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1 Introduction

In this chapter we study optimal environmental policy using a dynamic model featuring

interactions between the ecological system and the macro-economy. In line with the recent

environmental literature, we assume that the ecological process is nonlinear such that (i)

ecosystems do not respond smoothly to gradual changes in dirt flows and abrupt “catas-

trophic shifts” may be possible in the vicinity of threshold points, (ii) there may be multi-

ple stable equilibria, and (iii) irreversibility and hysteresis are both possible (Scheffer et al.,

2001). The nonlinear ecological dynamics described by Scheffer (1998) and employed by us

now carries the name Shallow-Lake Dynamics (SLD hereafter).1

To describe the macroeconomic system we use a standard Ramsey-Cass-Koopmans model

of a closed economy. Households practice intertemporal consumption smoothing and accu-

mulate capital that is rented out to perfectly competitive firms. Following Bovenberg and

Heijdra (1998, 2002), we assume that the capital stock is the polluting production factor.

Households enjoy living in a clean environment but act as free riders and thus fail to inter-

nalize the external effects caused by their capital accumulation decisions.

We assume that the initial steady-state confronting the policy maker has the following

features. First, there is no pre-existing policy regarding the environment, i.e. public abate-

ment activities are absent and there is no externality-correcting tax on capital in place. Sec-

ond, the flow of dirt is such that there exist two stable ecological steady-state equilibria.

Third, the ecological system has settled down at the “bad” equilibrium featuring a high

stock of pollution. In this setting the policy maker is in principle able to engineer substantial

welfare gains by choosing the appropriate mix of capital taxation and abatement activities.

The chapter is structured as follows. Section 2 presents the model, consisting of an eco-

logical system featuring SLD and an economic system. Section 3 studies the first-best social

optimum. The optimal environmental policy can be decentralized with the aid of time-

varying abatement and capital taxation. Section 4 studies optimal environmental policy in a

second-best setting. In particular we consider the repercussions of two types of constraints

on the policy maker’s choices, namely the unavailability of instruments and the insufficient

flexibility of a given instrument. Finally, in Section 5 we offer a brief summary of the main

results, whilst the Appendix presents some computational details.

1There is an emerging literature on the SLD approach as it is used in economics – see Heijdra and Heijnen
(2013) for an extensive list of references.
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2 The model2

We model the environment as a renewable resource stock, the quality of which depends

negatively on the flow of dirt, D(t), that is generated in the production process:

D(t) ≡ κK(t)− γG(t), κ > 0, γ > 0, (1)

where K(t) is the private capital stock (see below), and G(t) represents abatement activities

by the government. Capital is the polluting factor of production, just as in Bovenberg and

Heijdra (1998, 2002). By definition the flow of dirt must be non-negative (D(t) ≥ 0). Denot-

ing the stock of pollution at time t by P(t), we write the general form of the emission equation

as:

Ṗ(t) = −Φ (P (t)) + D(t), (2)

where Ṗ(t) ≡ dP(t)/dt and Φ (P (t)) is a nonlinear function whose definition and properties

are stated in the following Lemma.

Lemma 1. Let Φ (x) for x ≥ 0 be given by:

Φ (x) ≡ πx − x2

x2 + 1
,

1

2
< π <

3
√

3

8
.

The first- and second derivatives of Φ (x) are given by:

Φ′ (x) ≡ π − 2x

[x2 + 1]2
, Φ′′ (x) ≡ 2

[

3x2 − 1
]

[x2 + 1]3
.

The following properties can be established: (i) Φ (x) = 0 for x = 0 and Φ (x) > 0 for x > 0; (ii)

Φ (x) attains a local maximum at x1 such that Φ′ (x1) = 0 and Φ′′ (x1) < 0 and a local minimum

at x2 such that Φ′ (x2) = 0 and Φ′′ (x2) > 0; (iii) Φ′ (x) > 0 for 0 < x < x1 and x > x2; (iv)

Φ′ (x) < 0 for x1 < x < x2.

The isocline for the stock of pollution is depicted in Figure 1. Given the range of val-

ues of π, the pollution isocline is S-shaped, with sharp turns at points C and B. The dirt

levels associated with these threshold point are denoted by, respectively, DL and DU . The

vertical arrows depict the dynamic forces operating on the stock of pollution off the isocline.

The upward sloping branches of the isocline are locally stable: Lemma 1(iii) establishes that

∂Ṗ (t) /∂P (t) = −Φ′ (P (t)) < 0 there. In contrast, the downward sloping (dashed) branch

is unstable because Lemma 1(iv) shows that ∂Ṗ (t) /∂P (t) > 0 for these points. For future

reference we state the following Definition.

2Apart from the introduction of a tax on capital, the model used here is identical to the one discussed in more
detail in Heijdra and Heijnen (2013).
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Figure 1: Ecological dynamics

Definition 1. Define the clean branch of the pollution isocline as ΦC (x) ≡ Φ (x) for 0 ≤ x < x1

and the dirty branch as ΦD (x) ≡ Φ (x) for x > x2.

Consider a time-invariant dirt flow D̂. Depending on its magnitude, three regimes are

possible:

• Unique stable and clean steady-state. For 0 ≤ D̂ < DL there exists a unique steady-

state pollution level that is located on the lower branch of the pollution isocline.

• Multiple steady-state pollution levels. For DL ≤ D̂ ≤ DU there exist three ecological

steady-state equilibria, of which two are stable and one is unstable. For example, if

D̂ = 0.04 the stable equilibria are at points A and D in Figure 1 whilst the instable one

is at point E. Which particular steady state is attained depends on initial conditions,

i.e. the ecological model features reversible hysteresis.

• Unique stable and polluted steady-state. For D̂ > DU there exists a unique steady-state

pollution level that is located on the upper branch of the pollution isocline.

To capture the key features of the economic system we formulate a simple general equi-

librium model of the macro-economy. This model describes a closed economy consisting of a

government and representative households and firms who are blessed with perfect foresight.
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The representative household lives forever, and features the following utility functional:

Λ(t) ≡
∫ ∞

t

[

ln C(τ) + εE ln [Ē − P(τ)]
]

· e−ρ(τ−t)dτ, (3)

where C(τ) denotes consumption of private commodities at time τ, E(τ) ≡ Ē − P(τ) > 0

measures the quality of the environment, Ē is some pristine value attained in a non-polluting

society, εE denotes the weight in overall utility attached to environmental amenities, and

ρ > 0 stands for the pure rate of time preference. Since utility is separable in its two ar-

guments, the quality of the environment does not directly affect household consumption.

As the felicity function for private consumption is logarithmic, the model features a uni-

tary intertemporal elasticity of substitution. Without leisure entering utility, labour supply

is exogenously fixed.

Households face the following budget identity:

Ȧ(τ) = r(τ)A(τ) + w(τ)− T(τ)− C(τ), (4)

where r(τ) denotes the real rate of interest on financial assets, w(τ) represents the wage rate,

T(τ) are net lump-sum taxes, and A(τ) stands for real financial assets owned in period τ.

The representative agent chooses paths for C(τ) and A(τ) which maximize (3) subject to

(4) and a solvency requirement of the form limτ→∞ A (τ) e−
∫ τ

t r(s)ds = 0. He takes as given

the stock of financial assets in the planning period, A (t). The optimal consumption level

that the agent chooses at time t is given by:

C(t) = ρ[A(t) + H(t)], (5)

where human wealth, H(t), is defined as:

H(t) ≡
∫ ∞

t
[w(τ)− T(τ)] · e−

∫ τ
t r(s)dsdτ. (6)

The optimal time profile for consumption is given by the Euler equation:

Ċ(τ)

C(τ)
= r(τ)− ρ, τ ≥ t. (7)

The intuitive interpretation of these expressions is as follows. Equation (5) shows that the

agent consumes a constant proportion of total wealth in the planning period, whilst equation

(7) indicates that consumption growth over time is chosen to be equal to the anticipated gap

between the interest rate and the rate of time preference. Finally, the expression in (6) implies

that human wealth is given by the discounted value of after-tax wage payments using the

market rate of interest for discounting purposes. Intuitively it represents the after-tax value
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of the agent’s unitary time endowment.

The production sector of the economy is perfectly competitive. The production function

is Cobb-Douglas, with constant returns to scale to the factors capital, K(t), and labour, L(t):

Y(t) ≡ F(K(t), L(t)) = Ω0K(t)1−εL L(t)εL , Ω0 > 0, 0 < εL < 1, (8)

where Y(t) denotes gross output. The value of the firm, V(t), is given by the present value

of the after-tax cash flow using the market rate of interest for discounting purposes:

V(t) =
∫ ∞

t
[(1 − θ(τ)) [Y(τ)− w(τ)L(τ)]− I(τ)] · e−

∫ τ
t r(s)dsdτ, (9)

where θ (τ) is the capital tax and I (τ) is gross investment. The capital stock evolves accord-

ing to:

K̇(τ) = I(τ)− δK(τ), (10)

where K̇(τ) ≡ dK(τ)/dτ denotes the rate of change in the capital stock and δ is the depreci-

ation rate (δ > 0).

The representative firm chooses paths for Y(τ), K (τ), L (τ) and I(τ) which maximize

the value of the firm (9) subject to the production function (8), and the capital accumulation

identity (10). The capital stock in the planning period, K (t), is taken as given. The first-order

conditions yield the usual marginal productivity conditions:

∂Y(τ)

∂K(τ)
=

r(τ) + δ

1 − θ(τ)
, (11)

∂Y(τ)

∂L(τ)
= w(τ). (12)

Since we abstract from adjustment costs in investment, the value of equity corresponds to

the replacement value of the capital stock, i.e. V(t) = K(t).

For convenience, the key equations of the core model have been gathered in Table 1.

Equation (T1.1) is the Euler equation (7), whilst equations (T1.5) and (T1.7)–(T1.8) just restate,

respectively (8), (2), and (1). Labour supply is exogenous so L(t) = 1 – see (T1.6). The factor

demand expressions in (11)–(11) have been rewritten by using the production function –

see (T1.3) and (T1.4). Equation (T1.2) is obtained by combining (10) with the goods market

clearing condition for a closed economy, i.e. Y(τ) = C(τ) + I(τ) + G(τ). Finally, in the

absence of government debt, claims on the capital stock are the only assets available, i.e.

A(t) = K(t).

The phase diagram for the economic system is depicted in Figure 2. The initial equilib-

rium, by assumption featuring no public abatement, is at point E0. Steady-state consumption

and the capital stock are given by, respectively, Ĉ and K̂. The equilibrium is saddle-point sta-
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Table 1: The model

Ċ(t)

C(t)
= r(t)− ρ, ρ > 0 (T1.1)

K̇(t) = Y(t)− C(t)− G(t)− δK(t) (T1.2)

[r(t) + δ]K(t) = (1 − εL) [1 − θ(t)]Y(t) (T1.3)

w(t)L(t) = εLY(t) (T1.4)

Y(t) = Ω0L(t)εL K(t)1−εL , Ω0 > 0, 0 < εL < 1 (T1.5)

L(t) = 1 (T1.6)

T(t) = G(t)− θ(t) [Y(t)− w(t)L(t)] (T1.7)

Ṗ(t) = −πP(t) +
P(t)2

P(t)2 + 1
+ D(t),

1

2
< π <

3
√

3

8
(T1.8)

D(t) = κK(t)− γG(t), κ > 0, γ > 0 (T1.9)

Endogenous: consumption, C(t), capital stock, K(t), output, Y(t), interest rate, r(t), wage rate,

w(t), employment, L(t), pollution stock, P(t), dirt flow, D(t). Exogenous: capital tax θ(t) and

government abatement, G(t). Parameters: rate of time preference, ρ, depreciation rate of capi-

tal, δ, labour coefficient in the technology, εL, and scale factor in the technology, Ω0. Ecologi-

cal parameters: lake resilience, π, capital dirt coefficient, κ, and abatement clean-up coefficient, γ.

ble, with SP0 representing the saddle path, and is dynamically efficient, i.e. K̂ is strictly less

than the golden-rule capital stock, K̂GR.

3 First-best social optimum

In the remainder of this chapter we consider optimal environmental policy. The initial situa-

tion facing the policy maker is as follows. First, both the economic and ecological systems are

in a steady-state equilibrium and environmental abatement is zero. Second, the steady-state

dirt flow resulting from the equilibrium capital stock is such that there exist three possible

ecological steady-state equilibria. Third, for otherwise unspecified reasons, the ecological

system has settled down at the “bad” equilibrium featuring a high stock of pollution. In Fig-

ure 2 the initial economic equilibrium is thus at point E0. In Figure 1 the dirt flow equals κK̂

and the ecological equilibrium is located at point D. Given this initial condition, can the pol-

icy maker bring about substantial welfare gains by choosing the appropriate mix of capital

taxation and abatement activities?

In this section we characterize the first-best social optimum, i.e. we study the allocation

that would be selected by a benevolent social planner aiming to maximize lifetime utility of

the representative agent. In the planning period t = 0, the planner chooses paths for C(t),
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Figure 2: Consumption-capital dynamics

P(t), and K(t) (for t ≥ 0) in order to maximize (3) subject to the resource constraint (T1.2),

the emission equation (2), and the dirt flow definition (1). The initial conditions are:

K(0) = K̂, P(0) = P̂B = Φ−1
D (D̂0), (13)

where P̂B is the steady-state pollution level consistent with the upper branch of the pollution

isocline (see Definition 1) and with a dirt flow equal to D̂0 = κK̂ – see point D in Figure 1.

Abatement, the dirt flow, and gross investment must remain non-negative:

G(t) ≥ 0, [D(t) ≡] κK(t)− γG(t) ≥ 0 [I(t) ≡] F (K(t), 1)−C(t)− G(t) ≥ 0. (14)

Dropping the time index, the current-value Hamiltonian can be written as:

H ≡ ln C + εE ln [Ē − P] + λK [F (K, 1)− C − G − δK]

+ λP [−Φ (P) + κK − γG] + ηD [κK − γG] + η I [F (K, 1)− C − G] .

The control variables for this optimization problem are C and G (and thus implicitly D and

I), the state variables are K and P, the co-state variables are λK and λP, and ηD and η I are the

Lagrange multipliers for, respectively, the dirt and investment constraints. The first-order
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conditions are:

∂H
∂C

=
1

C
− (λK + η I) = 0, (15)

∂H
∂G

= − (λK + η I)− γ (λP + ηD) ≤ 0, G ≥ 0, G
∂H
∂G

= 0, (16)

∂H
∂ηD

= κK − γG ≥ 0, ηD ≥ 0, ηD

∂H
∂ηD

= 0, (17)

∂H
∂η I

= F (K, 1)− C − G ≥ 0, η I ≥ 0, η I

∂H
∂η I

= 0, (18)

λ̇K − ρλK = −∂H
∂K

= −κ (λP + ηD)− [FK (K, 1)− δ] λK − η I FK (K, 1) , (19)

λ̇P − ρλP = −∂H
∂P

=
εE

Ē − P
+ λPΦ′ (P) . (20)

The first-best social optimum is characterized by (2), (T1.2), (14), (15)–(20) and the transver-

sality conditions:

lim
t→∞

e−ρtλK(t)K(t) = lim
t→∞

e−ρtλP(t)P(t) = 0. (21)

3.1 Long-run optimum

We first study the long-run properties of the first-best equilibrium. In terms of notation,

hatted variables denote steady-state values and the subscript “ f ” denotes first-best. In the

steady state gross investment is strictly positive, i.e. Î f = δK̂ f > 0 and it follows from (18)

that η̂ I = 0. Depending on the structural parameters and the resulting magnitude of Ĝ f two

cases are possible.

Case 1: With long-run abatement Assume that 0 < Ĝ f < (κ/γ) K̂ f so that η̂D = 0 and

γλ̂P = −λ̂K < 0. It follows that the steady-state first-best equilibrium is given by:

FK(K̂ f , 1) = ρ + δ +
κ

γ
, (22)

ρ + Φ′
C(P̂f ) = γ

εEĈ f

Ē − P̂f

, (23)

F(K̂ f , 1) = Ĉ f + Ĝ f + δK̂ f , (24)

ΦC(P̂f ) = κK̂ f − γĜ f , (25)

where ΦC(x) is the function representing the lower branch of the P-isocline – see Definition

1. The key thing to note is that a (Pigouvian) capital tax can be used to decentralize the first-

best equilibrium. Equation (T1.3) shows that private saving behaviour will result in a steady-

state capital stock such that FK(K̂, 1) = (ρ + δ) /(1− θ̂). By comparing this expression to (22)
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we find that K̂ = K̂ f if and only if the steady-state capital tax is set equal to:

θ̂ f =
κ/γ

ρ + δ + κ/γ
. (26)

The optimal Pigouvian capital tax is feasible (as it satisfies 0 < θ̂ f < 1) and is increasing in

the κ/γ. Intuitively, the more polluting is capital (κ up) and the less potent is abatement (γ

down), the higher is the optimal environmental tax.

Case 2: Without long-run abatement Assume that λ̂K > −γλ̂P so that Ĝ f = 0. Since

K̂ f > 0 it follows that D̂ f > 0 and thus η̂D = 0 also. The first-best steady-state equilibrium

can now be written as:

FK(K̂ f , 1) = ρ + δ − κλ̂PĈ f , (27)

ρ + Φ′
C(P̂f ) = − 1

λ̂P

εE

Ē − P̂f

, (28)

F(K̂ f , 1) = Ĉ f + δK̂ f , (29)

ΦC(P̂f ) = κK̂ f . (30)

Just as for the previous case, a capital tax is needed to decentralize the first-best optimum:

θ̂ f =
−κλ̂PĈ f

ρ + δ − κλ̂PĈ f

. (31)

Since λ̂P < 0 and Ĉ f > 0 it follows that the optimal Pigouvian capital tax is feasible, i.e.

0 < θ̂ f < 1.

3.2 Optimal dynamic allocation

In order to avoid having to deal with a taxonomy of possible cases, we use a parameterized

version of the model to illustrate its main properties. For reasons of comparison we use the

same parameterization as in Heijdra and Heijnen (2013) – see Table 2. For these parameter

values we find that −λ̂K − γλ̂P = −0.9198, i.e. Case 2 is the relevant one and abatement is

not needed in the long run, i.e. Ĝ f = 0. We furthermore compute K̂ f = 2.3177, Ĉ f = 0.7901,

Ŷf = 0.9524, P̂f = 0.0766, and D̂ f = 0.0340. For ease of comparison, we report these values

in column (b) in Table 3. The long-run Pigouvian capital tax is θ f = 0.1066 and consumption,

output, and the capital stock are all lower than in the initial steady-state equilibrium the key

features of which have been reported in column (a) of Table 3.

The dynamic properties of the first-best optimum are illustrated in Figure 3. Details of

the computations are found in the Appendix. There are two critical dates characterizing

the optimal solution, namely the earliest time at which the irreversibility constraint on in-
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Table 2: Structural parameters and steady-state features

Economic system:

ρ = 0.04 δ = 0.07 εL = 0.70 Ω0 = 0.7401

r̂ = 0.04 K̂ = 2.7273 Ŷ = 1.000 Ĉ = 0.8091 Î = 0.1909 G = 0

Ecological system:

π = 0.52 κ = 0.0147 γ = 0.302 εE = 0.9 Ē = 2

DL = 0.0196 DU = 0.0735 D̂0 = 0.04 P̂B = 1.2482 P̂G = 0.0936 PE = 0.6581

vestment ceases to bind, tI = 1.27, and the time at which the dirt constraint becomes slack,

tD = 27.01. Together these dates define the three regimes through which the optimal paths

evolve.

3.2.1 Regime 1

For 0 ≤ t ≤ tI both the dirt flow and gross investment are zero, i.e. D f (t) = 0 and I f (t) = 0.

It follows that abatement is at its maximum feasible level given by G f (t) = (κ/γ)K f (t),

consumption is described by C f (t) = F
(

K f (t), 1
)

− (κ/γ)K f (t), whilst the capital stock

satisfies K̇ f (t) = −δK f (t). By combining these expressions and noting that K (0) = K̂ we

find:

K f (t) = K̂e−δt,

C f (t) = Ŷe−δ(1−εL)t − κ

γ
K̂e−δt,

G f (t) =
κ

γ
K̂e−δt.

The transition paths for K f (t), C f (t), and G f (t) have been depicted in, respectively, panels

(c), (d), and (a) of Figure 3. With the flow of dirt reduced to zero, the stock of pollution falls

according to:

Ṗf (t) = −Φ(Pf (t)).

3.2.2 Regime 2

For tI < t ≤ tD the dirt flow is zero but gross investment is strictly positive, i.e. D f (t) = 0

and I f (t) > 0. Abatement remains at its maximum feasible level, G f (t) = (κ/γ)K f (t).

Since the capital stock is continuous for all t, it follows that the path of abatement is also

continuous throughout this regime. Since the non-negativity constraint for gross investment

ceases to be binding for t > tI , the consumption path follows the Euler equation:

Ċ f (t)

C f (t)
= F

(

K f (t), 1
)

−
(

ρ + δ +
κ

γ

)

,
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Table 3: Quantitative effects of taxation and abatement‡

BM FBSO SBSO

Taxation Abatement
TV TI TV TI

(a) (b) (c) (d) (e) (f)

Ŷ 1.0000 0.9524 0.9524 0.9524 1.0000 1.0000

C(0) 0.8677 1.0000 1.0000 0.6798 0.6933

Ĉ 0.8091 0.7901 0.7901 0.7901 0.8091 0.8091

K̂ 2.7273 2.3177 2.3177 2.3177 2.7273 2.7273

P̂ 1.2482 0.0766 0.0766 0.0766 0.0936 0.0936

Λ(0) −11.9092 −2.7722 −7.7638 −7.9525 −3.2471 −4.3087

θ(0) 0.1234 0.1891 0.8500

θ̂ 0.1077 0.1077 0.1077

G(0) 0.1326 0.1324 0.1166

Ĝ 0.0000 0.0000 0.0000

tE 39.5 28.2 30.0

EV(0) 44.1 17.1 16.2 40.5 34.5

‡BM: parameterized base model. FBSO: first-best social optimum. SBSO: second-best social optimum.

Policy instrument lacking or not sufficiently flexible. TV: time-varying instrument. TI: time-invariant

instrument. Notation: x(0) and x̂ denote, respectively, the impact- and long-run (steady-state) value

of the variable x(t).
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whilst the stocks of capital and pollution evolve according to:

K̇ f (t) = F
(

K f (t), 1
)

− C f (t)−
(

δ +
κ

γ

)

K f (t),

Ṗf (t) = −Φ(Pf (t)).

Consumption is continuous at time tI , i.e. limtրtI
C f (t) = limtցtI

C f (t) = C f (tI), so that

C f (tI) = Ŷe−δ(1−εL)tI − κ
γ K̂e−δtI and K f (tI) = e−δtI K̂ are the initial conditions for the system

of differential equation in C f (t) and K f (t).

3.2.3 Regime 3

At time tD abatement is permanently reduced to zero (G f (t) = 0) and the dirt flow be-

comes positive (as D f (t) = κK f (t)). The value of tD is such that −γλP (tD)C f (tD) = 1.

Again, like the stocks of capital and pollution, consumption is continuous at time tD, i.e.

limtրtD
C f (t) = limtցtD

C f (t) = C f (tD). The optimal path for t > tD is described by:

Ċ f (t)

C f (t)
= FK

(

K f (t), 1
)

− (ρ + δ) + κλP(t)C f (t),

λ̇P(t) =
εE

Ē − Pf (t)
+

[

ρ + Φ′
C(Pf (t))

]

λP(t),

K̇ f (t) = F
(

K f (t), 1
)

− C f (t)− δK f (t),

Ṗf (t) = −Φ(Pf (t)) + κK f (t).

This system converges to the steady state given in (27)–(30).

In passing through the three regimes, the first-best social optimum is decentralized by

means of a tax on capital, θ f (t), which is implicitly defined by:

Ċ f (t)

C f (t)
= (1 − θ f (t))FK

(

K f (t), 1
)

− (ρ + δ) .

As is illustrated in panel (b) of Figure 3, the tax is quite high during the early phase of the

environmental cleanup.

The welfare effect of the first-best optimal policy is considerable. Indeed, as our equiva-

lent variation welfare measure EV(0) in Table 3 reveals, the welfare gain due to the optimal

environmental cleanup amounts to 44.1 percent of initial steady-state consumption.3 De-

spite the fact consumption is lower that its initial level during much of the transition, the

gradual improvement in environmental quality more than compensates for this.

3See Heijdra and Heijnen (2013) for a further discussion of the equivalent variation measure used here.
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Figure 3: The first-best optimal policy

(a) government abatement G(t) (b) capital tax θ(t)
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(c) capital stock K(t) (d) consumption C(t)
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(e) dirt flow D(t) (f) pollution stock P(t)
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Parameters: see Table 2. The initial ecological equilibrium is at point D in panel (b).
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4 Second-best social optimum

In this section we study optimal environmental policy in a second-best setting. In particu-

lar we consider the repercussions of two types of constraints on the policy maker’s choices,

namely the unavailability of instruments and the insufficient flexibility of a given instru-

ment. In subsections 4.1 and 4.2 we assume that the policy maker cannot use the abate-

ment instrument and conducts constrained optimal environmental policy with either a time-

varying capital tax (in subsection 4.1) or a time-invariant (step-wise) capital tax (in subsec-

tion 4.2).

In subsections 4.3 and 4.4 we study the alternative case in which the policy maker cannot

use the tax instrument and is constrained to conduct optimal environmental policy with,

respectively, a time-varying or time-invariant abatement program. The latter case coincides

with the ad hoc policy studied in our earlier paper (Heijdra and Heijnen, 2013).

4.1 Time-varying taxation

The social planner chooses paths for C(t), P(t), and K(t) (for t ≥ 0) in order to maximize (3)

subject to the resource constraint (T1.2), the emission equation (2), and the dirt flow defini-

tion (1). The initial conditions are as given in (13) above, and the non-negativity constraint

on investment in (14) is still relevant. Compared to the first-best policy, however, the abate-

ment instrument is not available, i.e. G (t) = 0 forms an additional constraint. As a result of

this, the dirt flow constraint is slack, i.e. D (t) > 0 for all t. The second-best optimal plan can

be decentralized with the aid of a time-varying tax on capital.

Of course, since abatement is not needed in the long-run first-best social optimum, the

steady-state equilibrium under the second-best equilibrium considered here is still as given

in (27)–(30) above, i.e. K̂TVT
s = K̂ f , ĈTVT

s = Ĉ f , and P̂TVT
s = P̂f , where the subscript “s”

denotes second-best and the superscript “TVT” indicates that the policy is decentralized

with the aid of a time-varying tax. For convenience these quantitative results are reported in

column (c) in Table 3.

Whereas the first- and second-best solutions are identical in the long run, the optimal

transition paths differ substantially for these two cases. The dynamic properties of the

second-best optimum are illustrated in Figure 4. There is one critical date characterizing

the optimal solution, namely tI = 21.46, and there exist two adjustment regimes. Since

there is no abatement, the flow of dirt is proportional to the capital stock and environmental

pollution evolves in both regimes according to:

ṖTVT
s (t) = −Φ(PTVT

s (t)) + κKTVT
s (t).
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Figure 4: Second-best optimal policy: Time-varying taxation

(a) capita tax θ(t)
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(b) capital stock K(t) (c) consumption C(t)
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(d) dirt flow D(t) (e) pollution stock P(t)
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4.1.1 Regime 1

For 0 ≤ t ≤ tI gross investment is zero and the capital stock gradually falls. Since abatement

is also absent, consumption is equal to output. To summarize we find for this regime that:

KTVT
s (t) = K̂e−δt,

CTVT
s (t) = Ŷe−δ(1−εL)t.

These paths have been depicted in panels (b) and (c) in Figure 4. Because consumption

growth in the decentralized equilibrium follows the Euler equation (T1.1) and consumption

growth during this social planning regime equals −δ (1 − εL) we find that the second-best

social optimum can be decentralized with a time-varying capital tax of the following form:

θTVT
s (t) = 1 − ρ + δεL

ρ + δ
e−δεLt.

The capital tax is increasing over time in order to ensure that the gap between the equi-

librium interest rate and the rate of time preference stays constant despite the fact that the

capital stock falls over time. See panel (a) in Figure 4.

4.1.2 Regime 2

For t > tI gross investment is strictly positive (I f (t) > 0) and the consumption path is

characterized by:

ĊTVT
s (t)

CTVT
s (t)

= FK(K
TVT
s (t), 1)− (ρ + δ) + κλP (t)CTVT

s (t),

λ̇P(t) =
εE

Ē − PTVT
s (t)

+
[

ρ + Φ′
C(Pf (t))

]

λP(t)

whilst the stock of capital evolves according to:

K̇TVT
s (t) = F(KTVT

s (t), 1)− CTVT
s (t)− δKTVT

s (t).

Consumption is continuous at time tI , i.e. limtրtI
CTVT

s (t) = limtցtI
CTVT

s (t) = CTVT
s (tI), so

that CTVT
s (tI) = Ŷe−δ(1−εL)tI and KTVT

s (tI) = K̂e−δtI are the initial conditions for the system of

differential equation in CTVT
s (t) and KTVT

s (t). Since the optimal growth rate in consumption

features a downward jump at t = tI and the capital stock is a predetermined variable, the

optimal capital tax exhibits a discrete increase at that time – see panel (a) in Figure 4. In the

long run the system converges to the steady-state equilibrium discussed above.

Even though steady-state allocations are the same in the first- and second-best social op-

timum, the “road traveled” to get from the initial (dirty) steady-state to the socially optimal

(clean) equilibrium is much more expensive when the policy maker lacks the abatement in-
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strument. Indeed, as is indicated in Table 3 our equivalent variation measure EV(0) falls

from 44.1% to 17.1% of current consumption when a time-varying capital tax is the sole en-

vironmental policy instrument available. The tax is thus a rather blunt instrument in the

sense that it must be set at very high (and strongly distortionary) levels during much of the

transition in order to sharply reduce the capital stock (and the associated dirt flow) such that

the ecology is steered to the basin of attraction of the lower branch of the P-isocline in Fig-

ure 1. In contrast, in the first-best case abatement forms a very cheap instrument to get the

pollution dynamics on the right track because it is financed by means of nondistortionary

lump-sum taxes.

4.2 Time-invariant taxation

In this subsection we further restrict the policy makers instrumentarium by assuming that

the capital tax can only take on two values.4 In particular, we postulate that θ (t) is set

according to:

θ(t) =

{

θh for 0 ≤ t ≤ tE

θl for t > tE

(32)

where θh, θl , and tE are chosen optimally by the social planner. Intuitively, in view of the

results obtained from the time-varying taxation case (θh, tE) must ensure that the ecology is

out on the right track whereas θl corrects for the environmental externality in the long run.

Figure 5 depicts the optimal paths for the key variables whilst column (d) in Table 3

presents the quantitative results. Several things are worth noting. First, the long-run alloca-

tion is the same under time-varying and time-invariant taxation. Second, during transition

the regime configuration is also the same although tI (the time until which the investment

constraint is binding) is highest under time-invariant taxes (tI = 32). Third, the initial capital

tax is quite high (θh = 0.85) and must be maintained for quite a long time (tE = 39.5) in order

to move the ecology to the basin of attraction of the lower branch of the P-isocline in Figure

1. Fourth, the welfare cost of the instrument inflexibility is modest, i.e. the equivalent vari-

ation measure falls from 17.1% under time-varying taxation to 16.2% under time-invariant

taxes.

4.3 Time-varying abatement

In the absence of capital taxation, the policy maker must conduct environmental policy

exclusively with the abatement instrument. In order to compute the second-best optimal

policy, we follow the approach exposited by Judd (1999). In the determination of the best

4See Moser et al. (2012) for a general analysis of multi-stage optimal control techniques in the presence of
history dependence.
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Figure 5: Second-best optimal policy: Time-invariant taxation

(a) capita tax θ(t)
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(b) capital stock K(t) (c) consumption C(t)
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(d) dirt flow D(t) (e) pollution stock P(t)
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feasible allocation the social planner faces not only the resource constraint (T1.2), the emis-

sion equation (2), and the dirt flow definition (1), but also the following private sector con-

straints:5

λH (t) =
1

C (t)
, λ̇H (t) = [ρ + δ − FK (K (t) , 1)] λH (t) . (33)

Substituting the dirt constraint into the emission equation and dropping the time index, the

current-value Hamiltonian can now be written as:

H ≡ ln C + εE ln [Ē − P] + λK [F (K, 1)− C − G − δK]

+ λP [−Φ (P) + κK − γG] + ηλ [ρ + δ − FK (K, 1)] λH

+ ηC

[

1

C
− λH

]

+ ηD [κK − γG] + η I [F (K, 1)− C − G] .

The control variables are C and G (and thus D and I), the state variables are K, P, and λH,

the associated co-state variables are λK, λP, and ηλ, and the Lagrange multipliers are ηC, ηD

and η I . The most relevant first-order conditions are the expressions in (16)–(18), (20), (33)

and:

∂H
∂C

=
1

C
− (λK + η I)−

ηC

C2
= 0, (34)

λ̇K − ρλK = −∂H
∂K

= −κ (λP + ηD)− [FK (K, 1)− δ] λK − η I FK (K, 1)

+ FKK (K, 1) ηλλH, (35)

η̇λ − ρηλ = − ∂H
∂λH

= [FK (K, 1)− δ − ρ] ηλ + ηC. (36)

Since the capital tax is unavailable, the long-run capital stock returns to its initial level:

K̂TVA
s = K̂,

where the superscript “TVA” stands for time-varying abatement. Whilst it is in principle

possible for long-run abatement to be positive, the parameter values ensure that this case

does not materialize (just as in the first-best social optimum). In summary we find that:

GTVA
s = 0,

ĈTVA
s = F(K̂TVA

s , 1)− δK̂TVA
s = Ĉ,

P̂TVA
s = Φ−1

l (κK̂TVA
s ) = P̂G,

D̂TVA
s = D̂0.

In the second-best optimum, the ecology moves from point D to A in Figure 1. Of course, by

5Together these give rise to the Euler equation in the decentralized equilibrium, i.e. Ċ (t) /C (t) = r (t)− ρ,
where r (t) ≡ FK (K (t) , 1)− δ.
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construction, the second-best optimum can be decentralized with an abatement policy.

The dynamic properties of the second-best optimum are illustrated in Figure 6. There

is one date characterizing the optimal solution, namely tD = 28.2, and there exist two ad-

justment regimes. Throughout the two regimes consumption is constrained to follow its

decentralized Euler equation:

ĊTVA
s (t)

CTVA
s (t)

= FK

(

KTVA
s , 1

)

− (ρ + δ) ,

whilst gross investment remains non-negative (ITVA
s (t) ≥ 0). and the dynamic path for capi-

tal accumulation for 0 ≤ t ≤ tD is given by (see panel (b)).

4.3.1 Regime 1

For 0 ≤ t ≤ tD abatement is at its maximum feasible level and the dirt flow is reduced to

zero (DTVA
s (t) = 0). It follows from (1), (T1.2), and (2) that:

GTVA
s (t) =

κ

γ
KTVA

s (t),

K̇TVA
s (t) = F

(

KTVA
s (t), 1

)

− CTVA
s (t)−

(

δ +
κ

γ

)

KTVA
s (t),

ṖTVT
s (t) = −Φ(PTVT

s (t)).

Together with the consumption Euler equation these conditions determine the paths de-

picted in Figure 6.

4.3.2 Regime 2

For t > tD abatement is reduced to zero and the dirt flow becomes positive. Together with

the consumption Euler the paths for the main variables are given by:

GTVA
s (t) = 0,

K̇TVA
s (t) = F

(

KTVA
s (t), 1

)

− CTVA
s (t)− δKTVA

s (t),

ṖTVA
s (t) = −Φ(PTVA

s (t)) + κKTVA
s (t).

The optimization problem implies that consumption is continuous at time tD, i.e. limtրtD

CTVA
s (t) = limtցtD

CTVA
s (t) = CTVT

s (tD). This system converges to the steady state discussed

above. The quantitative effects of the optimal time-varying abatement policy are reported in

column (e) in Table 3. At impact abatement is quite high (G (0) = 0.13) and consumption is

reduced substantially by about 16 percent. During the early phase of transition the capital

stock is crowded out though by a relatively small amount compared to the time-varying

taxation case discussed above. The abatement policy is thus a cheap instrument to direct the
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ecology to the basin of attraction of the lower branch of the P-isocline in Figure 1. Indeed,

as we report in column (e) of Table 3 the welfare gain under time-varying abatement is

40.5 percent of initial consumption which is quite close to the result under the first-best

environmental policy.

4.4 Time-invariant abatement

In Heijdra and Heijnen (2013) we study the case in which the social planner uses an ad hoc

abatement policy of the following form:

G(t) =

{

G for 0 ≤ t ≤ tE

0 for t > tE

(37)

where G and tE are chosen optimally by the policy maker. Intuitively, in view of the results

obtained from the time-varying abatement case (G, tE) must ensure that the ecology is put on

the right track. The value of G must be chosen such that the non-negativity constraint on the

dirt flow is violated nowhere along the adjustment path. The optimal policy is demonstrated

to possess a “cold turkey” property: within the class of stepwise abatement function (37) the

largest feasible G must be chosen for the briefest possible duration.

Figure 7 depicts the optimal paths for the key variables whilst column (f) in Table 3

presents the quantitative results. Several things are worth noting. First, the long-run al-

location is the same under time-varying and time-invariant taxation. Second, abatement is

set at G = 0.1166 which initially is lower than the values it takes under the time-varying

policy. As a consequence, abatement must be continued for a slightly longer period (tE = 30

instead of tE = tD = 28.2). Third, the welfare cost of the instrument inflexibility is relatively

small, i.e. the equivalent variation measure falls from 40.3% under time-varying abatement

to 34.5% under time-invariant abatement.

5 Conclusions

In this paper we have studied optimal environmental policy in the presence of an ecological

process featuring multiple stable steady-state ecological equilibria and reversible hystere-

sis. Assuming that the ecological steady-state equilibrium is initially located on the high-

pollution (low-welfare) branch of the pollution isocline, the policy maker is in principle able

to engineer substantial welfare gains by choosing the appropriate mix of Pigouvian taxation

and abatement activities.

In the first-best social optimum the two available policy instruments each play a very

distinct role. During the initial phase of the policy, abatement is used to choke off the flow

of dirt as much as is feasible whereas the tax is employed to bring down the stock of the
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Figure 6: Second-best optimal policy: Time-varying abatement

(a) government abatement G(t)
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(d) dirt flow D(t) (e) pollution stock P(t)
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Figure 7: Second-best optimal policy: Time-invariant abatement

(a) government abatement G(t)
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(d) dirt flow D(t) (e) pollution stock P(t)
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Parameters: see Table 2. The initial ecological equilibrium is at point D in panel (b).
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polluting capital input as quickly as possible. In the long run, however, abatement is no

longer needed and the capital tax settles down at its externality-correcting Pigouvian level.

Interestingly, in a second-best setting it matters very much which additional constraint is

faced by the policy maker. In the case where capital taxation is unavailable as an instrument

for environmental policy, a suitably designed abatement policy can achieve a social outcome

that is only marginally worse than the first-best result. Intuitively, lump-sum tax financed

abatement is a cheap instrument to steer the ecology from the high- to the low-pollution

equilibrium.

In contrast, if the abatement instrument is not available and the tax must be used to clean

up the environment then the “road travelled” is a very expensive one. Intuitively, because

of the distorting nature of the capital tax, using it to get out of the hysteretic equilibrium is a

high-price option. Indeed, we show that in that case it is only marginally welfare improving

to steer the ecology from the high- to the low-pollution equilibrium and to correct for the

environmental externality.
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Appendix: Computational Details

First-best (FB) We use a continuation method to compute the first-best. Let Xs = (K, P)

denote the state variables, Xc = (λK, λP) the costates, and X = (Xs, Xc). The controls and

the Lagrange-multipliers are denoted by U = (C, G, η I , ηD). From Pontryagin’s maximum

principle, we get U = U∗(X): the state- and costate-variables determine consumption, abate-

ment and the multipliers for the investment- and dirt constraints. Recall that the other first-

order conditions can be written as follows:

Ẋ(t) = H(X(t), U∗(X(t))).

The optimal path is determined by constraints on Xs(0) and X(∞). In particular Xs(0) =

(K̂, P̂B) and X(∞) = X∗, where X∗ is a root of H(·). The end condition is replaced by

the requirement that at time T = 200, the trajectory is orthogonal to the stable manifold

of X∗. We approximate the first-order condition as follows. First, we discretize the time

grid t ∈ {0, 1, · · · , 200} and at time t we replace the differential equation by a fourth-order

Runge-Kutta approximation. This leads to a system of equations of which we have to find

the root.

For the continuation method, we need a trivial solution. Note that X(t) ≡ X∗ is a solution

for the initial condition Xs(0) = X∗
s . We slowly change this initial condition into the direction

of the actual initial condition, using a simple predictor-correction algorithm. See Grass (2012)

for details.

The time at which the investment constraint stops being binding is calculated in the fol-

lowing manner. Suppose that for t ≤ t∗, we have η I(t) > 0 (and η I(t) = 0 for t > t∗). This

means that the investment constraint is binding until tI ∈ [t∗, t∗ + 1]. Using cubic extrapola-

tion, we determine the value of tI . It turns out that tI = 1.27. For the dirt constraint, we use

a similar method and it turns out that tD = 27.01.

Time-varying tax (TVT) In principle, in this case we should be able to use a similar algo-

rithm as for the first-best. However, the continuation algorithm fails to terminate (the path

“bends back” to the Xs(0) = X∗
s ). We note that at some point the investment constraint be-

comes binding. Therefore, we postulate that the optimal path first goes through a regime

where the investment constraint is binding. If the investment constraint is binding until

t = tI , then we can calculate the value of capital and pollution at t = tI . We take these as

the initial value for capital and pollution and solve for the optimal time-varying tax from

that point onward. Then we choose tI such that this is the point where the investment con-

straint stops being binding (i.e. λK(tI)F(K(tI), 1) = 1). It turns out that this is the case for

tI = 21.46.

N.B. In both FB and TVT the long-run tax rate is θ̂ = 0.1066.
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Time-invariant tax (TIT) In the long-run, we set the tax rate equal to θ̂, but we start with

a higher tax rate to move the system towards a lower pollution level. It turns out that the

initial tax rate θ0 is high enough to make the investment constraint binding. This means that

we have to determine tI (the time at which the investment constraint stops being binding)

and tE (the time at which the tax rate shifts from θ0 to θ̂). Since the consumption path cannot

jump, we can only switch from θ0 to θ̂ if we are on the stable saddle path leading to the

clean equilibrium. Hence, the free variables are θ0 and tI . We somewhat crudely search for

the lowest values that can force the system to the clean steady state by increasing θ0 with

step size 0.05 and tI with step size 1. We end up with θ0 = 0.85 and tI = 32. Since the EV

under TIT is close to the EV under TIA (time-invariant abatement), we are confident that

these values are close to the optimal tax of this form.

Time-varying abatement and time-invariant abatement (TVA and TIA) See Heijdra and

Heijnen (2013). We have added a bit of accuracy for the case with TVA: full abatement until

tE = 28.2, increases the EV to 40.5%.

Calculate utility levels In the FB, we calculate utility level by calculating the Hamiltonian

at time zero and dividing this value by ρ. In all other cases, we use the following method

to calculate the utility of the representative consumer. Given paths for consumption and

pollution, this amounts to evaluating an integral of the form

W =
∫ ∞

0
u(C(s), P(s))e−ρsds.

As inputs we have the levels of consumption and pollution at discrete points in time t ∈
{t0, t1, t2, . . . , tn}, where tn is sufficiently large for consumption and pollution to be close to

the steady state values. Then, as is also noted by Heijnen and Wagener (2013), W is approxi-

mately equal to:

W ≈ 1

2

n

∑
i=1

[u(C(ti), P(ti))e
−ρti + u(C(ti−1), P(ti−1))e

−ρti−1 ](ti − ti−1)

+ u(C(tn), P(tn))
e−ρtn

ρ
.

Since our grid is not very dense, this gives a rather rough approximation, limiting the accu-

racy with which we can calculate the optimal policy.
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