Worker behaviour Further policy shocks Wage setting and equilibrium

Figure 8.1: Search equilibrium in the labour market



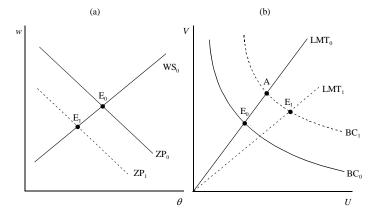
Firm behaviour Worker behaviour Wage setting and equilibrium

Shock 2: Increase in the job destruction rate

- Suppose that $s \uparrow$.
- ZP curve down in panel (a) of Figure 8.2.
- Equilibrium from E₀ to E₁.
- $w^* \downarrow$ and $\theta^* \downarrow$.
- In panel (b) the LMT ratio rotates clockwise and BC shifts outwards [dominant effect].
- $V \uparrow$ and $U \uparrow$.

Introduction Firm behaviour Simple search model Worker behaviour Further policy shocks Wage setting and equilibrium

Figure 8.2: The effects of a higher job destruction rate



Labour taxes

- The effects of labour taxes; t_E levied on firms t_L levied on households.
- The model becomes:

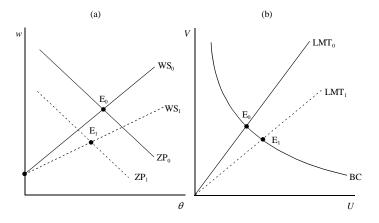
$$\begin{aligned} \frac{\gamma_0}{q(\theta)} &= \frac{F_L \left(K(r+\delta), 1 \right) - w(1+t_E)}{r+s} \\ w &= (1-\beta) \frac{z}{1-t_L} + \beta \frac{F_L \left(K(r+\delta), 1 \right) + \theta \gamma_0}{1+t_E} \\ U &= \frac{s}{s+\theta q(\theta)} \end{aligned}$$

Labour taxes

- In Figure 8.3 the effects of the payroll tax increase are analyzed $(t_E \uparrow)$.
 - WS curve to the right.
 - ZP curve to the left.
 - equilibrium from E_0 to E_1 and $w^* \downarrow$ and $\theta^* \downarrow$.
 - In panel (b) the LMT ratio rotates clockwise.
 - $V \downarrow$ and $U \uparrow$.

Labour taxes Deposits on labour

Figure 8.3: The effects of a payroll tax

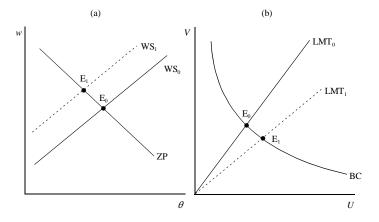


Labour taxes

- In Figure 8.4 the effects of the labour income tax increase are analyzed $(t_L \uparrow)$.
 - WS curve to the left [z untaxed!].
 - Equilibrium from E_0 to E_1 and $w^* \uparrow$ and $\theta^* \downarrow$.
 - In panel (b) the LMT ratio rotates clockwise.
 - $V \downarrow$ and $U \uparrow$.

Labour taxes Deposits on labour

Figure 8.4: The effects of a labour income tax



Labour taxes Deposits on labour

Deposits on labour

- Workers as empty pop bottles.
- Deposit scheme: firm pays a deposit *b* to the government when it fires a worker, to be refunded *b* when it (re-) hires that (or another) worker.
- Model becomes:

$$\frac{F_L(K,1) - w + rb}{r+s} = \frac{\gamma_0}{q(\theta)}$$

$$w = (1-\beta)z + \beta \left[F_L(K,1) + rb + \theta\gamma_0\right]$$

$$U = \frac{s}{s+\theta q(\theta)}$$

Hence, the capital value of the deposit (rb) acts as a subsidy on the use of labour!

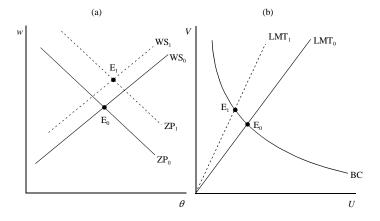
Labour taxes Deposits on labour

Deposits on labour

- In Figure 8.5 we show the effects of $b \uparrow$.
 - ZP curve to the right.
 - WS curve up.
 - Equilibrium from E_0 to E_1 and $w^* \uparrow$ and $\theta^* \uparrow$.
 - In panel (b) the LMT ratio rotates counterclockwise.
 - $V \uparrow \text{ and } U \downarrow$.
- The system works to combat unemployment!

Labour taxes Deposits on labour

Figure 8.5: The effects of a deposit on labour



Encore: Unemployment persistence in the search model

- One of the stylized facts of the labour market: high persistence in the unemployment rate.
- Pissarides argues that loss of skills during unemployment can explain this phenomenon.
 - Unemployed lose human capital ["skills"].
 - Are thus less attractive to firms, vacancy supply falls.
 - More long-term unemployment.

Labour taxes Deposits on labour

Punchlines

- Central elements of the search model:
 - Search frictions.
 - Matching function.
 - Wage negotiations.
 - Beveridge curve.
- Attractive model which abandons notion of the aggregate labour market.
- Holds up well empirically.