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Abstract

We study the dynamic macroeconomic effects of fiscal shocks under lump-sum tax

financing. To this end, we develop an intertemporal macroeconomic model for a small

open economy, featuring monopolistic competition in the intermediate goods market,

endogenous (intertemporal) labor supply, and finitely lived households. Fiscal shocks

are shown to yield endogenously determined (dampened) cycles for a realistic cali-

bration of the model. Impulse response functions of fiscal policy shocks in the finite

horizon model differ substantially from those resulting from an infinitely lived repre-

sentative agent model. This can be explained by the presence of Ethier-productivity

effects, which increase the size of long-run output multipliers to a greater extent in

the infinite horizon model.
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1 Introduction

In the wake of the Stability and Growth Pact of the European Union,1 there has been a re-

vival of interest in analyzing the macroeconomic effects of fiscal policy in open economies.

This paper contributes to this line of work by analyzing a typical small open economy.

More specifically, we investigate the dynamic effects of fiscal policy while allowing for mo-

nopolistic competition in the production of intermediate goods and finitely lived house-

holds. We investigate whether the assumption of finitely lived households—which we

employ to generate an endogenously determined steady state—substantially affects the

impulse responses of fiscal policy as found in the standard case of an infinitely lived rep-

resentative agent (to which we refer as “infinite horizons”). In particular, we would like

to know how imperfect competition and the degree of input variety across firms affect our

results.

The analysis of fiscal policy in open economy models has received little attention com-

pared with monetary policy. Furthermore, the vast majority of micro-founded literature

on fiscal policy assumes perfect competition in the goods market. Early contributions

are those by Turnovsky and Sen (1991), Chang (1999), and Karayalçin (1999).2 More

recently, attention has focused on relaxing the assumption of perfectly competitive goods

markets, thereby giving rise to a sub-optimal level of output in the decentralized market

outcome. Besides providing a rationale for activist government intervention, imperfect

competition allows for the explicit modeling of price setting behavior of firms. Dynamic

macroeconomic models that introduce some form of imperfect competition in goods or

labor markets (without imposing explicit price stickiness) are small in number and are

primarily focused on closed economies.3 A notable exception is the small open economy
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model of Coto-Martinez and Dixon (2003) to which our work is somewhat related. Coto-

Martinez and Dixon (2003) analyze the case of infinite horizons and distinguish between

tradables and nontradables.

We develop an intertemporal optimization model, which features two production sec-

tors (final and intermediate goods) and finitely lived households. The small open economy

is embedded in a world of a homogeneous final good, which is supplied under perfect com-

petition. Differentiated intermediate goods are produced by firms under internal economies

of scale, yielding imperfect competition on the intermediate input market. We assume free

entry and exit of firms in the intermediate goods sector, giving rise to endogenous Ethier

(1982)-productivity effects. Intuitively, increased input diversity allows firms in the final

goods sector to use a more roundabout production technology. The household sector builds

on an extended version of the Blanchard-Yaari model (cf. Blanchard, 1985; Yaari, 1965),

in which agents face a constant probability of death. In keeping with the literature, there

is an internationally traded bond, ensuring that households can use the current account of

the balance of payments to smooth private consumption. To avoid trivial capital dynamics

and to limit the international mobility of physical capital, we postulate adjustment costs

of investment at the level of the portfolio investor.

We employ overlapping generations in the Blanchard-Yaari tradition not only to get a

realistic description of the household sector but also to yield an endogenously determined

(non-hysteretic) steady state. It is well known that in infinite horizon models of a small

open economy the steady state is hysteretic. The dynamic system contains a zero charac-

teristic root in private consumption if the exogenously given world rate of interest equals

the constant rate of time preference. This “knife-edge” condition must hold for a steady

state to exist.4 By log-linearizing such a system, one is approximating its dynamics around
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a hysteretic steady state, (potentially) reducing the reliability of the approximation.5 To

address the hysteresis problem, various authors have employed overlapping generations of

households.6 None of these authors have analyzed the sensitivity of their results to the

household’s planning horizon, however.

Schmitt-Grohe and Uribe (2003) conclude from a comparison of various stationarity-

inducing devices that the comparative dynamic properties of their small open economy

RBC model are hardly affected by the type of device.7 More relevant for our study is

their finding that the stationary and non-stationary model feature very similar impulse

response functions originating from a technology shock. Schmitt-Grohe and Uribe (2003)

neither study domestic demand shocks nor do they employ overlapping generations as a

stationarity-inducing device, however. This paper fills that gap for a deterministic model

setting. We characterize analytically the transition paths induced by a fiscal impulse in

the benchmark overlapping generations model, which we compare with the hysteretic case

of infinite horizons. To this end, we apply the Laplace transform technique (Judd, 1982)

to a log-linearized version of the model. Numerical examples are used to illustrate the

impulse response functions at business cycle frequencies.

We show that finite and infinite horizon versions of our model give rise to very different

impulse responses of a fiscal shock. The transition paths in the finite horizon case feature

endogenously determined (dampened) cycles for a realistic calibration. Finite horizons

together with the interplay of elastic labor supply and external economies of scale generate

these cycles.8 The cycles are of first-order nature and disappear if one of the three factors

is eliminated from the analysis. For the benchmark calibration, the infinite horizon model

is unstable. By taking an intermediate value of the degree of external economies of scale

(which is smaller than the benchmark value), we find smaller cycles in the finite horizon
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model, whereas the transition becomes monotonic in the infinite horizon case. Thus, we

cannot reproduce Schmitt-Grohe and Uribe’s (2003) results in our context, indicating that

these are not as general as suggested. External economies of scale cause Schmitt-Grohe

and Uribe’s key result to break down.9

Our paper also contributes to the literature on the size of (balanced budget) output

multipliers of fiscal policy. Key results are the following. Long-run output multipliers are

positive and exceed those in the short run, which are also positive. This stands in sharp

contrast to the results of Coto-Martinez and Dixon (2003), who find smaller long-run

output multipliers. A more elastic labor supply response and larger external increasing

returns to scale increase the size of long-run output multipliers within the parameter

range generating a stable outcome. Sufficiently strong Ethier-productivity effects give

rise to private consumption and output multipliers that are both positive in the long

run, a result which cannot be obtained in the standard framework of an infinitely lived

representative household.

The paper is structured as follows. Section 2 sets out the extended Blanchard-Yaari

model for a small open economy. Section 3 solves the log-linearized model and stud-

ies model stability and calibration issues. Section 4 analyzes the transitional dynamics

of a permanent increase in public consumption financed by lump-sum taxes. Section 5

summarizes and concludes.

2 The Model of Perpetual Youth

This section develops a dynamic, micro-founded, macroeconomic model for a small open

economy, which features agents endowed with perfect foresight. Subsequently, it discusses

7



decision making by households, firms, and the government.

2.1 Households

The household section of the model builds on Blanchard (1985) and the extension to en-

dogenous intertemporal labor supply by Heijdra and Ligthart (2007). The model features

a fixed population of agents (normalized to unity), each facing a constant probability of

death (β ≥ 0), which equals the rate at which new agents are born. Labor is assumed

to be immobile internationally and is supplied in a perfectly competitive labor market.

Households do not leave bequests—implying that generations are disconnected—and do

not face liquidity constraints.

During its entire life span, an agent has a time endowment of unity, which it allocates

to labor and leisure. The utility functional at time t of the representative agent born at

time v is assumed to be weakly separable in private consumption, C(v, t), and leisure,

1 − L(v, t):

Λ(v, t) ≡
∫

∞

t
[εC lnC(v, τ) + (1 − εC) ln(1 − L(v, τ))] e(α+β)(t−τ)dτ, (1)

where α > 0 is the (constant) pure rate of time preference and εC is the share of private

consumption in utility (where 0 < εC < 1). The agent’s budget identity is:

Ȧ(v, t) = (r + β)A(v, t) + w(t)L(v, t) − T (t) − C(v, t), (2)

where an overdot indicates a time derivative, A(v, t) are financial assets, r is the exoge-

nously given and constant world rate of interest, w(t) is the (age-independent) wage rate,

and T (t) are net lump-sum taxes (all denoted in real terms). The final good (with price

P (t)) is used as the numeraire. Despite the constant rate of interest, wages are flexible,

reflecting adjustment costs in investment (see below).
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The household chooses a time profile for C(v, t) and L(v, t) to maximize Λ(v, t) subject

to its budget identity (2) and a no-Ponzi-game solvency condition. This yields the optimal

time profile of private consumption:

Ċ(v, t)

C(v, t)
= r − α. (3)

In the general case of β > 0, we study a patient nation (i.e., r > α), which yields rising

individual consumption profiles.10 Individual labor supply is negatively linked to private

consumption (i.e., the wealth effect) and positively associated with wages:

L(v, t) = 1 − (1 − εC)C(v, t)

εCw(t)
. (4)

Variables at the aggregate level can be calculated as the weighted sum of the values

for different generations. For example, A(t) ≡
∫ t
−∞

A(v, t)βeβ(v−t)dv is aggregate financial

wealth. By aggregating (3), we arrive at the aggregate Euler equation:

Ċ(t)

C(t)
= r − α− βεC(α+ β)

A(t)

C(t)
=
Ċ(v, t)

C(v, t)
− β · C(t) − C(t, t)

C(t)
. (5)

Equation (5) has the same form as the Euler equation for individual households (3), except

for a correction term, which captures the wealth redistribution caused by the turnover of

generations. Optimal individual consumption growth is the same for all generations since

they face the same rate of interest. But the consumption level of old generations is higher

than that of young generations, reflecting the larger stock of financial assets owned by old

generations. Because existing generations are continually being replaced by newborns, who

are born without financial wealth, aggregate consumption growth falls short of individual

consumption growth. The correction term appearing in (5) thus represents the difference

in average consumption, C(t), and consumption by newborns, C(t, t).11
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We model a household-investor, which optimizes its investment portfolio. There are

two assets in the economy, that is, claims on domestic capital goods, V (t), and net foreign

assets, F (t) (which are all measured in real terms). By assuming assets to be perfect

substitutes in the household’s portfolio, they earn the same real rate of return. The

household’s cash flow from investing in physical capital is given by:

V (t) ≡
∫

∞

t

[

rK(τ)K(τ) − I(τ)
]

er(t−τ)dτ, (6)

where K(t) denotes physical capital, rK(t) is the rental rate on capital, and I(t) denotes

gross investment. We follow Uzawa (1969) by postulating a concave accumulation function,

Ψ(·), which links net capital accumulation to gross investment:

K̇(t) =

[

Ψ

(

I(t)

K(t)

)

− δ

]

K(t), Ψ(0) = 0, Ψ′(·) > 0, Ψ′′(·) < 0, (7)

where δ > 0 is the constant rate of capital depreciation.

The household-investor chooses paths for gross investment and the capital stock to

maximize (6) subject to (7) while taking as given the initial capital stock, K(0) > 0. The

first-order conditions are:

1 = q(t)Ψ′

(

I(t)

K(t)

)

, (8)

q̇(t) =

[

r + δ − Ψ

(

I(t)

K(t)

)]

q(t) − rK (t) +
I(t)

K(t)
, (9)

where q(t) denotes Tobin’s q, which measures the market value of capital relative to its re-

placement costs. The degree of physical capital mobility is given by σ ≡ −(I/K)Ψ′′/Ψ′ > 0,

where a small σ characterizes a high degree of capital mobility.12

2.2 Firms

Following Hornstein (1993), the production sector consists of two types of firms. The first

type concerns monopolistically competitive firms, each of which produces a unique variety
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of an intermediate input (which are close but imperfect substitutes). The second type are

perfectly competitive firms that produce a homogeneous final output using differentiated

intermediate goods.

Technology in the final goods sector can be described by a Dixit-Stiglitz (1977) speci-

fication:

Y (t) = N(t)η−µ

[

∫ N(t)

0
Zj(t)

1/µdj

]µ

, η ≥ 1, µ > 1, (10)

where Y (t) denotes aggregate output of final goods, Zj(t) is the quantity of variety j of the

intermediate good, N(t) denotes the number of input varieties, and µ is a technological

parameter measuring the ease with which different varieties can be substituted for each

other in production. (In the Chamberlinian equilibrium, the markup of price over marginal

cost charged by a firm in the intermediate goods sector will be equal to µ—see below). The

parameter η represents the Ethier (1982)-productivity effect. Increased input diversity

allows firms to use a more roundabout production technology, giving rise to external

economies of scale. For η = 1, the Ethier-productivity effect is switched off. Following

Bénassy (1996), Fatás (1997), and Broer and Heijdra (2001), we parameterize η and µ

separately with a view to disentangle the output effect of external economies of scale from

that of imperfect competition (see Section 2.4).

The representative producer in the final goods sector minimizes the cost of producing a

given quantity of final goods by choosing the optimal mix of input varieties. Input demand

functions feature a constant elasticity of demand:

Zj(t) = N(t)(η−µ)/(µ−1)Y (t)

(

Pj(t)

P (t)

)µ/(1−µ)

, (11)

where Pj(t) is the price of input variety j and P (t) is the unit cost function corresponding
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to equation (10):

P (t) ≡ N(t)µ−η

[

∫ N(t)

0
Pj(t)

1/(1−µ)dj

]1−µ

. (12)

The intermediate goods sector features an endogenously determined number of monop-

olistically competitive firms, each of which produces a single differentiated input. Firm j

rents capital and labor from the household sector to produce gross output according to:

Zj(t) + f ≡ Lj(t)
εLKj(t)

1−εL , 0 < εL < 1, (13)

where f are fixed costs modeled in terms of the output of firm j. Consequently, firms enjoy

(local) internal increasing returns to scale, that is, (Zj(t)+ f)/Zj > 1. The representative

firm maximizes profits by choosing its price and primary factor demands subject to (11).

As a result, the factor demands of firm j are determined by the usual marginal productivity

conditions for labor and capital:

∂Zj(t)

∂Lj(t)
= µ

w(t)P (t)

Pj(t)
, (14)

∂Zj(t)

∂Kj(t)
= µ

rK(t)P (t)

Pj(t)
, (15)

which feature the firm’s markup µ > 1. If η = µ, we get the familiar Dixit-Stiglitz case in

which primary input use by firms is below its social optimal value.13 Following Schmitt-

Grohe (1997), we assume Chamberlinian monopolistic competition, implying that the

instantaneous entry and exit of firms eliminates all pure profits for each firm. Accordingly,

the intermediate input price equals average cost, which implies a constant equilibrium firm

size of Zj ≡ f/(µ− 1), where µ > 1 for the equilibrium to exist. A larger markup thus

implies a smaller equilibrium firm size. If µ→ 1 and f → 0, then the model converges to

a perfectly competitive economy.
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2.3 Government and External Sector

The government is assumed to play a rather simple role in our stylized economy. Govern-

ment spending, G(t), neither yields utility to individuals nor is it productive. We assume

that all spending is financed by lump-sum taxes, that is, G (t) = T (t) for all t ≥ 0.14

In the non-degenerate case of r > α, households use the current account to smooth

consumption (and thus acquire net foreign assets). Foreign financial capital is perfectly

mobile. The change in net foreign assets equals the current account balance:

Ḟ (t) = rF (t) + [Y (t) − C(t) − I(t) −G(t)] , (16)

where the term in square brackets is the trade account, showing that domestic output

less domestic absorption, C(t) + I(t) +G(t), equals net exports, X(t). National solvency

requires: F (t) = −
∫

∞

t X(τ)er(t−τ)dτ, showing that the pre-existing level of net foreign

assets (debt) should equal the present value of trade balance deficits (surpluses).

2.4 Symmetric Perfect Foresight Equilibrium

The supply side of the model is symmetric and can thus be expressed in aggregate terms.

All existing firms in the intermediate goods sector are of equal size, Z̄, and thus charge the

same price and demand the same amounts of capital and labor, that is, Kj(t) = K̄(t) and

Lj(t) = L̄(t). In view of this, (10) yields aggregate output of final goods as an iso-elastic

function of the number of input varieties:

Y (t) = N(t)ηZ̄ = N(t)η f

µ− 1
. (17)
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A higher level of output thus sustains a larger number of firms in the new equilibrium.

Alternatively, by using (17) and (13), we can derive:

Y (t) = Ω0L(t)ηεLK(t)η(1−εL), Ω0 ≡
(

1

µ

)η (

µ− 1

f

)η−1

> 0, (18)

where K(t) ≡ N(t)K̄(t), L(t) ≡ N(t)L̄(t), and Ω0 is a constant. To ensure diminishing

returns to capital accumulation, we impose Assumption 1. Note that this condition is

rather mild. It is easily satisfied for εL = 2/3 and typical values of η (see Section 3.3).

Assumption 1 The Ethier-productivity effects are bounded, that is, χ ≡ 1−η(1−εL) > 0,

implying that ∂2Y (t)/∂K(t)2 = −χ(1 − εL)ηY (t)/K(t)2 < 0.

Equations (17)–(18) show that η determines the degree of external increasing returns to

scale at the aggregate level, whereas µ affects the equilibrium firm size.15

The stock market value of the firm, V (t), equals q(t)K(t). Accordingly, portfolio

equilibrium amounts to A(t) = q (t)K(t) + F (t). For r > α, we assume that there are no

net foreign assets in the initial steady state (i.e., F (0) = 0) so that the physical capital

stock is fully owned domestically.

3 Solving the Model

This section log-linearizes the model around its steady state, analyzes its stability, and

discusses calibration issues.

3.1 Log-linearized Model

To solve the model, we log-linearize it around an initial steady state (Appendix Table 1).

A tilde (˜) denotes a relative change, for example, C̃(t) ≡ dC(t)/C∗, for most variables
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(Appendix A.1). The dynamics of the model can be summarized by two predetermined

variables (i.e., the physical capital stock and financial assets) and two non-predetermined

variables (i.e., Tobin’s q and private consumption):
























˙̃K(t)

˙̃q(t)

˙̃C(t)

˙̃A(t)




















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
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
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






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C̃(t)

Ã(t)


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



















−

























0

0

0

γA(t)

























, (19)

where γA(t) = rωGT̃ (t) is the exogenous policy shock and ωG is the output share of

government spending. The Jacobian matrix (and its typical element δij) is:

∆ ≡

























0 ȳωI

σ 0 0

(1 − εL) ȳ[1 − ηφ (1 − εL)] r (1 − εL) ȳ (φ− 1) 0

0 0 r − α − r−α
ωA

rεLηφ (1 − εL) 0 −r (ωC + εL(φ− 1)) r

























,

where ȳ ≡ Y ∗/(q∗K∗), ωA ≡ r/ȳ, ωC ≡ C∗/Y ∗, and ωI ≡ I∗/Y ∗. The parameter

regulating the strength of the intertemporal labor supply effect is given by:

φ ≡ 1 + θL

1 + θL(1 − ηεL)
≥ 1, (20)

where θL ≡ (1 − L∗)/L∗ ≥ 0 is the ratio of leisure to labor, which also represents the

intertemporal substitution elasticity of labor supply. Labor supply is exogenous if εC = 1,

in which case φ = 1 (because L∗ = 1 and θL = 0). For 0 < εC < 1, labor supply is

endogenous and φ > 1 (since 0 < L∗ < 1 and θL > 0). We find ∂φ/∂η > 0, implying that

the diversity effect magnifies the labor supply effect. To guarantee a positive denominator

of (20), we impose:

Assumption 2 If ηεL > 1, we assume that 0 ≤ θL < θ̄L ≡ 1/(ηεL − 1).
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If ηεL > 1 (due to a large η), φ has a vertical asymptote at θ̄L = 1/(ηεL − 1). On the

interval (0, θ̄L), φ is an increasing function of θL, which exceeds unity.

In the next subsection we show that the model is saddle-point stable for φ values in

the range, 1 ≤ φ ≤ φ̂.16 To streamline the discussion to follow, we provide the following

definitions regarding the strength of the intertemporal labor supply effect:

Definition 1 The labor supply effect is small for 1 < φ < φ̄ ≡ 1/(η(1 − εL)), whereas it

is large for φ̄ < φ ≤ φ̂.

3.2 Stability

The dynamics of the finite horizon model depends crucially on the intertemporal labor

supply effect. The trivial special case of exogenous labor supply (i.e., θL = 0 and φ = 1, so

that δ23 = 0 in (19)) renders the model recursive, that is, the investment system (denoted

by q̃(t), K̃(t)) can be solved completely independently from the savings system (denoted

by C̃(t), Ã(t)). This special case always yields a saddle-point stable steady state. For

θL > 0, however, φ > 1 and δ23 > 0, so that the investment system is non-recursive.

Provided φ < φ̂, we find two negative roots and two positive roots that are potentially

complex valued (with two negative and two positive real parts). Consequently, the system

with endogenous labor supply is also saddle-point stable (Proposition 1). In the stable

complex case, the analytical solution for the transition paths of the variables includes

cosine and sine terms, which give rise to endogenously determined (dampened) cycles

(Appendix A.4).17 Proposition 1 summarizes the local stability properties of the system.

Proposition 1 If φ ∈ [1, φ̂), the overlapping generations model (β > 0) has a unique and

locally saddle-point stable steady state, featuring four characteristic roots that are poten-
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tially complex valued. The complex roots have two negative real parts and two positive real

parts.

Proof See Appendix A.2.1.

Our model nests the infinite horizon case for which β = 0. To ensure the existence of

a steady state for this special case, the knife-edge condition r = α should hold. Notice

that the economy would keep accumulating assets (and cease being small in world capital

markets) if r > α or be depleting assets if r < α. In addition, φ < φ̄ is a necessary

condition for saddle-path stability. As compared to finite horizons, smaller values of η

and θL are permitted in the infinite horizon framework (see also the discussion in Section

3.3). For infinite horizons, the rate of growth of aggregate consumption does not depend

on the holdings of financial assets. Mathematically, in terms of the Jacobian matrix, we

have δ33 = δ34 = 0 (i.e., the third row of ∆ consists of zeros), yielding a singular Jacobian

matrix. Thus, the infinite horizon model introduces a zero root in private consumption

and labor supply, making the steady-state levels of the variables dependent on the initial

stock of financial assets (Proposition 2). Provided labor supply is elastic (i.e., φ > 1

so that δ23 > 0), there is also hysteresis in the physical capital stock and all variables

dependent on it.18

Proposition 2 The infinite horizon model (imposing β = 0 and r = α) features a hys-

teretic steady state. To guarantee saddle-point stability, it is required that φ < φ̄. The four

characteristic roots are real and distinct: h∗1 = 0, −h∗2 = (r −
√
r2 + 4δ12δ21)/2, r

∗
1 = r,

and r∗2 = (r +
√
r2 + 4δ12δ21)/2.
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Proof See Appendix A.2.2.

3.3 Calibration

To study the quantitative significance of the comparative dynamics, a numerical treatment

is pursued. Table 1 shows the parameter values, which are taken from the literature. The

time unit represents a year. We follow Mendoza (1991), who calibrates a dynamic general

equilibrium model for the Canadian economy, in assigning values to δ, εL, r, and θL. In

the benchmark model, the intertemporal substitution elasticity of labor supply (θL) is set

to 2.25. This implies a labor supply effect that is large (i.e., φ = 2.577 and φ̄ ≡ 2.404 <

φ < φ̂ ≡ 2.732). The value of the external economies of scale parameter (η = 1.30) is taken

from Caballero and Lyons (1992). It gives rise to ηεL = 0.88, which implies a downward

sloping labor demand function. We thus do not need to invoke Assumption 2. We also

arrive at χ = 0.584, implying that Assumption 1 is easily satisfied. Following Baxter

and King (1993), public consumption-to-output ratio (ωG) is set to 20 percent. Letendre

(2004) uses roughly the same value for the Canadian economy. Last but not least, we

assume a probability of death (β) of 1.5 percent (cf. Cardia, 1991), so that agents have

an expected life span of 67.7 years.

**** INSERT TABLE 1 ABOUT HERE ****

We have chosen a logarithmic specification for the installation function:19

Ψ(x) ≡ z̄ ln

(

x+ z̄

z̄

)

, (21)

where z̄ is an exogenous constant and x ≡ I/K. From (21) and the definition of σ, we

derive σ = x/(x+z̄), which features an asymptote at x = −z̄. We have set the steady-state

18



value for x at x∗ = 0.11 and choose z̄ = 0.532, implying steady-state adjustment costs of

about 0.2 percent of output. The latter value is roughly in line with that employed by

Mendoza (1991), who calibrates adjustment costs of 0.1 percent of output. The degree of

physical capital mobility is σ = 0.17.

The pure rate of time preference (α) is used as a calibration parameter. Its implied

value is 3.91 percent. Once the parameters are set, all other information on output shares,

Tobin’s q, and the output-capital ratio can be derived.20 We find an investment-output

ratio of 22.2 percent and a consumption-output ratio of 57.8 percent. Given the fixed rate

of interest, our calibration yields rising individual consumption profiles in the finite horizon

model. All four characteristic roots are complex valued. The roots feature two negative

and two positive real parts (i.e., ν, ν̄ = −0.0204 ± 0.0590i and λ, λ̄ = 0.0609 ± 0.0587i,

where i denotes the imaginary unit). Note that in the special case of infinite horizons, we

employ the same fundamental parameters, except that we set β = 0 and r = α = 0.04.

**** INSERT FIGURE 1 ABOUT HERE ****

Figure 1 shows the parameter values for which the model is stable while distinguishing

between real roots (yielding non-cyclical dynamics) and complex roots (yielding cyclical

dynamics). The dashed line represents the upper bound of the stable region in the finite

horizon model (i.e., combinations of η and θL for which φ = φ̂). Panel (a) of Figure 1 shows

that it lies above the dotted line (representing the bound φ̄, which also defines the upper

stability bound for the infinite horizon model), indicating that the stable region is smaller

for infinite horizons. Indeed, the critical η for which the infinite horizon model is still

stable at benchmark values (see the asterisk) lies below the calibration point (denoted by
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C). The latter is situated in the stable, cyclical region, where the cycles are of a first-order

magnitude. The solid line (demarcating the upper bound on the non-cyclical region) shows

that a smaller value of θL needs to be compensated by a higher η to obtain cycles. In the

absence of external increasing returns to scale (i.e., η = 1), we end up on the horizontal

axis of Panel (a), yielding a stable (non-cyclical) outcome. The solid line approaches the

θL-axis only if θL → ∞, whereas it approaches the η-axis at relatively small values (i.e.,

η = 3.11; not drawn). Panel (b) shows that for β = 0 or η = 1 we can never end up

in the cyclical region, reflecting the real nature of the roots. For the benchmark value

of η = 1.30, the infinite horizon model is unstable. Taking a slightly smaller value (i.e.,

η = 1.25), brings us in the saddle-path stable region. The lower part of the figure shows

that for smaller values of η, a higher β is needed to take the economy into the cyclical

range. In sum, all three elements (i.e., endogenous labor supply, external economies of

scale, and finite horizons) are necessary to give rise to cyclical dynamics.

4 The Macroeconomic Effects of Fiscal Policy

This section studies the short-run, transitional, and long-run effects of unanticipated and

permanent fiscal policy shocks (i.e., G̃ > 0) financed by lump-sum taxes. Unanticipated

shocks are defined as shocks for which the dates of announcement and implementation of

the policy change coincide. The sensitivity of the results to alternative parameterizations

is studied. First, an analytical discussion of the long-run results is provided. Next, the

impact and transitional effects are quantified and visualized.
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4.1 Long-Run Analytical Results

The analytical expressions for the long-run allocation effects are obtained by solving (19),

which yields [K̃(∞), q̃(∞), C̃(∞), Ã(∞)]′ = ∆−1Γ, where Γ is the vector of shock variables,

∆−1 is the inverse of ∆, and t→ ∞ denotes the long run. The response of the investment

system is:

K̃(∞)

G̃
=
ηεLφ̄

φ̄− 1

L̃ (∞)

G̃
= −δ12δ23δ34ωG

|∆| > 0,
q̃(∞)

G̃
= 0, (22)

and that of the savings system:

dC(∞)

dG
=
δ34δ12δ21

|∆| S 0,
Ã(∞)

G̃
=
δ33ωG

|∆| > 0, (23)

where δ12 is unambiguously positive and |∆| > 0 denotes the determinant of ∆. For the

case of finite horizons (i.e., r > α), the elements of ∆ take on the following signs: δ33 > 0

and δ34 < 0. We can now demonstrate the importance of the labor supply effect. If

labor supply is exogenous, it follows that δ21 > 0 and δ23 = 0. Consequently, a rise in

public spending does not affect the long-run capital stock (see equation (22)). Equation

(23) shows that public consumption crowds out private consumption one-for-one in the

long run. If labor supply is endogenous (φ > 1 and thus δ23 > 0), the long-run capital

stock and employment both rise. Interestingly, the sign of the effect on long-run private

consumption depends on the size of the labor supply effect. If 1 ≤ φ < φ̄ (so that δ21 > 0)

private consumption falls, whereas for φ̄ < φ < φ̂ (so that δ21 < 0) private consumption

rises. To clarify the long-run relationship between private consumption and employment,

we introduce the following two expressions:21

φ− φ̄

φ̄
K̃ (∞) = (φ− 1) C̃ (∞) , (24)

ηεLL̃ (∞) = (φ− 1)

[

1

φ̄
K̃ (∞) − C̃ (∞)

]

. (25)
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Equation (24) describes long-run capital market equilibrium. As a result of openness,

the long-run supply of capital is horizontal, that is, r̃K(∞) = 0. If φ > φ̄ (φ < φ̄),

long-run capital demand is upward (downward) sloping. In either case, an increase in

private consumption leads to a downward shift in capital demand. Equation (25) describes

long-run labor market equilibrium. Intuitively, an increase in K̃ (∞) boosts equilibrium

employment via demand whilst an increase in C̃ (∞) reduces employment via the fall in

the supply of labor. Using (24)–(25), we can eliminate K̃ (∞) and derive the long-run

relationship between private consumption and employment:

C̃(∞)

L̃(∞)
=

ηεL(φ− φ̄)

(φ− 1)(φ̄− 1)
T 0, φ T φ̄. (26)

As was pointed out above, a fiscal impulse increases both employment and the capital

stock in the long run. In contrast to the perfectly competitive model (for which φ must

be less than φ̄), private consumption rises if the labor supply effect is large (i.e., φ > φ̄).

In this case, equation (24) shows that capital market equilibrium is restored at a higher

level of consumption. Intuitively, a given rise in investment yields more output as a result

Ethier-productivity effects, thereby creating room for a rise in private consumption.

4.2 Quantitative Short-Run and Long-Run Effects

Table 2 summarizes numerical results for the impact effect (recorded at t = 0) and the

long-run effect (taken at t → ∞) of a fiscal shock of size G̃ = 0.1. We consider three

calibrations for the finite horizon case (β > 0): (i) the benchmark calibration of η = 1.30

(yielding a large labor supply effect, that is, φ̄ < φ < φ̂); (ii) the alternative case of

η = 1.25 (generating a small labor supply effect, that is, 1 < φ < φ̄); and (iii) η = 1.00

(in which case there are no external economies of scale). Under infinite horizons (i.e.,

22



β = 0), we consider the latter two calibrations only, owing to the instability of the model

for the benchmark value of η. On the size of output multipliers, we find the following

two results. First, short-run output multipliers are shown to fall short of those found in

the long run irrespective of the type of model. Second, for the benchmark calibration,

long-run output multipliers are substantially bigger than unity, reflecting the presence of

external economies of scale.

**** INSERT TABLE 2 ABOUT HERE ****

External economies of scale increase long-run output multipliers, implying that input

diversity (generated by monopolistic competition) truly matters. But external economies

of scale decrease short-run output multipliers (compare columns (1)–(2) and (3)–(5)).

Because of the Ethier-productivity effects, employment rises by less than without external

economies of scale, thus yielding a smaller output gain. The external economies of scale

(if η = 1.3) are responsible for a rise in long-run private consumption (see also the first

expression of (23) and the surrounding discussion). Long-run private consumption and

employment both rise (see also (26)). Because of the predetermined capital stock, public

consumption crowds out short-run private consumption.

Without Ethier-productivity effects (see columns (1) and (3)),22 we obtain a long-run

output multiplier a little above unity. In this case, the long-run output multipliers of

the finite and infinite horizon models are very similar in size.23 Consumption multipliers

are negative both in the short and long run, which is in line with standard findings in

the literature. Long-run employment effects are smaller and wage effects are larger than

in the benchmark model. Intuitively, without Ethier-productivity effects, the long-run
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capital-labor ratio is unaffected by the fiscal shock, explaining why steady-state wages do

not change.

4.3 Transitional Dynamics

We use the analytical impulse response functions (as derived in Appendix A.4) to plot

impulse-response diagrams for the key macroeconomic variables over 200 years. We first

discuss the dynamic linkages between variables for the benchmark calibration (see the solid

line in Figure 2). On impact, private consumption is crowded out by public consumption,

owing to the rise in lump-sum taxes that is required to balance the government’s bud-

get. Consequently, households supply more labor (via the negative wealth effect in labor

supply), which pushes down wages in the short run (not shown in the figure). Given the

predetermined capital stock in the short run, the capital-labor ratio falls and output rises.

Tobin’s q rises, reflecting a rise in the marginal productivity of capital. Accordingly, pri-

vate investment rises. The combined increase in investment and public spending exceeds

the fall in private consumption thereby boosting domestic absorption. Because the output

increase falls short of the rise in domestic absorption in the short run, the trade account

swings into deficit. Net foreign debt starts accumulating.

**** INSERT FIGURE 2 ABOUT HERE ****

Private investment increases the physical capital stock over time and pushes up the

capital-labor ratio. Since capital and employment are modeled as cooperative factors of

production, the demand for labor will increase too. Consequently, wages rise gradually.

Capital accumulation induces a fall in the marginal product of capital, gradually pushing
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down Tobin’s q. The increment in the capital-labor ratio falls and thus Tobin’s q rises

again over time (and even goes through various cycles). In the new steady state, wages

have risen, owing to an increased capital-labor ratio. Long-run private consumption rises,

a rise in employment induced by capital accumulation. In the new steady state, the current

account is balanced again, so that the trade balance surplus offsets interest payments on

foreign debt. Because of the cyclical feature of the transitional dynamics, time periods

with a negative association between consumption multipliers and output multipliers are

followed by time periods with a positive association.

Figure 2 also presents transition paths for alternative values of θL. The dotted line

shows the value of θL for which the real parts of the stable complex roots turn zero, that is,

θL = 2.5355, in which case we find φ = φ̂ ≡ 2.732. The dynamics of the system can then

be characterized as a vortex, which generates cycles with a constant amplitude. Hence,

there is no steady state. The dashed lines in Figure 2 represent a small value of θL for

which the cycles disappear, owing to characteristic roots that are real. It can be seen that

the bulk of adjustment toward the new steady state takes place during the first 20 years.

The solid line is the benchmark value of θL = 2.25, which shows dampened cycles of a

first-order nature. Long-run output effects are positive and increasing in θL. Furthermore,

the amplitude of the cycles increases for larger values of θL within the feasible region.

Figure 3 plots the impulse response functions for β = 0, β = 0.015, and β = 0.05. Finite

horizons and infinite horizons yield very different transitional dynamics. The transition

is monotonic in the infinite horizon case (dashed line), whereas it is non-monotonic for

finite horizons (solid and dotted lines). Infinitely lived households face flat individual

consumption profiles, represented by the horizontal dashed line in the consumption panel.

This economy gradually accumulates domestic capital over time, explaining the smooth
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rise in output. In the finite horizon model, the long-run output effects of fiscal policy are

unaffected by β (see the coinciding dotted and solid lines). Intuitively, the rate of interest

is fixed, which pins down the capital-labor ratio and thus the long-run marginal product

of capital. The size of β, however, does affect the transitional dynamics. A larger β gives

rise to a less pronounced peak in the output path.

**** INSERT FIGURE 3 ABOUT HERE ****

5 Conclusions

The paper has analyzed the dynamic macroeconomic effects of fiscal policy shocks. To this

end, a Blanchard-Yaari model for a small open economy is extended to include: (i) monop-

olistic competition in the intermediate goods sector (yielding Ethier-productivity effects

in the final goods sector); and (ii) endogenous intertemporal labor supply. Such a frame-

work gives rise to an endogenously determined (non-hysteretic) steady state, whereas the

standard infinite horizon model features hysteresis. The comparative dynamic properties

of the finite horizon model are compared with those of an infinitely lived representative

agent model.

A number of key results can be extracted from the analysis. The first is that finite

and infinite horizons give rise to very different impulse responses of a fiscal shock. The

transition paths in the finite horizon case feature endogenously determined (dampened)

cycles of a first-order nature. All three elements (i.e., endogenous intertemporal labor

supply, Ethier-productivity effects, and finite horizons) are necessary to obtain cyclical

dynamics. In the benchmark calibration, the infinite horizon model is unstable, suggesting

that finite horizons extend the parameter range for which a stable steady state materializes.
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Intermediate values of the Ethier parameter (for which both models are stable) give rise

to cycles of a second-order nature in the finite horizon model, whereas the transition is

monotonic in the infinite horizon case. The two models deliver virtually identical impulse

responses if the Ethier-productivity effect is switched off. Consequently, the often assumed

approximate validity of infinite horizon models is tenuous in an environment characterized

by Ethier-productivity effects.

A second result is that the sign of steady-state output multipliers of fiscal policy

shocks is robust to parameter changes. Both long-run and short-run output multipliers

are positive, where long-run output multipliers always exceed short-run output multipli-

ers. The size of output multipliers, however, is affected by alternative parameterizations.

Stronger Ethier-productivity effects boost output multipliers and more so in the infinite

horizon model. Note that imperfect competition in itself does not affect the size of output

multipliers. Smaller intertemporal substitution elasticities of labor supply reduce output

multipliers, possibly below unity.

Another key result is that the sign of steady-state consumption multipliers is not

robust to parameter changes. In the benchmark calibration, a fiscal impulse increases

private consumption, reflecting strong Ethier-productivity effects. The latter increase the

productivity of inputs, implying that a given rise in investment yields a larger increase in

the economy’s resources. In this context, a rise in public spending and investment does

not have to come at the expense of private consumption. For small Ethier-productivity

effects, however, we obtain the classic result of a negative private consumption multiplier.

There are of course many aspects of fiscal policy that have not been addressed here,

such as the intergenerational welfare effects of fiscal policy, the output effects of anticipated

fiscal shocks, and the optimal level of public spending. We leave these extensions for further
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research.
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Appendix

A.1 Log-linearization

Log-linearizing the key expressions of the finite horizon model of Section 2 around an

initial steady state (assuming that F = 0 initially) yields Appendix Table 1. The following

notational conventions are employed. A tilde (˜) denotes a relative change, for example,

C̃(t) ≡ dC(t)/C∗, for most variables. Financial assets (i.e., A(t) and F (t)), however,

are scaled by steady-state output and multiplied by r, for example, Ã(t) ≡ rdA(t)/Y ∗.

Time derivatives are defined as ˙̃C(t) ≡ dĊ(t)/C∗, except for financial assets, for example,

˙̃A(t) ≡ rdȦ(t)/Y ∗.

Conditional on the state variables and the policy shocks, the static part of the model

can be condensed to the following quasi-reduced form expressions:

Ỹ (t) = ηφ (1 − εL) K̃(t) − (φ− 1)C̃(t), (A.1)

ηεLL̃(t) = (φ− 1)
[

η(1 − εL)K̃(t) − C̃(t)
]

, (A.2)

ηεLw̃(t) = (ηεL − 1)Ỹ (t) + η(1 − εL)K̃(t), (A.3)

r̃K(t) = [ηφ(1 − εL) − 1]K̃(t) − (φ− 1)C̃(t). (A.4)

Equation (A.1) is obtained by using (AT1.6), (AT1.9), and (AT1.10). Using (A.1) and

(AT1.6) we can also solve for L̃(t), which yields (A.2). Equation (A.3) is derived from

(AT1.6) and (AT1.10). The expression for the rental rate follows from combining (AT1.7)

and (A.1). Given the level of private consumption, the capital demand curve slopes down-

ward if 1 < φ < φ̄, but slopes upward for φ̄ < φ < φ̂ (Definition 1).
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A.2 Stability

Using (A.1)–(A.2) and the expressions in Appendix Table 1, the system of equations can

be written as in (19). Proposition 1 pertains to the general finite horizon case, whereas

Proposition 2 considers infinite horizons.

A.2.1 Finite Horizons (Proposition 1)

For the general case of finite horizons, the following non-zero elements of ∆ have an

unambiguous sign:

δ12, δ22, δ33, δ41, δ44 > 0, (A.5)

δ34, δ43 < 0. (A.6)

The sign of δ21 depends on the strength of the labor supply effect:

δ21 ⋚ 0, φ R φ̄ ≡ 1

η(1 − εL)
. (A.7)

If labor supply is endogenous (i.e., φ > 1), we can also determine that δ23 > 0.

Solving the dynamic system (19) gives rise to a characteristic polynomial of the fourth

order:

P (s) ≡ |sI − ∆| = ϕ (s)ψ (s) − δ12δ23δ34δ41 = 0, (A.8)

where I is the identity matrix and ϕ (s) and ψ (s) are:

ϕ (s) ≡ (s− δ33) (s− δ22) − δ34δ43, (A.9)

ψ (s) ≡ s (s− δ22) − δ12δ21. (A.10)

We can rewrite P (s) as:

P (s) = s4 + a3s
3 + a2s

2 + a1s+ a0 = 0, (A.11)
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where the a′is are:

a3 ≡ −tr(∆) = −(2δ22 + δ33) = −(3r − α) < 0,

a2 = δ222 − δ12δ21 + 2δ22δ33 − δ34δ43 ≷ 0,

a1 = δ12δ21(δ22 + δ33) + δ22 [δ34δ43 − δ22δ33] ≷ 0,

a0 ≡ |∆| = −δ12 [δ12(δ22δ33 − δ34δ43) + δ23δ34δ41]

=
r

ωA

ȳ2ωI

σ
(1 − εL) (r − α)

[

ωG (φ− 1) + φχ (ωC − ωA)
]

> 0.

Note that we have made use of −tr(∆) = −
(

ν + ν̄ + λ+ λ̄
)

and |∆| = νν̄λλ̄, where ν̄ and

λ̄ are the characteristic roots of the investment system and ν and λ are the roots of the

savings system. If all roots are complex, we find:

ν ≡ −h∗ + θνi, ν̄ ≡ −h∗ − θνi, λ ≡ r∗ + θλi, λ̄ ≡ r∗ − θλi, (A.12)

where an overbar denotes its complex conjugate and i is the imaginary unit. We define h∗

and r∗ to be positive. The first terms of the roots in (A.12) represent the real parts.24 If

the roots are real, the cyclical terms, θk, disappear from (A.12).

The positive determinant (see a0 > 0) may either indicate two positive roots and two

negative roots or four positive roots (in which case the system is unstable). The case

of four negative roots—giving rise to an indeterminate steady state (see Benhabib and

Farmer, 1994, p. 30)—is excluded because of the positive trace of ∆ (i.e., tr(∆) > 0).

To prove local stability, we can use Routh’s criterion (cf. Shi and Epstein, 1993), which

considers the number of sequential sign changes in the first column of the Routh scheme

as an indicator of the number of unstable roots. The first column of the Routh scheme

corresponding to (A.11) is:

1, a3, b1, c1, a0, (A.13)
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where we have used that a4 = 1. The coefficients b1 and c1 are defined as:

b1 ≡ a2 −
a1

a3
, c1 ≡ a1 −

b2
b1
a3, b2 = a0. (A.14)

We note from (A.11) that a3 < 0, generating already one sign change when we move from

the first to the second element on the left-hand side of (A.13). The signs of b1 and c1 are

not determined yet, because we do not know the signs of a1 and a2. This gives rise to four

possible cases: (i) a1 > 0 and a2 > 0; (ii) a1 < 0 and a2 < 0; (iii) a1 > 0 and a2 < 0; and

(iv) a1 < 0 and a2 > 0. It is immediately evident that cases (i)–(ii) yield unambiguously

two sign changes in (A.13). As a result, we find two stable roots and two unstable roots.

The sign changes in case (iii) are as follows. If b1 > 0, we find c1 > 0, giving rise to two

sign changes. If b1 < 0 then c1 ≶ 0. In either case, there are just two sign changes. This

leaves us with case (iv) for which further restrictions have to be imposed to determine the

number of sign changes. If b1 < 0, we find two sign changes. Conditional on b1 > 0 and

φ < φ̂, we get c1 > 0, thus yielding two sign changes. Thus, for 1 6 φ < φ̂, the equilibrium

is unique and saddle-path stable.

A.2.2 Infinite Horizons (Proposition 2)

For infinite horizons, we find δ33 = δ34 = 0, so that the third row of ∆ consists of zeros.

The polynomial takes the form:

P (s) ≡ s(s− δ22)
[

s2 − δ22s− δ12δ21
]

= 0. (A.15)
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The roots are thus real (assuming that φ < φ̄) and distinct:

h∗1 = 0, (A.16)

−h∗2 =
δ22 −

√

δ222 + 4δ12δ21
2

, (A.17)

r∗1 = δ22, (A.18)

r∗2 =
δ22 +

√

δ222 + 4δ12δ21
2

, (A.19)

yielding tr(∆) = 2r. If the labor supply effect is small (i.e., φ < φ̄), it follows readily that

δ21 ≡ (1 − εL) ȳ[1 − ηφ (1 − εL)] > 0. Because δ12 > 0 and δ22 > 0, the discriminant in

(A.17) and (A.19) is positive so that
√

δ222 + 4δ12δ21 > δ22 > 0. We thus find that −h∗2 < 0

and r∗2 > 0. The steady state is well defined because the number of non-predetermined

variables equals the number of roots with strictly positive real parts (cf. Giavazzi and

Wyplosz, 1985 ). For φ ≥ φ̄, the discriminant may turn negative, so that −h∗2 and r∗2 are

complex conjugates with real part δ22 > 0. Because the real part is positive, the steady

state is unstable.

A.3 Solving for the Comparative Dynamics

The Laplace transform method of Judd (1982) is used to solve the model. By taking the

Laplace transform of (19), and noting that K̃(0) = 0 and Ã (0) = ωAq̃ (0), we obtain:

Λ(s)

























L{K̃, s}

L{q̃, s}

L{C̃, s}

L{Ã, s}

























=

























0

q̃(0)

C̃(0)

ωAq̃ (0) − L{γA, s}

























, (A.20)
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where Λ(s) ≡ |sI−∆| and L denotes the Laplace transform operator.25 By pre-multiplying

both sides of (A.20) by

Λ(s)−1 ≡ 1

(s− ν)(s− ν̄)(s− λ)(s− λ̄)
adj Λ(s), (A.21)

and rearranging we find the following expression in Laplace transforms:

(s− ν)(s− ν̄)

























L{K̃, s}

L{q̃, s}

L{C̃, s}

L{Ã, s}

























=

adj Λ(s)

























0

q̃(0)

C̃(0)

ωAq̃ (0) − L{γA, s}

























(s− λ)(s− λ̄)
. (A.22)

The adjoint matrix is equal to:

adj Λ(s) ≡

























(s− δ22)ϕ (s) δ12ϕ (s) δ12δ23 (s− δ22) δ12δ23δ34

δ21ϕ (s) + δ23δ34δ41 sϕ (s) δ23s (s− δ22) δ23δ34s

δ34δ41 (s− δ22) δ12δ34δ41 (s− δ22)ψ (s) δ34ψ (s)

δ41 (s− δ22) (s− δ33) δ12δ41 (s− δ33) δ43ψ (s) + δ12δ23δ41 (s− δ33)ψ (s)

























.

A.4 Analytical Impulse Responses

This section derives analytical impulse response functions of fiscal shocks. The mathemat-

ical expressions pertain to the case of complex roots. We can easily show that both the

impact and long-run results are still valid even if the stable roots are real and distinct (the

unstable roots can be complex or real). In the latter case, the expressions for the transition

terms differ from those under complex roots because the cyclical terms disappear.26
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A.4.1 Impact Effects

The jumps in C̃(0) and q̃ (0) can be derived from (A.22). Because the rank of adj Λ(s)

equals 1 (for s = λ, λ̄) either row of the matrix can be used. Using the first row of adjΛ(s),

for example, we get a system of two equations in C̃(0) and q̃(0), which can be solved to

yield:









q̃ (0)

C̃ (0)









= δ23δ34









ϕ (λ) + δ23δ34ωA δ23 (λ− δ22)

ϕ
(

λ̄
)

+ δ23δ34ωA δ23
(

λ̄− δ22
)









−1 







L{γA, λ}

L{γA, λ̄}









. (A.23)

A.4.2 Transition Paths

The analytical expressions for the transition paths (see (A.24)–(A.27) below), feature tem-

porary transition terms and a general adjustment term, which are specified in Definitions

2–3. The transition and adjustment terms consist of exponential functions weighted by

functions generating periodic cycles:

Definition 2 The first temporary transition term,

T1 (h∗, θν , t) ≡
1

θν
e−h∗t sin θνt,

has properties: (i) T1 (h∗, θν , 0) = 0; and (ii) limt→∞ T1 (h∗, θν , t) = 0.

Definition 3 The second temporary transition term,

T2 (h∗, θν , t) ≡ e−h∗t

[

cos θνt−
h∗

θν
sin θνt

]

,

has properties: (i) T2 (h∗, θν , 0) = 1; and (ii) limt→∞ T2 (h∗, θν , t) = 0.

Definition 4 The general adjustment term is given by:

A (h∗, θν , t) ≡
1

h∗2 + θ2
ν

[

1 − e−h∗t

(

cos θνt+
h∗

θν
sin θνt

)]

,
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which has properties: (i) A (h∗, θν , 0) = 0; (ii) limt→∞ A (h∗, 0, θν , t) = 1/
[

(h∗)2 + θ2
ν

]

;

and (iii) limt→∞ A (h∗, θν , t) = 0.

We first study transition in the investment system. The transition path for the capital

stock is derived by taking the inverse Laplace transform of the first row of (A.22):

K̃ (t) = δ12q̃ (0)T1 (h∗, θν , t) −
δ12δ23δ34rωGG̃

λλ̄
A (h∗, θν , t) . (A.24)

Similarly, we can derive the path for Tobin’s q:

q̃ (t) = q̃ (0)T2 (h∗, θν , t) +
[

(

λ+ λ̄− δ22 − δ33
)

q̃ (0) + δ23C̃ (0)
]

T1 (h∗, θν , t) . (A.25)

The second term in (A.24) drops out for exogenous labor supply (i.e., δ23 = 0) or for

infinite horizons (i.e., δ34 = 0) or both. In addition, the cosine and sine terms disappear

from the transition terms for these cases.27 In this context, the adjustment speed to the

new steady state is driven by h∗.

We now turn to the savings system. The paths for private consumption and financial

capital are:

C̃ (t) =
[

δ34ωAq̃ (0) +
(

λ+ λ̄− 2δ22
)

C̃ (0)
]

T1 (h∗, θν , t)

+C̃ (0)T2 (h∗, θν , t) +
δ34δ12δ21rωGG̃

λλ̄
A (h∗, θν , t) , (A.26)

Ã (t) =
[

ωA

(

λ+ λ̄− δ22 − δ33
)

q̃ (0) + δ43C̃ (0)
]

T1 (h∗, θν , t)

+ωAq̃ (0)T2 (h∗, θν , t) −
δ33δ12δ21rωGG̃

λλ̄
A (h∗, θν , t) . (A.27)

Note that equations (A.1)–(A.3) can be used to derive the transition paths for Y (t), L(t),

and w(t). The paths for F (t) and I(t) follow from (AT1.12) and (AT1.8), respectively.
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Appendix Table 1: The Log-linearized Model

˙̃K(t) = ȳωI [Ĩ(t) − K̃(t)] (AT1.1)

˙̃q(t) = rq̃(t) − (1 − εL) ȳ
(

Ỹ (t) − K̃(t)
)

(AT1.2)

˙̃C(t) = (r − α)
[

C̃(t) − (1/ωA)Ã(t)
]

(AT1.3)

˙̃A(t) = r
[

Ã (t) + εL(w̃(t) + L̃(t)) − ωT T̃ (t) − ωCC̃(t)
]

(AT1.4)

0 = ωGG̃(t) − ωT T̃ (t) (AT1.5)

L̃(t) = Ỹ (t) − w̃(t) (AT1.6)

r̃K(t) = Ỹ (t) − K̃(t) (AT1.7)

q̃(t) = σ[Ĩ(t) − K̃(t)] (AT1.8)

L̃(t) = θL

[

w̃(t) − C̃(t)
]

(AT1.9)

Ỹ (t) = η
[

εLL̃(t) + (1 − εL)K̃(t)
]

(AT1.10)

(

η − 1

η

)

Ỹ (t) = εLw̃(t) + (1 − εL)r̃K(t) (AT1.11)

Ã(t) = ωA

[

q̃(t) + K̃(t)
]

+ F̃ (t) (AT1.12)

Notes: The following definitions are used: εL ≡ w∗L∗/Y ∗, ȳ ≡ Y ∗/(q∗K∗), ωA ≡ r/ȳ, ωC ≡ C∗/Y ∗,

ωI ≡ I∗/Y ∗, ωG ≡ G∗/Y ∗, ωT ≡ T ∗/Y ∗, and σ ≡ −(I/K)∗(Ψ′′/Ψ′) > 0. Asterisks indicate steady-

state values of variables. A tilde (˜) denotes a relative change, for example, C̃(t) ≡ dC(t)/C∗ for most

variables. Financial assets (i.e., A(t), F (t)), however, are scaled by steady-state output and multiplied by

r, for example, Ã(t) ≡ rdA(t)/Y ∗.

37



Table 1: The Model Parameters

Parameter β δ εL η ωG r θL z̄

Value 0.015 0.100 0.680 1.300 0.200 0.040 2.250 0.532
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Table 2: Allocation Effects in the Finite and Infinite Horizon Model

Infinite horizons (β = 0) Finite horizons (β > 0)

η = 1.00 η = 1.25 η = 1.00 η = 1.25 η = 1.30

(1) (2) (3) (4) (5)

dY (0)
dG 0.4514 0.0902 0.4503 0.1625 0.0342

dY (∞)
dG 1.1417 3.2168 1.1194 1.4505 1.5197

dC(0)
dG −0.2931 −0.0364 −0.2924 −0.0656 −0.0125

dC(∞)
dG −0.2931 −0.0364 −0.2874 −0.0164 0.0402

dI(0)
dG 0.4103 0.2240 0.4108 0.3352 0.2507

dI(∞)
dG 0.2539 0.7154 0.2490 0.3226 0.3380

dX(0)
dG −0.0053 −0.0088 −0.6682 −1.1070 −1.2040

dX(∞)
dG 0.0014 0.0123 0.1578 0.1443 0.1415

L̃(0)

G̃
0.0374 0.0212 0.1324 0.0382 0.0077

L̃(∞)

G̃
0.2283 0.4541 0.2239 0.2048 0.2008

K̃(0)

G̃
0 0 0 0 0

K̃(∞)

G̃
0.2283 0.6434 0.2239 0.2901 0.3004

w̃(0)

G̃
−0.0425 −0.0032 −0.0424 −0.0057 −0.0009

w̃(∞)

G̃
0 0.1892 0 0.0853 0.1031

Notes: Unless indicated otherwise, all parameters are set at their benchmark

values (see Table 1). The infinite horizon model sets r = α and β = 0. The finite

horizon model is represented by r > α and β = 0.015. The benchmark calibration

of η = 1.30 yields an unstable outcome in the infinite horizon model (see also

Figure 1), explaining why this column is not presented.
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Figure 1: Stability Regions for Various Values of η, θL, and β
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the solid line and the dashed line represents parameter combinations for which the finite horizon model yields stable, cyclical dynamics. C denotes the calibration
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Figure 2: Permanent Spending Shock (η = 1.30, Various Values of θL)
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Notes: θL takes on the values 0.50 (dashed line), 2.25 (solid line), and 2.5355 (dotted line),

respectively. The other parameters are set at their benchmark values.
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Figure 3: Permanent Spending Shock (η = 1.25, Various Values of β)

(a) q̃(t) (b) Ỹ (t)
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Notes: η is set to 1.25 and β takes on the values 0 (dashed line), 0.015 (solid line), and 0.050

(dotted line), respectively. The other parameters are set at their benchmark values.
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Notes

1. The Stability and Growth Pact applied to the third stage of Economic and Mone-

tary Union, which began on January 1, 1999. The Stability and Growth Pact was

implemented to ensure that EU member states maintain budgetary discipline after

the introduction of the euro.

2. There are many remotely connected contributions. Buiter (1981), Frenkel and Razin

(1987), and Buiter and Kletzer (1991) study public spending policy in two-country

models. Cardia (1991) and Mendoza (1991) analyze fiscal policy in a real business

cycle (RBC) model. Giovannini (1988), Sen and Turnovsky (1989, 1990), and Boven-

berg (1993) also employ small open economy models, but focus on tax or tariff policy

rather than on public spending policy.

3. Devereux et al. (1996), Heijdra (1998), and Heijdra and Ligthart (2007) analyze

fiscal policy in a closed economy in which goods markets are imperfectly competitive.

The first paper takes a stochastic RBC approach, whereas the latter two assume a

deterministic setting.

4. If the rate of interest exceeds (falls short of) the pure rate of time preference, house-

holds permanently accumulate (deplete) foreign assets. To obtain a steady state,

the exogenous world rate of interest should equal the pure rate of time preference.

See Turnovsky (2002).

5. The steady state of the infinite horizon model depends on the initial conditions. This

implies that temporary shocks will have permanent effects on the economy, that is,

the equilibrium dynamics possess hysteresis (or non-stationarity in the stochastic

43



environment of an RBC model).

6. Authors have used various specifications of overlapping generations. Giovannini

(1988), Bovenberg (1993), and Cardia (1993) also use the Blanchard-Yaari frame-

work. Buiter (1981) and Buiter and Kletzer (1991) employ a Diamond (1965)-style

life-cycle model.

7. Schmitt-Grohe and Uribe (2003) consider four instruments to arrive at an endoge-

nously determined steady state: (i) an endogenous discount factor; (ii) a debt-elastic

interest premium; (iii) convex portfolio adjustment costs; and (iv) complete asset

markets.

8. Employing habit formation as a stationarity-inducing device in a framework of infi-

nitely lived households, Karayalçin (2003) also finds cycles of a first-order magnitude.

9. The existence of imperfect competition is a necessary but not a sufficient condition

for this result. Indeed, in the absence of Ethier-productivity effects, finite and in-

finite horizons yield very similar impulse responses originating from a fiscal shock,

supporting the widely held view that finite horizons can be approximated by infinite

horizons (see Bernheim, 1987).

10. Rising individual consumption profiles imply a positive stock of financial assets in

the initial equilibrium. By using (5) in steady state, we arrive at (r − α)C∗ =

βεC(α + β)A∗, where asterisks indicate steady-state values of variables. For the

general case of β > 0 and r − α > 0, we find A∗ > 0.

11. We use C(t) = εC(α + β)[A(t) +H(t)] and C(t, t) = εC(α + β)H(t), where H(t) is

“full” human wealth, that is, the after-tax value of the household’s time endowment:
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H(t) ≡
∫

∞

t [w(τ) − T (τ)] e(r+β)(t−τ)dτ.

12. Without adjustment costs we have Ψ (·) = I(t)/K(t) (and thus σ = 0), which

implies q = 1 (from (8)). As a result, q(t) and K(t) adjust instantaneously to their

steady-state levels, reflecting an infinite rate of investment in an infinitesimal small

time period (i.e., perfect physical capital mobility). Consequently, (9) reduces to

rK = r + δ, which is the familiar rental rate derived in a static framework.

13. See Broer and Heijdra (2001) for an analysis of the case in which η 6= µ. They

show that if η > µ, it is socially optimal for society to produce many varieties. In

that case, lump-sum subsidies to firms are required to take the decentralized market

equilibrium to the social optimal outcome.

14. We do not explicitly distinguish between lump-sum tax and debt financing. See

Heijdra and Ligthart (2006, 2007) for analyses pertaining to debt financing in a

small open economy and the closed economy, respectively.

15. Coto-Martinez and Dixon (2003) do not distinguish between internal and external

economies of scale.

16. The bound φ̂ is discussed in Appendix A.2.1 and numerically determined in Figure 1.

17. If φ > φ̂, the real parts of the complex roots turn positive, thus yielding an outright

unstable solution.

18. In their analysis of the current account effects of tariff policy, Sen and Turnovsky

(1990) also find hysteresis in the capital stock.

19. It is easy to see that limz̄→∞ Ψ (x) = x, that is, the installation function is linear
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(and adjustment costs are zero) for large z̄.

20. Equations (7) and (8) are solved, using (21), to yield (I/K)∗ = z̄
[

e(δ/z̄) − 1
]

and

q∗ = e(δ/z̄).

21. Equations (24) and (25) are obtained from Appendix equations (A.4) and (A.2),

respectively.

22. The case without Ethier-productivity effects is represented by η = 1, which implies

φ = 1.89 < φ̄ = 2.404.

23. The transition paths are also virtually identical explaining why we will not cover the

special case of η = 1 in Section 4.3.

24. Recall that the exponential form of any complex number is e(b±θki)t = ebt [cos θkt± i sin θkt],

where k = {ν, λ} and b = {−h∗, r∗}. It follows that the sign of the real part (denoted

by b) dictates stability.

25. L{G, s} is the Laplace transformation of G(t) evaluated at s, which is given by

L{G, s} ≡
∫

∞

0 G(t)e−stdt. Intuitively, L{G, s} represents the present value of G(t)

using s as the discount rate.

26. The details of the derivations are more straightforward than for complex roots and

can be found in Heijdra and Ligthart (2008).

27. The cyclical terms also drop out from the finite horizon model if θL is sufficiently

low such that the stable roots are real and distinct. See Heijdra and Ligthart (2008)

for a derivation of the expressions.
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