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A.1 A dynamic model of rent-seeking

Basic assumptions:

• Diamond-Samuelson overlapping-generations model with (human) capital accumulation

and endogenous growth.

• Two generations each of unit size. The population is thus of size 2.

• No bequests so generations are disconnected

• Monopolization after rent seeking activities is certain (no risk).

• The young (superscript y) consume goods xyi,t (i = 1, 2), buy units of the existing capital

stock from the old, kyt , or a newly produced investment good, zyt , from the investment

goods sector (both at ’nominal’ price Qt), engage in time-consuming lobbying activities,

and enjoy schooling (to augment their human capital stock acquired at birth).

• Timing of decisions during youth:

– Rent-seeking phase at the start of youth.

– Consumption and saving decisions.

– Education phase during the period (human capital installed at the start of the second

period).

• The old (superscript o) sell their capital goods to the young, consume goods, xoi,t, and

work a fraction λ of the time endowment (we set 0 < λ < 1 due to economic ageing and

exogenous retirement).

A.1.1 Individual agents

• Continuum of agents indexed by η.

• Lifetime utility function of an agent of type η:

Λyt (η) ≡ ln cyt (η) + β ln cot+1(η), (A.1)

where cyt (η) and c
y
t+1(η) are defined as:

cyt (η) ≡
[

αxy1,t(η)
1−1/σ + (1− α)xy2,t(η)

1−1/σ
]1/(1−1/σ)

,

cot+1(η) ≡
[

αxo1,t+1(η)
1−1/σ + (1− α)xo2,t+1(η)

1−1/σ
]1/(1−1/σ)

,

where σ is the substitution elasticity between the two goods.
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• Budget constraint during youth:

P1,tx
y
1,t(η) + P2,tx

y
2,t(η) +Qt [z

y
t (η) + kyt (η)] = Iyt (η), (A.2)

where

Iyt (η) =Wth
y
t (η) [1− et(η)− lt(η)] + st(η)Π

m
1,t. (A.3)

– Wt is the wage rate on standardized efficiency units of labour.

– et(η) is time spent lobbying.

– lt(η) is time spent on formal schooling.

– hyt (η) = h̄t is the average human capital level in the economy at the start of time t

(the young are standing on the shoulders of the old generation).

• Human capital accumulation function:

hot+1(η) = hyt (η)

[

1 + φe
lt(η)

1−θ

1− θ

]

, φe > 0, 0 < θ < 1. (A.4)

• Budget constraint during old-age:

P1,t+1x
o
1,t+1(η) + P2,t+1x

o
2,t+1(η) = Iot+1(η), (A.5)

with:

Iot+1(η) ≡ λWt+1h
o
t+1(η) +

[

(1− δ)Qt+1 +Rkt+1

]

[zyt (η) + kyt (η)] . (A.6)

– By investing in period t, and owning zyt (η) + kyt (η) at the start of old-age, the then

old individuals receive a rental income in period t+ 1 equal to Rkt+1. The remaining

capital stock they can sell at price Qt+1 (to the then young).

– Wt+1 is the future wage rate on standardized efficiency units of labour.

– During old-age only a fraction λ of time is available for working (economic ageing

renders people economically useless after a while): 0 < λ < 1

A.1.2 Firms

• Consumption good i is produced with physical and human capital according to:

Xi,t = ΩiH
φi
i,tK

1−φi
i,t ,

where Ωi (> 0) and φi are constants.

– Diminishing returns to both factors, i.e. 0 < φi < 1.
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– We can have the same technology for goods 1 and 2 (but we state the most general

model here).

– Both factors are perfectly mobile across sectors.

• The total and marginal cost functions are:

TC x
i (Wt, R

k
t , Xi,t) ≡ MC x

i (Wt, R
k
t )Xi,t,

MC x
i (Wt, R

k
t ) ≡

(

Wt

φi

)φi
(

Rkt
1− φi

)1−φi 1

Ωi
,

= P2,t

(

wt
φi

)φi
(

rkt
1− φi

)1−φi 1

Ωi

≡ P2,tmcxi (wt, r
k
t ),

with:

rkt ≡
Rkt
P2,t

, wt ≡
Wt

P2,t
. (A.7)

• The derived demands for units of physical and human capital are obtained by employing

Shephard’s Lemma:

Hi,t =
∂MC x

i (Wt, R
k
t )

∂Wt
Xi,t =

φiMC x
i (Wt, R

k
t )

Wt
Xi,t,

Ki,t =
∂MC x

i (Wt, R
k
t )

∂Rkt
Xi,t =

(1− φi)MC x
i (Wt, R

k
t )

Rkt
Xi,t.

• By substituting the production function and rearranging the resulting expression we find:

Wt = φiMC x
i (Wt, R

k
t )Ωiκ

1−φi
i,t ,

Rkt = (1− φi)MC x
i (Wt, R

k
t )Ωiκ

−φi
i,t ,

with:

κi,t ≡
Ki,t

Hi,t
. (A.8)

• Profit in sector i is:

Πi,t = Pi,tXi,t −MC x
i (Wt, R

k
t )Xi,t.

• For good X2 (which is always produced competitively) we find that P2,t = MC x
2(Wt, R

k
t ).

By using X2 as the numeraire commodity we find that:

P2,t = P2,tmcx2(wt, r
k
t ) ⇔ mcx2(wt, r

k
t ) = 1.
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• In summary, factor demands can be written as:

wt = φ1mcx1(wt, r
k
t )Ω1κ

1−φ
1

1,t = φ2Ω2κ
1−φ

2

2,t ,

rkt = (1− φ1)mcx1(wt, r
k
t )Ω1κ

−φ1
1,t = (1− φ2)Ω2κ

−φ2
2,t .

• Since good x2 is produced competively, P2,t = MC x
2(Wt, R

k
t ) and we find (by eliminating

κ2,t from the factor demands) that:

1 =

(

wt
φ2

)φ
2
(

rkt
1− φ2

)1−φ2 1

Ω2
.

• For good x1 we find (by eliminating κ1,t from the factor demands) that real marginal cost

equals:

mcx1(wt, r
k
t ) =

(

wt
φ1

)φ
1
(

rkt
1− φ1

)1−φ
1 1

Ω1
.

Hence, if x1 is also produced competitively we find that pt ≡ P1,t/P2,t = mcx1(wt, r
k
t ).

• The total stock of efficiency units of labour is:

Ht ≡

∫ ηH

ηL

[

λhot (η) + [1− et(η)− lt(η)]h
y
t (η)

]

dF (η).

– Units of ‘old’ and ‘young’ human capital are perfect substitutes.

• The investment good is also produced with units of physical and human capital:

Zt = ΩzH
ψ
z,tK

1−ψ
z,t .

• The representative firm hires these inputs (from their owners) to maximize profit:

Πzt ≡ QtZt −WtHz,t −RktKz,t,

which gives:

Rkt = (1− ψ)QtΩzH
ψ
z,tK

−ψ
z,t ,

Wt = ψQtΩzH
ψ−1
z,t K1−ψ

z,t .

• Again using consumption good x2 as the numeraire commodity we find:

rkt = (1− ψ)qtΩzκ
−ψ
z,t ,

wt = ψqtΩzκ
1−ψ
z,t ,
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with:

qt ≡
Qt
P2,t

. (A.9)

• Total cost and marginal cost functions are:

TC z(Wt, R
k
t , Zt) ≡

(

Wt

ψ

)ψ ( Rkt
1− ψ

)1−ψ
Zt
Ωz
,

MC z(Wt, R
k
t , Zt) ≡

(

Wt

ψ

)ψ ( Rkt
1− ψ

)1−ψ
1

Ωz
= P2,t

(

wt
ψ

)ψ ( rkt
1− ψ

)1−ψ
1

Ωz

• Since the investment good is produced competitively we have that:

Qt = MC z(Wt, R
k
t ) ⇔ qt = mcz(wt, r

k
t ) ≡

(

wt
ψ

)ψ ( rkt
1− ψ

)1−ψ
1

Ωz
.

A.1.3 Loose ends

• Physical capital accumulation:

Kt+1 = Zt + (1− δ)Kt. (A.10)

• Stock of human capital available for productive use:

Ht = h̄t
[

1 + λ− ēt − l̄t
]

, (A.11)

with:

ēt ≡

∫ ηH

ηL

et(η)dF (η), l̄t ≡

∫ ηH

ηL

lt(η)dF (η). (A.12)

• Equilibrium in the investment goods market:

Zt =

∫ ηH

ηL

zyt (η)dF (η). (A.13)

• Equilibrium in the market for used capital goods:

∫ ηH

ηL

kyt (η)dF (η) = (1− δ)Kt. (A.14)

• Equilibrium condition in the physical capital rental market:

Kt = K1,t +K2,t +Kz,t.
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• Equilibrium condition in the human capital rental market:

Ht = H1,t +H2,t +Hz,t.

A.1.4 Model solution

• We employ two-stage budgeting to solve the individual’s utility maximization problem.

• Given the structure of preferences, we know that:

Xy
t (η) ≡ P1,tx

y
1,t(η) + P2,tx

y
2,t(η) = PV,tc

y
t (η),

Xo
t+1(η) ≡ P1,t+1x

o
1,t+1(η) + P2,t+1x

o
2,t+1(η) = PV,t+1c

o
t+1(η),

where Xy
t (η) is ‘full’ consumption and PV,t is the true price index:

PV,t ≡
[

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

]1/(1−σ)
.

• Useful results from duality theory:

– The expenditure functions are Eyt (η) ≡ PV,tc
y
t (η) and Eot+1(η) ≡ PV,t+1c

o
t+1(η) so

we can recover the Hicksian demands for the underlying goods in the usual fashion

(Shephard’s Lemma):

xyi,t(η) =
∂Eyt (η)

∂Pi,t
=
∂PV,t
∂Pi,t

cyt (η), xoi,t+1(η) =
∂Eot+1(η)

∂Pi,t+1
=
∂PV,t+1

∂Pi,t+1
cot+1(η).

– The indirect (sub)utility functions are V y
t (η) ≡ Xy

t (η)/PV,t and V
o
t+1(η) ≡ Xo

t+1(η)/PV,t+1

and the Marshallian demands for the underlying goods in the usual fashion (Roy’s

Identity):

xyi,t(η) = −
∂V y

t (η)/∂Pi,t
∂V y

t (η)/∂X
y
t (η)

=
∂PV,t
∂Pi,t

Xy
t (η)

PV,t
, xoi,t+1(η) = −

∂V o
t+1(η)/∂Pi,t+1

∂V o
t+1(η)/∂X

o
t+1(η)

=
∂PV,t+1

∂Pi,t+1

Xo
t+1(η)

PV,t+1
.

• Budget constraints for young and old:

PV,tc
y
t (η) +Qt [z

y
t (η) + kyt (η)] =Wth

y
t (η) [1− et(η)− lt(η)] + st(η)Π

m
1,t,

PV,t+1c
o
t+1(η) = λWt+1h

o
t+1(η) +

[

(1− δ)Qt+1 +Rkt+1

]

[zyt (η) + kyt (η)] .

• Define the ‘nominal’ interest rate as:

1 +Rnt+1 ≡
(1− δ)Qt+1 +Rkt+1

Qt
. (A.15)
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• Solve the old-age budget constraint for [zyt (η) + kyt (η)]:

Qt [z
y
t (η) + kyt (η)] =

PV,t+1c
o
t+1(η)− λWt+1h

o
t+1(η)

1 +Rnt+1

.

• Substitute into the youth budget constraint to get the consolidated budget constraint in

nominal terms:

PV,tc
y
t (η) +

PV,t+1c
o
t+1(η)

1 +Rnt+1

= HW y
t (η), (A.16)

where human wealth during youth is:

HW y
t (η) ≡Wth

y
t (η) [1− et(η)− lt(η)] +

λWt+1h
o
t+1(η)

1 +Rnt+1

+ st(η)Π
m
1,t.

• The remaining constraint:

hot+1(η) = h̄t

[

1 + φe
lt(η)

1−θ

1− θ

]

. (A.17)

where we have used the initial condition hyt (η) = h̄t.

• Since there is no uncertainty (monopolization is for sure) we can solve the optimization

problem in one go. In particular, the agents chooses cyt (η), c
o
t+1(η), lt(η), and et(η) [and

thus also hot+1(η)] to maximize (A.1) subject to the budget constraint (A.16) and the

human capital accumulation identity (A.17).

• Note: we continue to use ‘nominal’ terms (and use the numeraire, P2,t = 1, right at the

end).

• The Lagrangian is:

Lyt ≡ ln cyt (η) + β ln cot+1(η) + µt

[

st(η)Π
m
1,t +Wth̄t [1− et(η)− lt(η)]

+
λWt+1

1 +Rnt+1

h̄t

(

1 + φe
lt(η)

1−θ

1− θ

)

− PV,tc
y
t (η)−

PV,t+1c
o
t+1(η)

1 +Rnt+1

]

.

• First-order conditions:

∂Lyt
∂cyt (η)

=
1

cyt (η)
− µtPV,t = 0,

∂Lyt
∂cot+1(η)

=
β

cot+1(η)
−
µtPV,t+1

1 +Rnt+1

= 0,

∂Lyt
∂lt(η)

= µt

[

−1 +
Wt+1

(1 +Rnt+1)Wt
λφelt(η)

−θ

]

Wth̄t = 0,
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∂Lyt
∂et(η)

= µt

[

Πm1,t
∂st(η)

∂et(η)
−Wth̄t

]

= 0.

• Substituting the first two into the budget constraint (A.16) we find:

PV,tc
y
t (η) =

1

1 + β
HW y

t (η),

PV,t+1c
o
t+1(η)

1 +Rnt+1

=
β

1 + β
HW y

t (η).

• Clearly, it follows from the third first-order condition that every agent chooses the same

amount of schooling:

lt(η) = l̄t = lt ≡

[

λφeWt+1

(1 +Rnt+1)Wt

]1/θ

. (A.18)

• For the success function, st(η) = ηet(η)
ε/Et, we find from the fourth first-order condition

that:

εΠm1,t
ηet(η)

ε−1

Et
=Wth̄t ⇔ et(η) =

[

εΠm1,t

Wth̄t

η

Et

]1/(1−ε)

. (A.19)

• It follows that total rent-seeking effort Et and wasted labour ēt amount to:

Et ≡

∫ ηH

ηL

ηet(η)
εdF (η) =

[

εΠm1,t

Wth̄tEt

]ε/(1−ε) ∫ ηH

ηL

η1/(1−ε)dF (η),

ēt ≡

∫ ηH

ηL

et(η)dF (η) =

[

εΠm1,t

Wth̄tEt

]1/(1−ε) ∫ ηH

ηL

η1/(1−ε)dF (η).

• Solving the first of these expressions for Et gives:

Et =

[

εΠm1,t

Wth̄t

]ε
[

∫ ηH

ηL

η1/(1−ε)dF (η)

]1−ε

. (A.20)

• Using (A.20) in (A.19) we find that et(η) and st(η) can be written as:

et(η) = st(η)ēt, st(η) ≡
η1/(1−ε)

∫ ηH
ηL

η1/(1−ε)dF (η)
, (A.21)

where ēt is given by:

ēt =
εΠm1,t

Wth̄t
. (A.22)
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• Optimal choices can be written as follows:

PV,tc
y
t (η) =

1

1 + β
HW y

t (η),

PV,t+1c
o
t+1(η)

1 +Rnt+1

=
β

1 + β
HW y

t (η),

Qt [z
y
t (η) + kyt (η)] = st(η)Π

m
1,t +Wth̄t [1− et(η)− lt]−

1

1 + β
HW y

t (η),

=
β

1 + β

[

st(η)Π
m
1,t +Wth̄t [1− et(η)− lt]

]

−
1

1 + β

λWt+1

1 +Rnt+1

h̄t

[

1 + φe
l1−θt

1− θ

]

,

HW y
t (η) ≡ st(η)Π

m
1,t +Wth̄t [1− et(η)− lt] +

λWt+1

1 +Rnt+1

h̄t

[

1 + φe
l1−θt

1− θ

]

,

lt =

[

λφeWt+1

(1 +Rnt+1)Wt

]1/θ

.

• Note that:

∫ ηH

ηL

[zyt (η) + kyt (η)] dF (η) = Zt + (1− δ)Kt = Kt+1,

where we have used (A.10), (A.13), and (A.14).

• Using (A.22) aggregate saving can be rewritten as:

QtKt+1 =
β

1 + β

[

(1− ε)Πm1,t +Wth̄t [1− lt]

]

−
1

1 + β

λWt+1

1 +Rnt+1

h̄t

[

1 + φe
l1−θt

1− θ

]

. (A.23)

• It follows (by using (A.10)) that the demand for new capital goods is:

QtZt =
β

1 + β

[

(1− ε)Πm1,t +Wth̄t [1− lt]

]

−
1

1 + β

λWt+1

1 +Rnt+1

h̄t

[

1 + φe
l1−θt

1− θ

]

−Qt(1− δ)Kt

• Aggregate demands for composite consumption goods:

PV,tc
y
t =

1

1 + β
HW y

t

PV,t+1c
o
t+1

1 +Rnt+1

=
β

1 + β
HW y

t
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• Aggregate human wealth of the young (after using (A.22)):

HW y
t ≡ (1− ε)Πm1,t +Wth̄t [1− lt] +

λWt+1

1 +Rnt+1

h̄t

[

1 + φe
l1−θt

1− θ

]

.

• Demand in sector 1 originates from the young and the old.

– The young cohort’s demand for good 1:

Xy
1,t =

∂PV,t
∂P1,t

cyt =
∂PV,t
∂P1,t

1

1 + β

HW y
t

PV,t
=

ασP−σ
1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

HW y
t

1 + β
.

By holding HW y
t constant this is interpreted as a Marshallian demand curve.

– The old cohort’s demand for good 1:

Xo
1,t =

ασP−σ
1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

Iot ,

Iot = λWth
o
t +

[

(1− δ)Qt +Rkt

]

Kt.

– Total demand is thus:

X1,t =
ασP−σ

1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

[

HW y
t

1 + β
+ Iot

]

.

• The monopolist in sector 1 has the following profit function:

Πm1,t =
[

P1,t −MC x
1(Wt, R

k
t )
]

X1,t

and the monopoly price is set according to the usual markup rule:

Pm1,t = µm1,tMC x
1(Wt, R

k
t ), µm1,t ≡

εmd,t
εmd,t − 1

> 1,

εmd,t ≡ −
∂X1,t

∂P1,t

P1,t

X1,t
=
ασ(Pm1,t)

1−σ + σ(1− α)σ(P c2,t)
1−σ

ασ(Pm1,t)
1−σ + (1− α)σ(P c2,t)

1−σ
,

=
ασ(pmt )

1−σ + σ(1− α)σ

ασ(pmt )
1−σ + (1− α)σ

> 1,

µm1,t =
ασ(pmt )

1−σ + σ(1− α)σ

(σ − 1) (1− α)σ
,

with:

pmt ≡
Pm1,t
P c2,t

. (A.24)
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• For future use we note that:

µm1,t − 1 =
ασ(pmt )

1−σ + (1− α)σ

(σ − 1) (1− α)σ
.

• Using the expression for MC x
1(Wt, R

k
t ) derived above we find:

pmt = µm1,tmcx1(wt, r
k
t ),

where mcx1(wt, r
k
t ) is real marginal cost in the monopolistic sector (see above):

mcx1(wt, r
k
t ) ≡

(

wt
φ1

)φ1
(

rkt
1− φ1

)1−φ
1 1

Ω1
.

• It follows that εmd,t can be written as:

εmd,t =
ασ
(

εm
d,t

εm
d,t

−1mcx1(wt, r
k
t )
)1−σ

+ σ(1− α)σ

ασ
(

εm
d,t

εm
d,t

−1mcx1(wt, r
k
t )
)1−σ

+ (1− α)σ
.

• In real terms the factor demand are:

rkt = (1− φ1)mcx1(wt, r
k
t )Ω1κ

−φ1
1,t ,

wt = φ1mcx1(wt, r
k
t )Ω1κ

1−φ1
1,t .

• Aggregate profit equals:

Πm1,t = X1,t

(

P1,t −MC x
1(Wt, R

k
t )
)

,

=
(

µm1,t − 1
)

MC x
1(Wt, R

k
t )X1,t,

= Ξt

[

HW y
t

1 + β
+ Iot

]

, (A.25)

where Ξt is an auxiliary term:

Ξt ≡
ασ (pmt )

1−σ

ασ (pmt )
1−σ + σ(1− α)σ

. (A.26)

• Properties:

– in the competitive case, P1,t = MC x
1(Wt, R

k
t ) (so that µm1,t = 1) and Ξt = 0 for all t.

– in the monopoly case, 0 < Ξt < 1.

– since µm1,t depends on p
m
t so does Ξt!
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• We find (after using (A.22)) that:

HW y
t

1 + β
+ Iot =

1

1 + β

(

(1− ε)Πm1,t +Wth̄t [1− lt] +
λWt+1

1 +Rnt+1

h̄t

[

1 + φe
l1−θt

1− θ

])

+ λWth̄t +
[

(1− δ)Qt +Rkt

]

Kt. (A.27)

Aggregate profit positively affects total wealth and vice versa, so current profit depends

in part on itself because young agents consume part of it.

• By solving (A.25) and (A.27) for Πm1,t and
HW

y
t

1+β + Iot we find:

Πm1,t =
Ξt

1 + β − (1− ε)Ξt

[

Wth̄t [1− lt] +
λWt+1

1 +Rnt+1

h̄t

(

1 + φe
l1−θt

1− θ

)

+ (1 + β)
[

λWth̄t +
[

(1− δ)Qt +Rkt

]

Kt

]

]

, (A.28)

and:

HW y
t

1 + β
+ Iot =

1

1 + β − (1− ε)Ξt

[

Wth̄t [1− lt] +
λWt+1

1 +Rnt+1

h̄t

(

1 + φe
l1−θt

1− θ

)

+ (1 + β)
[

λWth̄t +
[

(1− δ)Qt +Rkt

]

Kt

]

]

. (A.29)

• It follows that Πm1,t and
HW

y
t

1+β + Iot are both proportional to the growing variables h̄t and

Kt.

• Demand for good 2 originates from the young and the old.

– The young cohort’s demand for good 2:

Xy
2,t =

∂PV,t
∂P2,t

cyt =
∂PV,t
∂P2,t

1

1 + β

HW y
t

PV,t
=

(1− α)σP−σ
2,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

HW y
t

1 + β
.

– The old cohort’s demand for good 2:

Xo
2,t =

(1− α)σP−σ
2,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

Iot ,

Iot = λWth̄t +
[

(1− δ)Qt +Rkt

]

Kt.

– Total demand for good 2 is thus:

X2,t =
(1− α)σP−σ

2,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

[

HW y
t

1 + β
+ Iot

]

.
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A.1.4.1 Verify Walras Law

• Spending at time t:

PV,t [c
y
t + cot ]+Qt [Zt + (1− δ)Kt] =Wth̄t [1− ēt − lt]+Πm1,t+λWth

o
t+
[

(1− δ)Qt +Rkt

]

Kt.

• Simplifying:

PV,t [c
y
t + cot ] +QtZt =Wth̄t [1− ēt − lt] + Πm1,t + λWth

o
t +RktKt.

• But PV,t [c
y
t + cot ] = P1,tX1,t + P2,tX2,t and Ht = h̄t [1− ēt − lt] + λhot so we get:

P1,tX1,t + P2,tX2,t +QtZt =WtHt +Πm1,t +RktKt.

• But Πm1,t = (P1,t−MC x
1(Wt, R

k
t ))X1,t, P2,t = MC x

2(Wt, R
k
t ), and Qt = MC z(Wt, R

k
t ) so we

get:

MC x
1(Wt, R

k
t )X1,t +MC x

2(Wt, R
k
t )X2,t +MC z(Wt, R

k
t )Zt =WtHt +RktKt

Right-hand side: total factor income. Left-hand side: total spending on consumption and

investment goods evaluated at the true marginal cost of producing these goods.

A.1.4.2 Checking market equilibrium conditions

In the numerical model (for debugging purposes) we conduct some consistency checks by com-

puting the same quantity in two different ways.

• Market for good 1 (demand and supply):

X1,t

h̄t
=

ασp−σ1,t

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

(1− ε)
πm1,t

h̄t
+ wt [1− lt] +

λwt+1(1 + γt+1)

1 + rt+1

)

+ λwt +
[

(1− δ) qt + rkt

] Kt

h̄t

]

,

X1,t

Ht
= Ω1u1,tκ

1−φ1
1,t .

• Market for good 2 (demand and supply):

X2,t

h̄t
=

(1− α)σ

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

(1− ε)
πm1,t

h̄t
+ wt [1− lt] +

λwt+1(1 + γt+1)

1 + rt+1

)

+ λwt +
[

(1− δ) qt + rkt

] Kt

h̄t

]

,
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X2,t

Ht
= Ω2u2,tκ

1−φ2
2,t .

• Market for investment goods (demand and supply):

qt
Zt
h̄t

=
β

1 + β

[

(1− ε)
πm1,t

h̄t
+ wt [1− lt]

]

−
1

1 + β

λwt+1(1 + γt+1)

1 + rt+1
− qt(1− δ)

Kt

h̄t
,

Zt
Ht

= uz,tΩzκ
1−ψ
z,t .

• Aggregate output:

Yt
Ht

= pt
X1,t

Ht
+
X2,t

Ht
+ qt

Zt
Ht
.

A.1.5 The dynamic rent-seeking equilibrium

• Summary of the model: see Table A.2

• There are 23 endogenous variables and 23 equations so all should be swell.

• Insight #1: if x1 and x2 are identical from the production side then the real monopoly

price is constant (with or without rent seeking)!

– Suppose that φ1 = φ2 = φ and Ω1 = Ω2 = Ω.

– Then (TA4.7) and (TA4.10) together imply that:

mcx1,t =

(

wt
φ1

)φ1
(

rkt
1− φ1

)1−φ
1 1

Ω1
.

– But (TA4.8) and (TA4.11) together imply that:

1 =

(

wt
φ2

)φ
2
(

rkt
1− φ2

)1−φ
2 1

Ω2
.

– Hence, since φ1 = φ2 and Ω1 = Ω2 we find that:

mcx1,t = 1, κ1,t = κ2,t

– It follows from (TA4.18) that pt is a constant (i.e, depends only on the structural

parameters α and σ). This result also holds if φ1 = φ2 but Ω1 6= Ω2 since in that

case mcx1,t = Ω2/Ω1 (a constant).

• Insight #2: if x1 and x2 are be identical from the production side then we can aggregate

the model further.
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– We know that:

[

x1,t
x2,t

=

] (

α

(1− α)pt

)σ

=
u1
u2
.

so that it follows from (TA4.23) that:

u1 =
1− uz

1 +
(

(1−α)pt
α

)σ =
ασ(1− uz)

ασ + (1− α)σpσt
,

u2 =
(1− uz)

(

(1−α)pt
α

)σ

1 +
(

(1−α)pt
α

)σ =
(1− α)σpσt (1− uz)

ασ + (1− α)σpσt
.

– We can thus aggregate total consumption as:

ct ≡ ptx1,t + x2,t

= ptu1,tΩ1κ
1−φ

1

1,t + u2,tΩ2κ
1−φ

2

2,t

= [ptu1,t + u2,t] Ωxκ
1−φ
x,t

=
ασpt + (1− α)σpσt
ασ + (1− α)σpσt

(1− uz)Ωxκ
1−φ
x,t

where Ωx = Ω1 = Ω2 and κx,t = κ1,t = κ2,t.

A.1.5.1 Parameterization

• Assert that a steady-state growth equilibrium exists and calibrate it. We calibrate the

parameterize the competitive version of the model. We adopt a two-step approach:

– Step 1 : parameterize a one-sector version of the model to generate plausible values

for κ∗, γ∗, β, Ω, etcetera.

– Step 2 : use these plausible value to parameterize the two-sector version of the model

.

One-sector model

• Assumptions: φ1 = φ2 = ψ = φ, Ω1 = Ω2 = Ωz = Ω.

• Dynamic model:

Kt+1

h̄t
=

1

1 + β

[

βwt [1− lt]−
λwt+1(1 + γt+1)

1 + rt+1

]

,

γt+1 = φe
l1−θt

1− θ
,

lt ≡

[

λφewt+1

(1 + rt+1)wt

]1/θ

,
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Ht = [1 + λ− lt] h̄t,

wt = φyt,

rt = (1− φ)Ωκ−φt − δ,

yt = Ωκ1−φt

κt ≡
Kt

Ht
,

where γt+1 ≡ (h̄t+1− h̄t)/h̄t is the growth rate (of initial human capital). The endogenous

variables determined at time t are Kt+1, γt+1, κt, Ht, and lt. The predetermined variables

are Kt and h̄t (so κt is a jumping variable).

• Steady-state model:

κ∗ =
w∗

(1 + β)(1 + λ− l∗)

[

β
1− l∗

1 + γ∗
−

λ

1 + r∗

]

, (A.30)

γ∗ = φe
(l∗)1−θ

1− θ
, (A.31)

l∗ ≡

[

λφe
1 + r∗

]1/θ

, (A.32)

w∗ = φy∗, (A.33)

r∗ = (1− φ)Ω (κ∗)−φ − δ, (A.34)

y∗ = Ω(κ∗)1−φ , (A.35)

where we have used the fact that (Kt+1/h̄t)
∗ = ((1+ γt+1)Kt+1/h̄t+1)

∗ = (1+ γ∗)(1+λ−

l∗)κ∗ in the first equation.

• We fix the following parameters a priori:

– Efficiency parameter of human capital: φ = 0.75.

– Annual physical capital depreciation rate: δa = 0.06.

– Fraction of work time during old-age: λ = 0.5. In terms of the setting sketched in

Figure 1 this means that people retire at age 65.

– Each adult period is of length T = 30 in years.

• We postulate the following targets for the calibration:

– Annual real interest rate: ra = 0.05.

– Annual real growth rate: γa = 0.025.

– The output intensity: y∗(≡ Y/H)∗ = 1.00.

– The time-share of education during youth is l∗ = 0.10. In terms of Figure 1 this

means that people finish college at age 23.
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• Each period lasts for 30 years so we find:

– The interest factor:

r∗ = (1 + ra)
T − 1 = 3.3219.

– The growth factor:

γ∗ = (1 + γa)
T − 1 = 1.0976.

– The depreciation factor:

δ = 1− (1− δa)
T = 0.8437.

• Since (r∗ + δ)κ∗ = (1− φ)y∗ and y∗ = 1 we find the physical-human capital ratio:

κ∗ =
1− φ

r∗ + δ
= 6.0014 · 10−2.

• Since y∗ = Ω0(κ
∗)1−φ = 1 we choose Ω0:

Ω = (κ
∗

)ψ−1 = 2.0204.

• The wage rate is:

w∗ = φy∗ = 0.75.

• From equation (A.32) we find an expression for φe:

φe =
1

λ
(1 + r∗)(l∗)θ

• Using this expression in combination with equation (A.31) we find the value for θ and φe:

θ = 1−
(1 + r∗)l∗

λ(γ∗)
= 0.2125, φe = 5.2998.

• Finally we solve equation (A.30) for β:

β =
λw∗/(1 + r∗) + (1 + λ− l∗)κ∗

w∗(1− l∗)/(1 + γ∗)− (1 + λ− l∗)κ∗
= 0.7182.

This is an feasible value (as 0 < β < 1 is required for discounting).

Two-sector model

A-17



• Assumptions: φ1 = φ2 = φ > ψ, Ω1 = Ω2 = Ωx 6= Ωz. The investment goods sector is

relatively capital-intensive.

• Dynamic model:

(1 + γt+1)qt
Kt+1

h̄t+1
=

1

1 + β

[

βwt [1− lt]−
λwt+1

1 + rt+1

(

1 + γt+1

)

]

,

γt+1 = φe
l1−θt

1− θ
,

lt ≡

[

λφewt+1

(1 + rt+1)wt

]1/θ

,

1 + rt+1 ≡
rkt+1 + (1− δ)qt+1

qt
,

wt = φΩxκ
1−φ
x,t ,

wt = ψqtΩzκ
1−ψ
z,t ,

rkt = (1− φ)Ωxκ
−φ
x,t ,

rkt = (1− ψ)qtΩzκ
−ψ
z,t ,

κt = utκz,t + (1− ut)κx,t,

zt =

(

1 + λ− lt+1

1 + λ− lt

)

(1 + γt+1)κt+1 − (1− δ)κt,

κt =
1

1 + λ− lt

Kt

h̄t

yt = (1− ut)Ωxκ
1−φ
x,t + qtutΩzκ

1−ψ
z,t

zt = utΩzκ
1−ψ
z,t

• Steady-state model:

q∗κ∗ =
w∗

(1 + β)(1 + λ− l∗)

[

β
1− l∗

1 + γ∗
−

λ

1 + r∗

]

, (A.36)

γ∗ = φe
(l∗)1−θ

1− θ
, (A.37)

l∗ ≡

[

λφe
1 + r∗

]1/θ

, (A.38)

(rk)∗ = (r∗ + δ)q∗, (A.39)

w∗ = φΩx (κ
∗

x)
1−φ , (A.40)

w∗ = ψq∗Ωz (κ
∗

z)
1−ψ , (A.41)

(rk)∗ = (1− φ)Ωx (κ
∗

x)
−φ , (A.42)

(rk)∗ = (1− ψ)q∗Ωz (κ
∗

z)
−ψ , (A.43)

κ∗ = u∗κ∗z + (1− u∗)κ∗x, (A.44)

z∗ = (γ∗ + δ)κ∗, (A.45)
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y∗ = (1− u∗)Ωx (κ
∗

x)
1−φ + q∗u∗Ωz (κ

∗

z)
1−ψ (A.46)

z∗ = u∗Ωz (κ
∗

z)
1−ψ (A.47)

• Targets: key endogenous variables same as in the one-sector model. Hence:

y∗ = 1, z∗ = 0.1165, l∗ = 0.1000, κ∗ = 6.0014 · 10−2,

γ∗ = 1.0976, w∗ = 0.75, r∗ = 3.3219, p∗ = q∗ = 1.

• Fixed parameters: β, δ, λ, θ, and φe.

• We fix φ = 0.8 and choose the following free parameters: ψ, Ωx, and Ωz such that all

targets are met.

• Steps:

– By combining (A.40) and (A.42) we find κ∗x:

κ∗x =
1− φ

φ

(w

rk

)

∗

= 4.5011 · 10−2.

– From (A.40) and (A.42) we can find the unit-cost function for x. By imposing the

target p∗ = 1 we find:

p∗ =

(

w∗

φ

)φ( (rk)∗

1− φ

)1−φ
1

Ωx
= 1 ⇔ Ωx = 1.7430.

– It follows that total consumption is:

x∗ = 1− z∗ = (1− u∗)Ωx (κ
∗

x)
1−φ ⇔ 1− u∗ = 0.9424.

– From (A.41) and (A.43) we can find the unit-cost function for z. By imposing the

target q∗ = 1 we can write Ωz in terms of the unkonw parameter ψ::

q∗ =

(

w∗

ψ

)ψ ( (rk)∗

1− ψ

)1−ψ
1

Ωz
= 1 ⇔ Ωz =

(

w∗

ψ

)ψ ( (rk)∗

1− ψ

)1−ψ

.

– By combing (A.41) and (A.43) we find κ∗z in terms of the unkonw parameter ψ:

κ∗z =
1− ψ

ψ

(w

rk

)

∗

.

– Investment is:

z∗ = u∗
(

w∗

ψ

)ψ ( (rk)∗

1− ψ

)1−ψ [
1− ψ

ψ

(w

rk

)

∗

]1−ψ
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=
u∗w∗

ψ
⇔ ψ = 3.7084 · 10−1.

– The value for ψ implies that:

Ωz = 4.2651.

• In summary, the structural parameters for the two-sector model are reported in panel (a)

of Table A.1.

A.1.5.2 Visualization: A specific distribution function for η

For the visualizations we use the uniform distribution for η:

• Density and distribution functions:

f(η) ≡
1

ηH − ηL
, F (η) ≡

η − ηL
ηH − ηL

(for ηL ≤ η ≤ ηH).

• Weight:

∫ ηH

ηL

η1/(1−ε)dF (η) =
1− ε

(2− ε)(ηH − ηL)

[

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

]

.

• Rent-seeking time:

et(η) =
εΠm1,t

Wth̄t

(2− ε)(ηH − ηL)

1− ε

η1/(1−ε)

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

.

• Total rent-seeking effort:

Et =

[

εΠm1,t

Wth̄t

]ε [
1− ε

(2− ε)(ηH − ηL)

[

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

]

]1−ε

.

• Share function:

st(η) =
ηet(η)

ε

Et
=

(2− ε)(ηH − ηL)

1− ε

η1/(1−ε)

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

.

• Hence:

et(η) =
εΠm1,t

Wth̄t
st(η).
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• Cumulative share for η in the interval η0 ≤ η ≤ η1:

S
η
1

η0 ≡

∫ η1

η
0

st(η)dF (η) =
η
(2−ε)/(1−ε)
1 − η

(2−ε)/(1−ε)
0

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

.

A.1.6 Inequality measures

• The individual lifetime utility function at birth is:

Λyt (η) ≡ ln cyt (η) + β ln cot+1(η)

• Aggregate consumption spending by the old (at time t):

PV,tc
o
t

h̄t
= λwt + (1 + rt)qt

Kt

h̄t

• Aggregate consumption spending by the young (at time t):

PV,tc
y
t

h̄t
=

1

1 + β

[

wt[1− lt] + (1− ε)
πm1,t

h̄t
+ λ

wt+1(1 + γt+1)

1 + rt+1

]

• Aggregate saving (equals investment) by the young (at time t):

qtKt+1

h̄t
=

β

1 + β

[

wt[1− lt] + (1− ε)
πm1,t

h̄t

]

−
λ

1 + β

wt+1(1 + γt+1)

1 + rt+1

• Individual consumption spending by the old (at timet):

PV,tc
o
t (η)

h̄t
= λwt + (1 + rt)qt

Kt(η)

h̄t

• Individual consumption spending by the young (at time t):

PV,tc
y
t (η)

h̄t
=

1

1 + β

[

wt[1− lt] + st(η)(1− ε)
πm1,t

h̄t
+ λ

wt+1(1 + γt+1)

1 + rt+1

]

,

where st(η) is dependent on the distribution of η:

st(η) ≡
η1/(1−ε)

∫ ηH
ηL

η1/(1−ε)dF (η)

• Aggregate saving (equals investment) by the young (at time t):

qtKt+1(η)

h̄t
=

β

1 + β

[

wt[1− lt] + st(η)(1− ε)
πm1,t

h̄t

]

−
λ

1 + β

wt+1(1 + γt+1)

1 + rt+1
,

where Kt+1(η) = zyt (η) + kyt (η).
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• By combining these results we find for the old:

PV,t[c
o
t (η)− cot ]

h̄t
= (1 + rt)qt

Kt(η)−Kt

h̄t

• For the young we find:

PV,t[c
y
t (η)− cyt ]

h̄t
=

1

1 + β
[st(η)− 1](1− ε)

πm1,t

h̄t
qt[Kt+1(η)−Kt+1]

h̄t
=

β

1 + β
[st(η)− 1](1− ε)

πm1,t

h̄t

• Further notes on welfare computations:

– Let shock-time be t = 0.

– Following an unanticipated and permanent shock the effect on the shock-time old is

computed differently from the way later old-age consumption is treated.

– For the shock-time old we find that:

PV,tc
o
t (η)

h̄t
= λwt + (1 + rt)qt

Kt(η)

h̄t

with:

qt−1[Kt(η)−Kt]

h̄t−1
=

β

1 + β
[st−1(η)− 1](1− ε)

πm1,t−1

h̄t−1

– So, for example, if the rent-seeking technology is opened up at time t then, obviously

we have that πm1,t−1 = 0 so that we find that Kt(η) = Kt (no inequality at all).

– For the post-shock-time old-age consumption we find that ct+1(η) can be linked to

ct(η) according to the Euler equation:

PV,t+1

1 + rt+1
cot+1(η) = βPV,tc

y
t (η),

so that utility at birth for the shock-time young is:

Λyt (η) ≡ ln cyt (η) + β ln

[

β(1 + rt+1)PV,tc
y
t (η)

PV,t+1

]

= (1 + β) ln cyt (η) + β ln

[

β(1 + rt+1)PV,t
PV,t+1

]

– Note that the Euler equation in scaled variables is given by:

cot+1(η)

h̄t+1
= β

(1 + rt+1)PV,t
(1 + γt+1)PV,t+1

cyt (η)

h̄t
.

This expression has been used in the Dynare files.
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A.2 Proofs

A.2.1 Useful Result 1

Part (a). For the general model factor demands can be written in real terms (for i = 1, 2) as:

rkt = (1− φi)MC x
i (wt, r

k
t )Ωiκ

−φi
i,t ,

wt = φiMC x
i (wt, r

k
t )Ωiκ

1−φi
i,t .

By solving the second equation for κi,t and substituting the resulting expression into the first

equation we find:

MC x
i (wt, r

k
t ) =

(

rkt
1− φi

)1−φi (wt
φi

)φi 1

Ωi
.

In the competitive sector 2 we find P2,t = MC x
2(Wt, R

k
t ) so that:

MC x
2(wt, r

k
t ) =

(

rkt
1− φ2

)1−φ
2
(

wt
φ2

)φ2 1

Ω2
= 1.

For sector 1 we find:

MC x
1(wt, r

k
t ) =

(

wt
φ1

)φ1
(

rkt
1− φ1

)1−φ
1 1

Ω1
.

It follows readily that, for φ1 = φ2 = φ and Ω1 = Ω2 = Ωx we obtain:

MC x
1(wt, r

k
t ) = 1, κ1,t = κ2,t.

If φ1 = φ2 = φ but Ω1 6= Ω2 we find that:

MC x
1(wt, r

k
t ) =

Ω2

Ω1
6= 1, κ1,t = κ2,t.

Part (b). For the general model the price is set according to equation (AT2.18). For φ1 =

φ2 = φ and Ω1 = Ω2 = Ωx we find that MC x
1(wt, r

k
t ) = 1 so that:

pt =
ασp1−σt + σ(1− α)σ

(σ − 1) (1− α)σ
.

Since α and σ are both time-invariant constants it follows readily that pt = p∗ for all t. To prove

that p > 1 we note that relative monopoly price satisfies the implicit relationship Φ(p∗, α, σ) = 0,

with:

Φ(p, α, σ) ≡ p+

(

α

1− α

)σ p1−σ

1− σ
−

σ

σ − 1
.
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Table A.1: Structural parameters in the competitive three-sector growth equilibrium

(a) Coefficients
β time preference parameter c 0.7182
ρa annual pure rate of time preference (percent) i 1.1092
λ proportion of working time in old-age 0.5000
φ1 = φ2 human capital efficiency parameter consumption goods 0.8000
ψ human capital efficiency parameter investment good c 0.3708
δa annual capital depreciation rate (percent) 6.0000
δ capital depreciation factor i 0.8437
Ω1 = Ω2 scale factor production function consumption goods c 1.7430
Ωz scale factor production function investment good c 4.2651
θ curvature parameter of the learning function c 0.2125
φe scale parameter of the learning function c 5.2998
T length of each adult period in years 30

(b) Steady-state equilibrium growth path
κ∗ capital intensity: 0.0600
(Kt/h̄t)

∗ physical-human capital ratio: 0.0840
l∗ time share of schooling during youth 0.1000
γ∗ growth factor 1.0976
γ∗a × 100% annual growth rate (percent) i 2.5000
r∗ real interest factor 3.3219
r∗a × 100% annual real interest rate (percent) i 5.0000
w∗ wage rate 0.7500
(rk)∗ rental rate on capital 4.1656
y∗ output intensity 1.0000
x∗1 = x∗2 consumption intensity in each consumption sector 0.4417
z∗ investment intensity 0.1165
q∗ relative price of the investment good 1.0000
u∗1 = u∗2 human capital share in each consumption sector 0.4712
u∗z human capital share in the investment sector 0.0576
κ∗z capital intensity in the investment sector 0.3055
κ∗1 = κ∗2 capital intensity in each consumption sector 0.0450

Note The parameters labelled ‘c’ are calibrated as is explained in the text. The ones labelled
‘i’ are implied by other parameters and variables. The remaining parameters are postulated a
priori. Note that ρa = β−1/T −1, r∗a = (1+r∗)1/T −1, γ∗a = (1+γ∗)1/T −1, and δ = 1−(1−δa)

T .
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Table A.2: Rent-seeking and growth in the three-sector model (TY scenario)

(1 + γt+1)qt
Kt+1

h̄t+1
=

1

1 + β

[

β(1− ε)
πm1,t

h̄t
+ βwt (1− lt)−

λwt+1(1 + γt+1)

1 + rt+1

]

(AT2.1)

πm1,t

h̄t
=

Ξt
1 + β − (1− ε)Ξt

[

wt (1− lt) +
λwt+1(1 + γt+1)

1 + rt+1

]

+
(1 + β)Ξt

1 + β − (1− ε)Ξt

[

λwt +
(

(1− δ) qt + rkt

) Kt

h̄t

]

(AT2.2)

wtēt = ε
πm1,t

h̄t
(AT2.3)

γt+1 = φe
l1−θt

1− θ
(AT2.4)

lθt ≡
λφewt+1

(1 + rt+1)wt
(AT2.5)

1 + rt+1 ≡
rkt+1 + (1− δ)qt+1

qt
(AT2.6)

wt = φ1mcx1,tΩ1κ
1−φ

1

1,t = φ2Ω2κ
1−φ

2

2,t = ψqtΩzκ
1−ψ
z,t (AT2.7)-(AT2.9)

rkt = (1− φ1)mcx1,tΩ1κ
−φ1
1,t = (1− φ2)Ω2κ

−φ2
2,t = (1− ψ)qtΩzκ

−ψ
z,t

(AT2.10)-(AT2.12)

κt = u1,tκ1,t + u2,tκ2,t + uz,tκz,t (AT2.13)

zt =

(

1 + λ− ēt+1 − lt+1

1 + λ− ēt − lt

)

(1 + γt+1)κt+1 − (1− δ)κt (AT2.14)

κt =
1

1 + λ− ēt − lt

Kt

h̄t
(AT2.15)

yt = ptx1,t + x2,t + qtzt (AT2.16)

Ξt ≡
ασp1−σt

ασp1−σt + σ(1− α)σ
(AT2.17)

pt =
ασp1−σt + σ(1− α)σ

(σ − 1) (1− α)σ
mcx1,t (AT2.18)

p1,tx1,t =
ασp1−σt

ασp1−σt + (1− α)σ
1

1 + λ− ēt − lt

[

1

1 + β

(

(1− ε)
πm1,t

h̄t
+ wt (1− lt) +

λwt+1(1 + γt+1)

1 + rt+1

)

+ λwt +
(

(1− δ) qt + rkt

) Kt

h̄t

]

(AT2.19)

x1,t = u1,tΩ1κ
1−φ

1

1,t (AT2.20)

x2,t = u2,tΩ2κ
1−φ2
2,t (AT2.21)

zt = uz,tΩzκ
1−ψ
z,t (AT2.22)

1 = u1,t + u2,t + uz,t (AT2.23)

Notes The endogenous variables areKt+1/h̄t+1, γt+1, ēt, π
m
1,t/h̄t, lt, rt, qt, r

k
t , wt, x1,t ≡ X1,t/Ht,

x2,t ≡ X2,t/Ht, zt ≡ Zt/Ht, u1,t ≡ H1,t/Ht, u2,t ≡ H2,t/Ht, uz,t ≡ Hz,t/Ht, κt ≡ Kt/Ht,
κ1,t ≡ K1,t/H1,t, κ2,t ≡ K2,t/H2,t, κz,t ≡ Kz,t/Hz,t, mcx1,t, Ξt, pt, and yt ≡ Yt/Ht. Of these, only
Kt/h̄t is predetermined at time t. A-25



By differentiation we find that:

Φp ≡
∂Φ(p, α, σ)

∂p
=

[

1 +

(

α

(1− α)p

)σ]

> 0,

so Φ(p, α, σ) is increasing. We also find that:

Φ(1, α, σ) = −
1

σ − 1

[

1 +

(

α

1− α

)σ]

< 0,

from which it follows that p > 1.

Part (c). By differentiating Φ(p, α, σ) with respect to α we find:

Φα ≡
∂Φ(p, α, σ)

∂α
= −

σ

σ − 1

(

α

1− α

)σ−1 p1−σ

(1− α)2
< 0.

It follows readily that ∂p∗/∂α = −Φα/Φp > 0.

Part (d). By differentiating Φ(p, α, σ) with respect σ we find:

Φσ ≡
∂Φ(p, α, σ)

∂σ
=

1

(σ − 1)2

[

1 +

(

α

1− α

)σ

p1−σ [1 + (σ − 1) ln p]

]

−
p1−σ

σ − 1

(

α

1− α

)σ

ln

(

α

1− α

)

.

The first term on the right-hand side is positive but the second term is negative for α > 1
2 .

Evaluated at α = 1
2 this term vanishes and Φσ > 0. It then follows readily that ∂p/∂σ =

−Φσ/Φp < 0.

Part (e). The proportionality factor Ξt is defined in equation (AT2.17). Its time-invariance,

Ξt = Ξ∗, follows immediately from the fact that pt = p∗ for all t.

A.2.2 Useful Result ??

???? To be added
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A.2.3 Analytical results

• The competitive steady-state growth model is listed in Table 2 in the paper. Equations

(T2.1)–(T2.10) and (T2.12) can be linearized around the initial steady state to obtain:

γ̃∗ = (1− θ)l̃∗ (TAx.1)

l̃∗ = −
r∗

θ(1 + r∗)
r̃∗ (TAx.2)

(r̃k)∗ =
r∗

r∗ + δ
r̃∗ + q̃∗ (TAx.3)

w̃∗ = (1− φ)κ̃∗x (TAx.4)

w̃∗ = q̃∗ + (1− ψ)κ̃∗z (TAx.5)

(r̃k)∗ = −φκ̃∗x (TAx.6)

(r̃k)∗ = q̃∗ − ψκ̃∗z (TAx.7)

κ̃∗ =
u∗zκ

∗

z

κ∗
κ̃z +

(1− u∗z)κ
∗

x

κ∗
κ̃x +

u∗z(κ
∗

z − κ∗x)

κ∗
ũz (TAx.8)

z̃∗ =
γ∗

γ∗ + δ
γ̃∗ + κ̃∗ (TAx.9)

z̃∗ = ũ∗z + (1− ψ)κ̃∗z (TAx.12)

• The dimensionality of the model can be reduced quite substantially.

– Equations (TAx.4) and (TAx.6) imply:

w̃∗ − (r̃k)∗ = κ̃∗x

– Equations (TAx.5) and (TAx.7) imply:

w̃∗ − (r̃k)∗ = κ̃∗z

– Hence:

κ̃∗x = κ̃∗z

– Equations (TAx.4) and (TAx.5) then imply:

q̃∗ = (ψ − φ)κ̃∗x

– Equations (TAx.3) and (TAx.6) then imply:

r̃∗ = −
ψ(r∗ + δ)

r∗
κ̃∗x
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– Equations (TAx.1) and (TAx.2) then imply:

γ̃∗ = (1− θ)l̃∗ =
1− θ

θ

ψ(r∗ + δ)

1 + r∗
κ̃∗x

– We are left with a system, determining (κ̃x, ũz, z̃
∗) in terms of κ̃∗:

κ̃∗ = κ̃∗x +
u∗z(κ

∗

z − κ∗x)

κ∗
ũz

z̃∗ =
γ∗

γ∗ + δ

1− θ

θ

ψ(r∗ + δ)

1 + r∗
κ̃∗x + κ̃∗

z̃∗ = ũ∗z + (1− ψ)κ̃∗x

• In matrix notation:

∆







κ̃∗x

ũz

z̃∗






=







1

1

0






κ̃∗

where ∆ is given by:

∆ ≡







1 u∗z(κ
∗

z−κ
∗

x)
κ∗ 0

− γ∗

γ∗+δ
1−θ
θ

ψ(r∗+δ)
1+r∗ 0 1

1− ψ 1 −1






≡







1 δ12 0

−δ21 0 1

1− ψ 1 −1






.

• We easily find:

– The determinant:

|∆| = δ12 (1− ψ − δ21)− 1

=
u∗z(κ

∗

z − κ∗x)

κ∗

(

1− ψ −
γ∗

γ∗ + δ

1− θ

θ

ψ(r∗ + δ)

1 + r∗

)

− 1.

– The inverse:

∆−1 = −
1

|∆|







1 −δ12 −δ12

ψ + δ21 − 1 1 1

δ21 (ψ − 1) δ12 + 1 −δ12δ21







= −
1

|∆|







1 −u∗z(κ
∗

z−κ
∗

x)
κ∗ −u∗z(κ

∗

z−κ
∗

x)
κ∗

ψ + γ∗

γ∗+δ
1−θ
θ

ψ(r∗+δ)
1+r∗ − 1 1 1

γ∗

γ∗+δ
1−θ
θ

ψ(r∗+δ)
1+r∗ (ψ − 1) u

∗

z(κ
∗

z−κ
∗

x)
κ∗ + 1 −u∗z(κ

∗

z−κ
∗

x)
κ∗

γ∗

γ∗+δ
1−θ
θ

ψ(r∗+δ)
1+r∗






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– The solution:

∆







κ̃∗x

ũz

z̃∗






= −

1

|∆|







1− δ12

ψ + δ21

δ21 + (ψ − 1) δ12 + 1






κ̃∗

= −
1

|∆|







1− u∗z(κ
∗

z−κ
∗

x)
κ∗

ψ + γ∗

γ∗+δ
1−θ
θ

ψ(r∗+δ)
1+r∗

γ∗

γ∗+δ
1−θ
θ

ψ(r∗+δ)
1+r∗ + (ψ − 1) u

∗

z(κ
∗

z−κ
∗

x)
κ∗ + 1






κ̃∗

• For future use we note that:

κ∗z − κ∗x =
φ− ψ

φψ

(w

rk

)

∗

A.3 Alternative timing: proceeds to the old

• Rent-seeking activities during youth give a payoff during old-age.

• Budget constraint during youth:

PV,tc
y
t (η) +Qt [z

y
t (η) + kyt (η)] =Wth

y
t (η) [1− et(η)− lt(η)] .

• Budget constraint during old-age:

PV,t+1c
o
t+1(η) = λWt+1h

o
t+1(η) + st(η)Π

m
1,t+1 +

[

(1− δ)Qt+1 +Rkt+1

]

[zyt (η) + kyt (η)] .

• Consolidated budget constraint in nominal terms:

PV,tc
y
t (η) +

PV,t+1c
o
t+1(η)

1 +Rnt+1

= HW y
t , (A.48)

where human wealth during youth is:

HW y
t ≡Wth

y
t (η) [1− et(η)− lt(η)] +

λWt+1h
o
t+1(η) + st(η)Π

m
1,t+1

1 +Rnt+1

.

• Lagrangian:

Lyt ≡ ln cyt (η) + β ln cot+1(η) + µt

[

st(η)Π
m
1,t+1

1 +Rnt+1

+Wth̄t [1− et(η)− lt(η)]

+
λWt+1

1 +Rnt+1

h̄t

[

1 + φe
lt(η)

1−θ

1− θ

]

− PV,tc
y
t (η)−

PV,t+1c
o
t+1(η)

1 +Rnt+1

]

.
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• First-order conditions:

∂Lyt
∂cyt (η)

=
1

cyt (η)
− µtPV,t = 0,

∂Lyt
∂cot+1(η)

=
β

cot+1(η)
−
µtPV,t+1

1 +Rnt+1

= 0,

∂Lyt
∂lt(η)

= µt

[

−Wt +
Wt+1

1 +Rnt+1

λφelt(η)
−θ

]

h̄t = 0,

∂Lyt
∂et(η)

= µt

[

Πm1,t+1

1 +Rnt+1

∂st(η)

∂et(η)
−Wth̄t

]

= 0.

• Substituting the first two expressions into the life-time budget constraint (A.48) we find:

PV,tc
y
t (η) =

1

1 + β
HW y

t (η),

PV,t+1c
o
t+1(η)

1 +Rnt+1

=
β

1 + β
HW y

t (η).

• Saving during youth:

Qt [z
y
t (η) + kyt (η)] =Wth

y
t (η) [1− et(η)− lt(η)]− PV,tc

y
t (η).

• Simplify:

Qt [z
y
t (η) + kyt (η)] =

β

1 + β
Wth

y
t (η) [1− et(η)− lt(η)]−

1

1 + β

λWt+1h
o
t+1(η) + st(η)Π

m
1,t+1

1 +Rnt+1

.

• For the success function st(η) = ηet(η)
ε/Rt we find:

ε
Πm1,t+1

1 +Rnt+1

ηet(η)
ε−1

Rt
=Wth̄t ⇔ et(η) =

[

ε

Wth̄t

Πm1,t+1

1 +Rnt+1

η

Rt

]1/(1−ε)

.

• It follows that total rent-seeking effort Et and wasted labour ēt amount to:

Et ≡

∫ ηH

ηL

ηet(η)
εdF (η) =

[

εΠm1,t+1

Wth̄tEt(1 +Rnt+1)

]ε/(1−ε)
∫ ηH

ηL

η1/(1−ε)dF (η),

ēt ≡

∫ ηH

ηL

et(η)dF (η) =

[

εΠm1,t+1

Wth̄tEt(1 +Rnt+1)

]1/(1−ε)
∫ ηH

ηL

η1/(1−ε)dF (η).

• Solving for Rt gives:

Et =

[

εΠm1,t+1

Wth̄t(1 +Rnt+1)

]ε [
∫ ηH

ηL

η1/(1−ε)dF (η)

]1−ε

.
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• Solving for et(η) gives:

et(η) =
εΠm1,t+1

Wth̄t(1 +Rnt+1)

η1/(1−ε)
∫ ηH
ηL

η1/(1−ε)dF (η)

• Solving for ēt gives:

ēt =
εΠm1,t+1

Wth̄t(1 +Rnt+1)
(A.49)

• We need to find an expression for Πm1,t+1.

• Demand in sector 1 originates from the young and the old.

– Young demand for good 1:

Xy
1,t =

ασP−σ
1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

HW y
t

1 + β
.

– Old demand for good 1:

Xo
1,t =

ασP−σ
1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

Iot ,

Iot = λWth
o
t +Πm1,t +

[

(1− δ)Qt +Rkt

]

Kt.

– Total demand is thus:

X1,t =
ασP−σ

1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

[

HW y
t

1 + β
+ Iot

]

.

• Aggregate profit equals:

Πm1,t = Ξt

[

HW y
t

1 + β
+ Iot

]

. (A.50)

where Ξt is defined above (see (A.26)).

• We find (after using (A.49)) that:

HW y
t

1 + β
+ Iot =

1

1 + β

(

Wth̄t [1− lt] +
λWt+1h̄t(1 + γt+1) + (1− ε)Πm1,t+1

1 +Rnt+1

)

+ λWth̄t +Πm1,t +
[

(1− δ)Qt +Rkt

]

Kt. (A.51)

– Current profit depends in part on itself because old agents consume it

– Current profit depends in part on expected future profit because these form part of

human wealth of young agents
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• By solving (A.50) and (A.51) for Πm1,t and
HW

y
t

1+β + Iot we find:

Πm1,t =
Ξt

(1− Ξt)(1 + β)

[

Wth̄t [1− lt] +
λWt+1h̄t(1 + γt+1) + (1− ε)Πm1,t+1

1 +Rnt+1

+ (1 + β)
[

λWth̄t +
[

(1− δ)Qt +Rkt

]

Kt

]

]

.

and:

HW y
t

1 + β
+ Iot =

1

(1− Ξt)(1 + β)

[

Wth̄t [1− lt] +
λWt+1h̄t(1 + γt+1) + (1− ε)Πm1,t+1

1 +Rnt+1

+ (1 + β)
[

λWth̄t +
[

(1− δ)Qt +Rkt

]

Kt

]

]

.

• The key equations of the model with alternative timing are gathered in Table A.3.

• The various scenarios are reported in Table A.4. Rent seeking destroys economic growth.

A.3.1 Verify Walras Law

• Spending at time t:

PV,t [c
y
t + cot ]+Qt [Zt + (1− δ)Kt] =Wth̄t [1− ēt − lt]+Πm1,t+λWth

o
t+
[

(1− δ)Qt +Rkt

]

Kt.

• The old sell the remaining capital to the young so:

PV,t [c
y
t + cot ] +QtZt =Wth̄t [1− ēt − lt] + Πm1,t + λWth

o
t +RktKt.

• But PV,t [c
y
t + cot ] = P1,tX1,t + P2,tX2,t and Ht = h̄t [1− ēt − lt] + λhot so we get:

P1,tX1,t + P2,tX2,t +QtZt =WtHt +Πm1,t +RktKt.

• But Πm1,t = (P1,t−MC x
1(Wt, R

k
t ))X1,t, P2,t = MC x

2(Wt, R
k
t ), and Qt = MC z(Wt, R

k
t ) so we

get:

MC x
1(Wt, R

k
t )X1,t +MC x

2(Wt, R
k
t )X2,t +MC z(Wt, R

k
t )Zt =WtHt +RktKt.

Right-hand side: total factor income. Left-hand side: total spending on consumption and

investment goods evaluated at the true marginal cost of producing these goods.
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A.3.2 Checking market equilibrium conditions

• Market for good 1 (demand and supply):

p1,t
X1,t

h̄t
=

ασp1−σ1,t

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

wt [1− lt] +
1 + γt+1

1 + rt+1

[

λwt+1 + (1− ε)
πm1,t+1

h̄t+1

])

+ λwt +
πm1,t

h̄t
+
[

(1− δ) qt + rkt

] Kt

h̄t

]

.

X1,t

Ht
= Ω1u1,tκ

1−φ
1

1,t .

• Market for good 2 (demand and supply):

X2,t

h̄t
=

(1− α)σ

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

wt [1− lt] +
1 + γt+1

1 + rt+1

[

λwt+1 + (1− ε)
πm1,t+1

h̄t+1

])

+ λwt +
πm1,t

h̄t
+
[

(1− δ) qt + rkt

] Kt

h̄t

]

,

X2,t

Ht
= Ω2u2,tκ

1−φ2
2,t .

• Market for investment goods (demand and supply):

qt
Zt
h̄t

=
β

1 + β
wt [1− lt]

]

−
1

1 + β

1 + γt+1

1 + rt+1

[

λwt+1 + (1 + βε)
πm1,t+1

h̄t+1

]

− qt(1− δ)
Kt

h̄t
,

Zt
Ht

= uz,tΩzκ
1−ψ
z,t .

• Aggregate output:

Yt
Ht

= pt
X1,t

Ht
+
X2,t

Ht
+ qt

Zt
Ht
.
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Table A.3: Features of the steady-state growth path (TO scenario)

(1 + γt+1)qt
Kt+1

h̄t+1
=

1

1 + β

[

βwt (1− lt)−
1 + γt+1

1 + rt+1

(

λwt+1 + (1 + βε)
πm1,t+1

h̄t+1

)]

(AT3.1)

πm1,t

h̄t
=

Ξt
(1− Ξt)(1 + β)

[

wt (1− lt) +
1 + γt+1

1 + rt+1

(

λwt+1 + (1− ε)
πm1,t+1

h̄t+1

)]

+
Ξt

1− Ξt

[

λwt +
(

(1− δ) qt + rkt

) Kt

h̄t

]

(AT3.2)

wtēt = ε
1 + γt+1

1 + rt+1

πm1,t+1

h̄t+1
(AT3.3)

γt+1 = φe
l1−θt

1− θ
(AT3.4)

lθt ≡
λφewt+1

(1 + rt+1)wt
(AT3.5)

1 + rt+1 ≡
rkt+1 + (1− δ)qt+1

qt
(AT3.6)

wt = φ1mcx1,tΩ1κ
1−φ1
1,t = φ2Ω2κ

1−φ2
2,t = ψqtΩzκ

1−ψ
z,t (AT3.7)-(AT3.9)

rkt = (1− φ1)mcx1,tΩ1κ
−φ1
1,t = (1− φ2)Ω2κ

−φ2
2,t = (1− ψ)qtΩzκ

−ψ
z,t

(AT3.10)-(AT3.12)

κt = u1,tκ1,t + u2,tκ2,t + uz,tκz,t (AT3.13)

zt =

(

1 + λ− ēt+1 − lt+1

1 + λ− ēt − lt

)

(1 + γt+1)κt+1 − (1− δ)κt (AT3.14)

κt =
1

1 + λ− ēt − lt

Kt

h̄t
(AT3.15)

yt = ptx1,t + x2,t + qtzt (AT3.16)

Ξt ≡
ασp1−σt

ασp1−σt + σ(1− α)σ
(AT3.17)

pt =
ασp1−σt + σ(1− α)σ

(σ − 1) (1− α)σ
mcx1,t (AT3.18)

ptx1,t =
ασp1−σt

ασp1−σt + (1− α)σ
1

1 + λ− ēt − lt

[

1

1 + β

(

wt (1− lt) +
1 + γt+1

1 + rt+1

(

λwt+1 + (1− ε)
πm1,t+1

h̄t+1

))

+ λwt +
πm1,t

h̄t
+
(

(1− δ) qt + rkt

) Kt

h̄t

]

(AT3.19)

x1,t = u1,tΩ1κ
1−φ1
1,t (AT3.20)

x2,t = u2,tΩ2κ
1−φ2
2,t (AT3.21)

zt = uz,tΩzκ
1−ψ
z,t (AT3.22)

1 = u1,t + u2,t + uz,t (AT3.23)

Notes The endogenous variables areKt+1/h̄t+1, γt+1, ēt, π
m
1,t/h̄t, lt, rt, qt, r

k
t , wt, x1,t ≡ X1,t/Ht,

x2,t ≡ X2,t/Ht, zt ≡ Zt/Ht, u1,t ≡ H1,t/Ht, u2,t ≡ H2,t/Ht, uz,t ≡ Hz,t/Ht, κt ≡ Kt/Ht,
κ1,t ≡ K1,t/H1,t, κ2,t ≡ K2,t/H2,t, κz,t ≡ Kz,t/Hz,t, mcx1,t, Ξt, pt, and yt ≡ Yt/Ht. Of these, only
Kt/h̄t is predetermined at time t. A-34



Table A.4: Features of the steady-state growth path (TO case)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

θ 0.2125 0.2125 0.3000 0.2125 0.2125 0.2125 0.2125 0.2125 0.2125
φe 5.2998 5.2998 5.2998 6.0000 5.2998 5.2998 5.2998 5.2998 5.2998
ε 0.0800 0.0800 0.0800 0.1600 0.0800 0.0800 0.0800 0.8000
σ 2.0000 2.0000 2.0000 2.0000 2.0000 4.0000 2.0000 2.0000 2.0000
α 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7000 0.5000 0.5000
φ (or φ1) 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.6000 0.8000
ψ 0.3708 0.3708 0.3708 0.3708 0.3708 0.3708 0.3708 0.3708 0.8000

y∗ 1.0000 1.1276 1.0057 1.0651 1.1260 1.0512 1.4558 1.0948 1.3839
x∗1 0.4417 0.1263 0.1126 0.1193 0.1262 0.1637 0.2416 0.0519 0.1559
x∗2 0.4417 0.7364 0.6562 0.6955 0.7358 0.7120 0.5557 0.7925 0.9087
i∗ 0.1165 0.0794 0.0560 0.0666 0.0786 0.0995 0.0337 0.0925 0.2417
l∗ 0.1000 0.0727 0.0777 0.0805 0.0720 0.0880 0.0317 0.0750 0.0867
e∗ 0.0112 0.0112 0.0111 0.0222 0.0050 0.0282 0.0072 0.0118
γ∗ 1.0976 0.8541 1.2758 1.0475 0.8476 0.9925 0.4439 0.8750 0.9811
γ∗a × 100% 2.5000 2.0792 2.7790 2.4175 2.0674 2.3246 1.2319 2.1175 2.3050
γ∗ca × 100% 2.5000 3.1607 2.8531 2.0692 2.8427
w∗ 0.7500 0.7222 0.6439 0.6821 0.7213 0.7387 0.6546 0.7248 0.9307
(rk)∗ 4.1657 4.8460 7.6697 6.0896 4.8682 4.4264 7.1793 4.7757 1.7567
r∗ 3.3219 3.6245 4.6843 4.1236 3.6340 3.4408 4.5175 3.5944 3.4547
r∗a × 100% 5.0000 5.2371 5.9634 5.5972 5.2443 5.0950 5.8583 5.2142 5.1060
p∗ 1.0000 2.4142 2.4142 2.4142 2.4142 1.4440 3.5386 3.9087 2.4142
(mcx)∗ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.7327 1.0000
q∗ 1.0000 1.0845 1.3874 1.2259 1.0872 1.0331 1.3391 1.0761 0.4087
u∗1 0.4712 0.1400 0.1399 0.1400 0.1400 0.1773 0.2953 0.0744 0.1340
u∗2 0.4712 0.8158 0.8154 0.8157 0.8161 0.7711 0.6791 0.8747 0.7811
u∗z 0.0576 0.0442 0.0448 0.0444 0.0439 0.0516 0.0256 0.0509 0.0849
κ∗ 0.0600 0.0468 0.0264 0.0352 0.0465 0.0542 0.0262 0.0538 0.1325
κ∗1 0.0450 0.0373 0.0210 0.0280 0.0370 0.0417 0.0228 0.1012 0.1325
κ∗2 0.0450 0.0373 0.0210 0.0280 0.0370 0.0417 0.0228 0.0379 0.1325
κ∗z 0.3055 0.2528 0.1424 0.1900 0.2614 0.2831 0.1547 0.2575 0.1325
ζ∗ 0.0840 0.0663 0.0373 0.0496 0.0653 0.0762 0.0377 0.0763 0.1856
(πm1,t/h̄t)

∗ 0.0000 0.2530 0.2245 0.2377 0.2510 0.1023 0.8833 0.1600 0.3090

Notes The perfectly competitive steady-state equilibrium (without rent seeking) is reported in
column (a). Column (b) reports on the benchmark rent-seeking equilibrium. Columns (c)–(i)
report on some alternative rent-seeking equilibria for different values of, respectively, θ, φe, ε,
σ, α, φ1, and ψ.

A-35



A.4 Education in the rent share function

• An individual’s education level features in the share function.

• We change the share function to:

st(η) ≡
η
[

lt(η)
ξet(η)

]ε

Et
, ξ > 0,

where Et is given by:

Et ≡

∫ ηH

ηL

η
[

lt(η)
ξet(η)

]ε
dF (η).

• Note that:

∂st(η)

∂lt(η)
=
εξη

[

lt(η)
ξet(η)

]ε

lt(η)Et
=
εξst(η)

lt(η)
,

∂st(η)

∂et(η)
=
εη
[

lt(η)
ξet(η)

]ε

et(η)Et
=
εst(η)

et(η)
.

• Rent-seeking revenues accrue to the young (base case).

• Lagrangian:

Lyt ≡ ln cyt (η) + β ln cot+1(η) + µt

[

st(η)Π
m
1,t +Wth̄t [1− et(η)− lt(η)]

+
λWt+1

1 +Rnt+1

h̄t

[

1 + φe
lt(η)

1−θ

1− θ

]

− PV,tc
y
t (η)−

PV,t+1c
o
t+1(η)

1 +Rnt+1

]

.

• First-order conditions:

∂Lyt
∂cyt (η)

=
1

cyt (η)
− µtPV,t = 0,

∂Lyt
∂cot+1(η)

=
β

cot+1(η)
−
µtPV,t+1

1 +Rnt+1

= 0,

∂Lyt
∂lt(η)

= µt

[

Πm1,t

h̄t

∂st(η)

∂lt(η)
−Wt +

Wt+1

1 +Rnt+1

λφelt(η)
−θ

]

h̄t = 0,

∂Lyt
∂et(η)

= µt

[

Πm1,t

h̄t

∂st(η)

∂et(η)
−Wt

]

h̄t = 0.

• Substituting the first two expressions into the budget constraint (A.16) we find:

PV,tc
y
t (η) =

1

1 + β
HW y

t (η),

PV,t+1c
o
t+1(η)

1 +Rnt+1

=
β

1 + β
HW y

t (η).
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• Using the share function in the final two expressions we obtain:

Wt =
Πm1,t

h̄t

εξη
[

lt(η)
ξet(η)

]ε

lt(η)Et
+

Wt+1

1 +Rnt+1

λφelt(η)
−θ,

Wt =
Πm1,t

h̄t

εη
[

lt(η)
ξet(η)

]ε

et(η)Et
.

• Combining we find:

et(η) =

(

εηΠm1,t

Wth̄tEt

)1/(1−ε)

lt(η)
εξ/(1−ε),

1 = ξ

(

εηΠm1,t

Wth̄tEt

)1/(1−ε)

lt(η)
[ε(1+ξ)−1]/(1−ε) +

Wt+1

(1 +Rnt+1)Wt
λφelt(η)

−θ.

• We also find:

Et ≡

∫ ηH

ηL

ηlt(η)
εξet(η)

εdF (η),

=

∫ ηH

ηL

ηlt(η)
εξ

[

(

εηΠm1,t

Wth̄tEt

)1/(1−ε)

lt(η)
εξ/(1−ε)

]ε

dF (η),

E
1/(1−ε)
t =

(

εΠm1,t

Wth̄t

)ε/(1−ε) ∫ ηH

ηL

η1/(1−ε)lt(η)
εξ+ε2ξ/(1−ε)dF (η),

Et =

(

εΠm1,t

Wth̄t

)ε
[

∫ ηH

ηL

η1/(1−ε)lt(η)
εξ/(1−ε)dF (η)

]1−ε

.

• We thus find that:

et(η) =
εΠm1,t

Wth̄t

η1/(1−ε)lt(η)
εξ/(1−ε)

∫ ηH
ηL

η1/(1−ε)lt(η)εξ/(1−ε)dF (η)
.

• It easily follows that total (and average) wasted labour is:

ēt ≡

∫ ηH

ηL

et(η)dF (η) =
εΠm1,t

Wth̄t
.

• To find lt(η) we need to be able to solve:

1 = E
−1/(1−ε)
t ξ

(

εηΠm1,t

Wth̄t

)1/(1−ε)

lt(η)
[ε(1+ξ)−1]/(1−ε) +

Wt+1

(1 +Rnt+1)Wt
λφelt(η)

−θ,

= ξ

(

εΠm1,t

Wth̄t

)

−ε/(1−ε)
[

∫ ηH

ηL

η1/(1−ε)lt(η)
εξ/(1−ε)dF (η)

]

−1
(

εηΠm1,t

Wth̄t

)1/(1−ε)

lt(η)
[ε(1+ξ)−1]/(1−ε)

+
Wt+1

(1 +Rnt+1)Wt
λφelt(η)

−θ,
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=
εξΠm1,t

Wth̄t

η1/(1−ε)lt(η)
[ε(1+ξ)−1]/(1−ε)

∫ ηH
ηL

η1/(1−ε)lt(η)εξ/(1−ε)dF (η)
+

Wt+1

(1 +Rnt+1)Wt
λφelt(η)

−θ.

• Rewrite this expression to:

lt(η) =
εξΠm1,t

Wth̄t

η1/(1−ε)lt(η)
εξ/(1−ε)

∫ ηH
ηL

η1/(1−ε)lt(η)εξ/(1−ε)dF (η)
+

Wt+1

(1 +Rnt+1)Wt
λφelt(η)

1−θ.

• Total (and average) education time is thus:

l̄t ≡

∫ ηH

ηL

lt(η)dF (η),

=
εξΠm1,t

Wth̄t
+

Wt+1

(1 +Rnt+1)Wt
λ (1− θ)φe

∫ ηH
ηL

lt(η)
1−θdF (η)

1− θ
,

= ξēt +
λ (1− θ)Wt+1

(1 +Rnt+1)Wt

[

1 + γt+1

]

.

• For given values of the macro variables we find that learning time depends on innate

rent-seeking aptitude. Complications:

– Individual and aggregate growth rates differ:

γt+1(η) ≡
hot+1(η)− hyt (η)

hyt (η)
= φe

lt(η)
1−θ

1− θ
,

γt+1 ≡
Ht+1 −Ht

Ht
= φe

∫ ηH
ηL

lt(η)
1−θdF (η)

1− θ
.

– Hard to compute even numerical solutions.

– Use discretized uniform distribution with N equally likely values ηi in [ηL, ηH ]. To

allow for generalization to other discretized distributions we write the frequencies as

si (see below for details).

• Human capital stock:

Ht ≡

∫ ηH

ηL

[

λhot (η) + [1− et(η)− lt(η)]h
y
t (η)

]

dF (η),

hot (η) = h̄t−1

[

1 + φe
lt−1(η)

1−θ

1− θ

]

,

hyt (η) = h̄t,

or:

Ht =

∫ ηH

ηL

[

λh̄t−1

[

1 + φe
lt−1(η)

1−θ

1− θ

]

+ [1− et(η)− lt(η)] h̄t

]

dF (η),
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= λh̄t−1 [1 + γt] + h̄t

∫ ηH

ηL

[1− et(η)− lt(η)] dF (η),

= h̄t

[

1 + λ−

∫ ηH

ηL

[et(η) + lt(η)] dF (η)

]

,

= h̄t
[

1 + λ− ēt − l̄t
]

.

where we have used the fact that h̄t−1 [1 + γt] = h̄t.

• Human wealth at birth:

HW y
t ≡

∫ ηH

ηL

HW y
t (η) dF (η),

=

∫ ηH

ηL

[

Wth
y
t (η) [1− et(η)− lt(η)] +

λWt+1h
o
t+1(η)

1 +Rnt+1

+ st(η)Π
m
1,t

]

dF (η),

HW y
t

h̄t
=Wt +

Πm1,t

h̄t
−Wt

∫ ηH

ηL

[et(η) + lt(η)] dF (η) +
λWt+1(1 + γt+1)

1 +Rnt+1

,

=Wt [1− Let ] + (1− ε)
Πm1,t

h̄t
+
λWt+1(1 + γt+1)

1 +Rnt+1

.

• Income of the old generation:

Iot ≡

∫ ηH

ηL

Iot (η)dF (η) =

∫ ηH

ηL

[

λWth
o
t (η) +

[

(1− δ)Qt +Rkt

]

[

zyt−1(η) + kyt−1(η)
]

]

dF (η),

= λWt

∫ ηH

ηL

hot (η)dF (η) +
[

(1− δ)Qt +Rkt

]

[Zt−1 + (1− δ)Kt−1] ,

Iot
h̄t

= λWt +
[

(1− δ)Qt +Rkt

] Kt

h̄t
.

• Demand for good 1:

X1,t

h̄t
=

ασp−σ1,t

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

wt
[

1− l̄t
]

+ (1− ε)
Πm1,t

h̄t
+
λwt+1(1 + γt+1)

1 + rt+1

)

+ λwt +
[

(1− δ) qt + rkt

] Kt

h̄t

]

.

• Demand for good 2:

X2,t

h̄t
=

(1− α)σ

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

wt
[

1− l̄t
]

+ (1− ε)
Πm1,t

h̄t
+
λwt+1(1 + γt+1)

1 + rt+1

)

+ λwt +
[

(1− δ) qt + rkt

] Kt

h̄t

]

.
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• The demand for new investment goods follows from:

qt

[

Zt + (1− δ)Kt

h̄t

]

=
Πm1,t

h̄t
+ wt

∫ ηH

ηL

[1− et(η)− lt(η)] dF (η)−
1

1 + β

HW t

h̄t

=
β

1 + β

[

wt
[

1− l̄t
]

+ (1− ε)
Πm1,t

h̄t

]

−
1

1 + β

λwt+1(1 + γt+1)

1 + rt+1
.

After simplifying we obtain:

qt
Zt
h̄t

=
β

1 + β

[

wt
[

1− l̄t
]

+ (1− ε)
Πm1,t

h̄t

]

−
1

1 + β

λwt+1

1 + rt+1

[

1 + γt+1

]

− qt(1− δ)
Kt

h̄t
.

• Resulting model can be found in Table A.5

• Features of the steady-state growth path: Table A.6

• For the visualizations we use the uniform distribution for η:

– Density and distribution functions:

f(η) ≡
1

ηH − ηL
, F (η) ≡

η − ηL
ηH − ηL

(for ηL ≤ η ≤ ηH).

– Weight:

∫ ηH

ηL

η1/(1−ε)dF (η) =
1− ε

(2− ε)(ηH − ηL)

[

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

]

.

– Rent-seeking time:

et(η) =
εΠm1,t

Wth̄t

(2− ε)(ηH − ηL)

1− ε

η1/(1−ε)

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

.

– Total rent-seeking effort:

Et =

[

εΠm1,t

Wth̄t

]ε [
1− ε

(2− ε)(ηH − ηL)

[

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

]

]1−ε

.

– Share function:

st(η) =
(2− ε)(ηH − ηL)

1− ε

η1/(1−ε)

η
(2−ε)/(1−ε)
H − η

(2−ε)/(1−ε)
L

.

– Hence:

et(η) =
εΠm1,t

Wth̄t
st(η).
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• Numerical issues:

– Equations (AT5.4)–(AT5.6) are somewhat complicated.

– By discretizing the distribution for η, however, we can easily rewrite the model in

tractable terms.

– Example: uniform distribution between ηL and ηU can be approximated with N

equally spaced discrete values of η. With N intervals we place the η value for each

interval in the middle.

– The frequency of ηi is denoted by si = 1/N , such that:

N
∑

i=1

si = 1,

η1 ≡ ηL +
ηH − ηL

2N
,

ηi+1 = ηi +
ηH − ηL

N
, for i = 1, 2, . . . , N − 1.

Note that we can also write:

ηi ≡ ηL +
2i− 1

2N
(ηH − ηL), for i = 1, 2, . . . , N.

– Equations (AT5.4)–(AT5.6) can now be written as:

γt+1 = φe

∑N
i=1 silt(ηi)

1−θ

1− θ
, (AT5.4∗)

lt(ηi) = ξēt
η
1/(1−ε)
i lt(ηi)

εξ/(1−ε)

∑N
i=1 siη

1/(1−ε)
i lt(ηi)

εξ/(1−ε)
,

+
wt+1

(1 + rt+1)wt
λφelt(ηi)

1−θ, i = 1, 2, . . . , N, (AT4.5∗)

l̄t =
N
∑

i=1

silt(ηi). (AT4.6∗)

This is a nonlinear system of N + 2 equations in N + 2 variables: γt+1, l̄t, and lt(ηi)

for i = 1, 2, . . . , N .

– Other (more complicated) distributions can be discretized and used in a similar way.
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Table A.5: Rent-seeking and growth in the three-sector model (education scenario)

(1 + γt+1)qt
Kt+1

h̄t+1
=

1

1 + β

[

β(1− ε)
πm1,t

h̄t
+ βwt

(

1− l̄t
)

−
λwt+1(1 + γt+1)

1 + rt+1

]

(AT5.1)

πm1,t

h̄t
=

Ξt
1 + β − (1− ε)Ξt

[

wt
(

1− l̄t
)

+
λwt+1(1 + γt+1)

1 + rt+1

]

+
(1 + β)Ξt

1 + β − (1− ε)Ξt

[

λwt +
(

(1− δ) qt + rkt

) Kt

h̄t

]

(AT5.2)

wtēt = ε
πm1,t

h̄t
(AT5.3)

γt+1 = φe

∫ ηH
ηL

lt(η)
1−θdF (η)

1− θ
(AT5.4)

lt(η) = ξēt
η1/(1−ε)lt(η)

εξ/(1−ε)

∫ ηH
ηL

η1/(1−ε)lt(η)εξ/(1−ε)dF (η)
+

wt+1

(1 + rt+1)wt
λφelt(η)

1−θ (AT5.5)

l̄t =

∫ ηH

ηL

lt(η)dF (η) (AT5.6)

1 + rt+1 ≡
rkt+1 + (1− δ)qt+1

qt
(AT5.7)

wt = φ1mcx1,tΩ1κ
1−φ

1

1,t = φ2Ω2κ
1−φ

2

2,t = ψqtΩzκ
1−ψ
z,t (AT5.8)-(AT5.10)

rkt = (1− φ1)mcx1,tΩ1κ
−φ

1

1,t = (1− φ2)Ω2κ
−φ

2

2,t = (1− ψ)qtΩzκ
−ψ
z,t

(AT5.11)-(AT5.13)

κt = u1,tκ1,t + u2,tκ2,t + uz,tκz,t (AT5.14)

zt =

(

1 + λ− ēt+1 − l̄t+1

1 + λ− ēt − l̄t

)

(1 + γt+1)κt+1 − (1− δ)κt (AT5.15)

κt =
1

1 + λ− ēt − l̄t

Kt

h̄t
(AT5.16)

yt = ptx1,t + x2,t + qtzt (AT5.17)

Ξt ≡
ασp1−σt

ασp1−σt + σ(1− α)σ
(AT5.18)

pt =
ασp1−σt + σ(1− α)σ

(σ − 1) (1− α)σ
mcx1,t (AT5.19)
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Table A.5: Continued

p1,tx1,t =
ασp1−σt

ασp1−σt + (1− α)σ
1

1 + λ− ēt − l̄t

[

1

1 + β

(

(1− ε)
πm1,t

h̄t
+ wt

(

1− l̄t
)

+
λwt+1(1 + γt+1)

1 + rt+1

)

+ λwt +
(

(1− δ) qt + rkt

) Kt

h̄t

]

(AT5.20)

x1,t = u1,tΩ1κ
1−φ

1

1,t (AT5.21)

x2,t = u2,tΩ2κ
1−φ

2

2,t (AT5.22)

zt = uz,tΩzκ
1−ψ
z,t (AT5.23)

1 = u1,t + u2,t + uz,t (AT5.24)

Notes The endogenous variables are Kt+1/h̄t+1, γt+1, ēt, π
m
1,t/h̄t, lt(η), l̄t, rt, qt, r

k
t , wt, x1,t ≡

X1,t/Ht, x2,t ≡ X2,t/Ht, zt ≡ Zt/Ht, u1,t ≡ H1,t/Ht, u2,t ≡ H2,t/Ht, uz,t ≡ Hz,t/Ht, κt ≡
Kt/Ht, κ1,t ≡ K1,t/H1,t, κ2,t ≡ K2,t/H2,t, κz,t ≡ Kz,t/Hz,t, mcx1,t, Ξt, pt, and yt ≡ Yt/Ht. Of
these, only Kt/h̄t is predetermined at time t.
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Table A.6: Features of the steady-state growth path (education case)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

θ 0.2125 0.2125 0.3000 0.2125 0.2125 0.2125 0.2125 0.2125 0.2125
φe 5.2998 5.2998 5.2998 6.0000 5.2998 5.2998 5.2998 5.2998 5.2998
ε 0.0800 0.0800 0.0800 0.0800 0.1600 0.0800 0.0800 0.0800 0.0800
σ 2.0000 2.0000 2.0000 2.0000 2.0000 4.0000 2.0000 2.0000 2.0000
α 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7000 0.5000 0.5000
φ (or φ1) 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.6000 0.8000
ψ 0.3708 0.3708 0.3708 0.3708 0.3708 0.3708 0.3708 0.3708 0.8000

y∗ 1.2516 1.1782 1.0748 1.1104 1.1219 1.0678 1.6791 1.1214 1.3970
x∗1 0.1315 0.1241 0.1130 0.1170 0.1187 0.1616 0.2429 0.0513 0.1494
x∗2 0.7666 0.7233 0.6588 0.6817 0.6918 0.7027 0.5586 0.7773 0.8708
i∗ 0.1825 0.1490 0.1126 0.1236 0.1244 0.1281 0.2521 0.1356 0.4048
l̄∗ 0.1399 0.1716 0.1680 0.1797 0.1966 0.1311 0.3057 0.1384 0.2068
ē∗ 0.0254 0.0249 0.0249 0.0247 0.0481 0.0105 0.0748 0.0164 0.0226
γ∗ 1.4299 1.6673 2.1592 1.9583 1.8368 1.3548 2.6085 1.4101 1.9358
γ∗a × 100% 3.0037 3.3243 3.9089 3.6816 3.5367 2.8961 4.3704 2.9757 3.6551
γ∗ca × 100% 2.5000 3.1607 2.8531 2.0692 2.8427
w∗ 0.7806 0.7355 0.6706 0.6932 0.7016 0.7403 0.7380 0.7285 0.9486
(rk)∗ 3.5501 4.5036 6.5193 5.7084 5.4386 4.3889 4.4434 4.6807 1.6281
r∗ 3.0243 3.4753 4.2831 3.9770 3.8700 3.4240 3.4484 3.5532 3.1401
r∗a × 100% 4.7506 5.1221 5.7052 5.4951 5.4187 5.0817 5.1010 5.1826 4.8497
p∗ 2.4142 2.4142 2.4142 2.4142 2.4142 1.4440 3.5386 3.8911 2.4142
(mcx)∗ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.7240 1.0000
q∗ 0.9178 1.0427 1.2716 1.1841 1.1538 1.0284 1.0352 1.0645 0.4087
u∗1 0.1348 0.1350 0.1349 0.1350 0.1353 0.1746 0.2633 0.0729 0.1260
u∗2 0.7856 0.7867 0.7860 0.7867 0.7888 0.7594 0.6055 0.8536 0.7344
u∗z 0.0796 0.0783 0.0792 0.0783 0.0759 0.0660 0.1312 0.0735 0.1395
κ∗ 0.0803 0.0593 0.0375 0.0441 0.0464 0.0583 0.0730 0.0602 0.1457
κ∗1 0.0550 0.0408 0.0257 0.0304 0.0323 0.0422 0.0415 0.1038 0.1457
κ∗2 0.0550 0.0408 0.0257 0.0304 0.0323 0.0422 0.0415 0.0389 0.1457
κ∗z 0.3730 0.2771 0.1745 0.2060 0.2189 0.2862 0.2818 0.2640 0.1457
ζ∗ 0.1072 0.0773 0.0490 0.0572 0.0583 0.0792 0.0818 0.0810 0.1851
(πm1,t/h̄t)

∗ 0.2482 0.2288 0.2089 0.2143 0.2107 0.0975 0.6902 0.1496 0.2685

l∗(η1) 0.1399 0.0934 0.1065 0.1008 0.0673 0.0934 0.1106 0.0840 0.1304
l∗(η2) 0.1399 0.1115 0.1202 0.1190 0.0929 0.1018 0.1572 0.0964 0.1477
l∗(η3) 0.1399 0.1294 0.1341 0.1371 0.1204 0.1103 0.2017 0.1088 0.1651
l∗(η4) 0.1399 0.1469 0.1479 0.1547 0.1490 0.1188 0.2449 0.1210 0.1823
l∗(η5) 0.1399 0.1641 0.1616 0.1721 0.1784 0.1272 0.2872 0.1331 0.1992
l∗(η6) 0.1399 0.1810 0.1751 0.1892 0.2085 0.1356 0.3290 0.1449 0.2159
l∗(η7) 0.1399 0.1977 0.1886 0.2061 0.2394 0.1438 0.3703 0.1566 0.2324
l∗(η8) 0.1399 0.2143 0.2020 0.2228 0.2709 0.1520 0.4114 0.1682 0.2487
l∗(η9) 0.1399 0.2306 0.2153 0.2393 0.3031 0.1602 0.4522 0.1797 0.2649
l∗(η10) 0.1399 0.2468 0.2285 0.2557 0.3358 0.1682 0.4928 0.1911 0.2809

Notes The benchmark rent-seeking equilibrium is reported in column (a). Column (b) reports
on the rent-seeking equilibrium with education-augmented rent-seeking. Columns (c)–(i) report
on some alternative rent-seeking equilibria for different values of, respectively, θ, φe, ε, σ, α, φ1,
and ψ. A-44



A.5 Physical capital externality

• Physical capital externality as the source of endogenous growth.

• No education decision: human capital is constant.

• To make the model compatible with the human-capital based growth model we assume

that the time endowments are λy = 0.9 (instead of 1) and λo = 0.5 (as before).

A.5.1 Individual agents

• Utility function:

Λyt (η) ≡ ln cyt (η) + β ln cot+1(η). (A.52)

where cyt (η) and c
y
t+1(η) are defined as:

cyt (η) ≡
[

αxy1,t(η)
1−1/σ + (1− α)xy2,t(η)

1−1/σ
]1/(1−1/σ)

,

cot+1(η) ≡
[

αxo1,t+1(η)
1−1/σ + (1− α)xo2,t+1(η)

1−1/σ
]1/(1−1/σ)

.

• Budget constraint during youth:

P1,tx
y
1,t(η) + P2,tx

y
2,t(η) +Qt [z

y
t (η) + kyt (η)] = Iyt (η). (A.53)

where

Iyt (η) =Wth̄t [λ
y − et(η)] + st(η)Π

m
1,t. (A.54)

– Wt is the wage rate on standardized efficiency units of labour.

– et(η) is time spent lobbying.

– h̄t is the average human capital level in the economy at the start of time t (constant,

can be normalized to h̄t = 1).

• Budget constraint during old-age:

P1,t+1x
o
1,t+1(η) + P2,t+1x

o
2,t+1(η) = Iot+1(η).

with:

Iot+1(η) ≡ λoWt+1h̄t +
[

(1− δ)Qt+1 +Rkt+1

]

[zyt (η) + kyt (η)] .
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A.5.2 Firms

• With a capital externality we must impose the same technology on all three sectors, i.e.

φ1 = φ2 = ψ = φ from here on. The model with a sector-specific external effect and

different technologies can be formulated but it is very fragile (even for the competitive

case).

• Consumption good i is produced with physical and human capital:

Xi,t = ΩtH
φ
i,tK

1−φ
i,t .

– diminishing returns to both factors, i.e. 0 < φ < 1.

– both factors are perfectly mobile across sectors.

– the productivity term is time-dependent and taken as given by individual firms (see

below).

• Profit in sector i is:

Πi,t = Pi,tXi,t −WtHi,t −RktKi,t

which gives:

Rkt = (1− φ)Pi,tΩtH
φ
i,tK

−φ
i,t ,

Wt = φiPi,tΩtH
φ−1
i,t K1−φ

i,t .

• There exists an external effect on general productivity affecting all sectors equally:

Ωt = ΩKφ
t , (A.55)

where Kt is the total stock of capital in the economy.

• Factor demands simplify to:

Rkt = (1− φ)Pi,tΩH
φ
i,t

(

Ki,t

Kt

)

−φ

,

Wt

Kt
= φPi,tΩH

φ−1
i,t

(

Ki,t

Kt

)1−φ

.

• If we use good X2 (always produced competitively) as the numeraire commodity we find

the competitive factor demands:

rkt = (1− φ)ptΩH
φ
1,t

(

K1,t

Kt

)

−φ

= (1− φ)ΩHφ
2,t

(

K2,t

Kt

)

−φ

,
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wt
Kt

= φptΩH
φ−1
1,t

(

K1,t

Kt

)1−φ

= φΩHφ−1
2,t

(

K2,t

Kt

)1−φ

.

with:

rkt ≡
Rkt
P2,t

, wt ≡
Wt

P2,t
, pt ≡

P1,t

P2,t
.

• Output in sector i is:

Xi,t = ΩHφ
i,t

(

Ki,t

Kt

)1−φ

Kt.

• The total cost function is TC x
i (Wt, R

k
t , Xi,t) ≡ MC x

i (Wt, R
k
t )Xi,t with:

MC x
i (Wt/Kt, R

k
t ) ≡ P2,t

(

wt
φKt

)φ( rkt
1− φ

)1−φ
1

Ω
⇔

mcxi (wt/Kt, r
k
t ) =

(

wt
φKt

)φ( rkt
1− φ

)1−φ
1

Ω
.

• Since P2,t = MC x
2(Wt/K2,t, R

k
t ) we find thatmcx2(wt/Kt, r

k
t ) = 1, and thus, mcx1(wt/Kt, r

k
t ) =

1.

• The total stock of efficiency units of labour is:

Ht ≡ h̄t

∫ ηH

ηL

[

λo + λy − et(η)
]

dF (η).

– Units of ‘old’ and ‘young’ human capital are perfect substitutes.

– Since h̄t is constant we can set h̄t = 1 from here on.

• The investment good is also produced with units of physical and human capital:

Zt = ΩtH
φ
z,tK

1−φ
z,t .

• The firm hires these inputs (from their owners) to maximize profit:

Πzt ≡ QtZt −WtHz,t −RktKz,t,

which gives:

Rkt = (1− φ)QtΩtH
φ
z,tK

−φ
z,t ,

Wt = φQtΩtH
φ−1
z,t K1−φ

z,t .
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• Using the expression for Ωt in (A.55) we find:

rkt = (1− φ)qtΩH
φ
z,t.

wt
Kt

= φqtΩH
φ−1
z,t

(

Kz,t

Kt

)1−φ

,

where qt is:

qt ≡
Qt
P2,t

.

• Output is:

Zt = ΩHφ
z,t

(

Kz,t

Kt

)1−φ

Kt.

• Obviously, mcz(wt/Kt, r
k
t ) = 1 so that perfect competition in the investment goods sector

yields:

qt = mcz(wt/Kt, r
k
t ) ≡

(

wt
φKt

)φ( rkt
1− φ

)1−φ
1

Ω
= 1.

A.5.3 Loose ends

• Capital accumulation:

Kt+1 = Zt + (1− δ)Kt (A.56)

• Stock of human capital available for productive use:

Ht = λo + λy − ēt, (A.57)

ēt ≡

∫ ηH

ηL

et(η)dF (η), (A.58)

where we recall that h̄t = 1.

• Equilibrium in the investment goods market:

Zt =

∫ ηH

ηL

zyt (η)dF (η). (A.59)

• Equilibrium in the market for used capital goods:

∫ ηH

ηL

kyt (η)dF (η) = (1− δ)Kt. (A.60)
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• Equilibrium condition in the physical capital rental market:

Kt = K1,t +K2,t +Kz,t.

• Equilibrium condition in the human capital rental market:

Ht = H1,t +H2,t +Hz,t.

A.5.4 Model solution

• We know that:

Xy
t (η) ≡ P1,tx

y
1,t(η) + P2,tx

y
2,t(η) = PV,tc

y
t (η),

Xo
t+1(η) ≡ P1,t+1x

o
1,t+1(η) + P2,t+1x

o
2,t+1(η) = PV,t+1c

o
t+1(η),

where Xy
t (η) is full consumption and PV,t is the true price index:

PV,t ≡
[

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

]1/(1−σ)
.

• Useful results from duality theory:

– The expenditure functions are Eyt (η) ≡ PV,tc
y
t (η) and Eot+1(η) ≡ PV,t+1c

o
t+1(η) so

we can recover the Hicksian demands for the underlying goods in the usual fashion

(Shephard’s Lemma):

xyi,t(η) =
∂Eyt (η)

∂Pi,t
=
∂PV,t
∂Pi,t

cyt (η), xoi,t+1(η) =
∂Eot+1(η)

∂Pi,t+1
=
∂PV,t+1

∂Pi,t+1
cot+1(η).

– The indirect (sub)utility functions are V y
t (η) ≡ Xy

t (η)/PV,t and V
o
t+1(η) ≡ Xo

t+1(η)/PV,t+1

and the Marshallian demands for the underlying goods in the usual fashion (Roy’s

Identity):

xyi,t(η) = −
∂V y

t (η)/∂Pi,t
∂V y

t (η)/∂X
y
t (η)

=
∂PV,t
∂Pi,t

Xy
t (η)

PV,t
, xoi,t+1(η) = −

∂V o
t+1(η)/∂Pi,t+1

∂V o
t+1(η)/∂X

o
t+1(η)

=
∂PV,t+1

∂Pi,t+1

Xo
t+1(η)

PV,t+1
.

• Budget constraints for young and old:

PV,tc
y
t (η) +Qt [z

y
t (η) + kyt (η)] =Wt [λ

y − et(η)] + st(η)Π
m
1,t,

PV,t+1c
o
t+1(η) = λoWt+1 +

[

(1− δ)Qt+1 +Rkt+1

]

[zyt (η) + kyt (η)] .

• Define the ‘nominal’ interest rate as:

1 +Rnt+1 ≡
(1− δ)Qt+1 +Rkt+1

Qt
.
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• Solve the old-age budget constraint for [zyt (η) + kyt (η)]:

zyt (η) + kyt (η) =
PV,t+1c

o
t+1(η)− λoWt+1

(1 +Rnt+1)Qt
.

• Substitute into the youth budget constraint to get the consolidated budget constraint in

nominal terms:

PV,tc
y
t (η) +

PV,t+1c
o
t+1(η)

1 +Rnt+1

= HW y
t (η). (A.61)

where human wealth during youth is:

HW y
t (η) ≡Wt [λ

y − et(η)] +
λoWt+1

1 +Rnt+1

+ st(η)Π
m
1,t.

• Since there is no uncertainty (πm = 1 for all t) we can solve the optimization problem

in one go. In particular, the agents chooses cyt (η), c
o
t+1(η), and et(η) to maximize (A.52)

subject to the budget constraint (A.61).

• Note: we continue to use ‘nominal’ terms (and use the numeraire right at the end).

• Lagrangian:

Lyt ≡ ln cyt (η) + β ln cot+1(η) + µt

[

st(η)Π
m
1,t +Wt [λ

y − et(η)]

+
λoWt+1

1 +Rnt+1

− PV,tc
y
t (η)−

PV,t+1c
o
t+1(η)

1 +Rnt+1

]

• First-order conditions:

∂Lyt
∂cyt (η)

=
1

cyt (η)
− µtPV,t = 0,

∂Lyt
∂cot+1(η)

=
β

cot+1(η)
−
µtPV,t+1

1 +Rnt+1

= 0,

∂Lyt
∂et(η)

= µt

[

Πm1,t
∂st(η)

∂et(η)
−Wt

]

= 0.

• Substituting the first two into the budget constraint (A.61) we find:

PV,tc
y
t (η) =

1

1 + β
HW y

t (η),

PV,t+1c
o
t+1(η)

1 +Rnt+1

=
β

1 + β
HW y

t (η).
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• For the success function st(η) = ηet(η)
ε/Et we find:

εΠm1,t
ηet(η)

ε−1

Et
=Wt ⇔ et(η) =

[

εΠm1,t
Wt

η

Et

]1/(1−ε)

.

• It follows that total rent-seeking effort Et and wasted labour ēt amount to:

Et ≡

∫ ηH

ηL

ηet(η)
εdF (η) =

[

εΠm1,t
WtEt

]ε/(1−ε) ∫ ηH

ηL

η1/(1−ε)dF (η),

ēt ≡

∫ ηH

ηL

et(η)dF (η) =

[

εΠm1,t
WtEt

]1/(1−ε) ∫ ηH

ηL

η1/(1−ε)dF (η).

• Solving for Et gives:

Et =

[

εΠm1,t
Wt

]ε
[

∫ ηH

ηL

η1/(1−ε)dF (η)

]1−ε

.

• Solving for et(η) gives:

et(η) =
εΠm1,t
Wt

η1/(1−ε)
∫ ηH
ηL

η1/(1−ε)dF (η)
. (A.62)

• Solving for ēt gives:

ēt =
εΠm1,t
Wt

. (A.63)

So provided Πm1,t/Wt =
(

Πm1,t/Kt

)

/ (Wt/Kt) is stationary (constant steady-state) we find

that Et, et(η), and ēt are stationary also.

• Optimal choices can be written as follows:

PV,tc
y
t (η) =

1

1 + β
HW y

t (η),

PV,t+1c
o
t+1(η)

1 +Rnt+1

=
β

1 + β
HW y

t (η),

Qt [z
y
t (η) + kyt (η)] = st(η)Π

m
1,t +Wt [λ

y − et(η)]−
1

1 + β
HW y

t (η),

=
β

1 + β

[

st(η)Π
m
1,t +Wt [λ

y − et(η)]

]

−
1

1 + β

λoWt+1

1 +Rnt+1

,

HW y
t (η) ≡ st(η)Π

m
1,t +Wt [λ

y − et(η)] +
λoWt+1

1 +Rnt+1

.
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• Aggregate saving (using (A.59), (A.60), and (A.56)):

QtKt+1 =
β

1 + β

[

(1− ε)Πm1,t + λyWt

]

−
1

1 + β

λoWt+1

1 +Rnt+1

. (A.64)

• Demand for new capital goods:

QtZt =
β

1 + β

[

(1− ε)Πm1,t + λyWt

]

−
1

1 + β

λoWt+1

1 +Rnt+1

−Qt(1− δ)Kt.

• Aggregate demands for composite consumption goods:

PV,tc
y
t =

1

1 + β
HW y

t ,

PV,t+1c
o
t+1

1 +Rnt+1

=
β

1 + β
HW y

t .

• Aggregate human wealth of the young (after using noting that Wt

∫

et(η)dF (η) = εΠm1,t):

HW y
t ≡ (1− ε)Πm1,t + λyWt +

λoWt+1

1 +Rnt+1

.

• Demand in sector 1 originates from the young and the old.

– Young demand for good 1:

Xy
1,t =

∂PV,t
∂P1,t

cyt =
∂PV,t
∂P1,t

1

1 + β

HW y
t

PV,t
=

ασP−σ
1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

HW y
t

1 + β
.

By holding HW y
t constant this is interpreted as a Marshallian demand curve.

– Old demand for good 1:

Xo
1,t =

ασP−σ
1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

Iot ,

Iot = λoWt +
[

(1− δ)Qt +Rkt

]

Kt.

– Total demand is thus:

X1,t =
ασP−σ

1,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

[

HW y
t

1 + β
+ Iot

]

.

• The monopolist in sector 1 has the following profit function:

Πm1,t =
[

P1,t −MC x
1(Wt/K1,t, R

k
t )
]

X1,t.
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and the monopoly price is set according to the usual markup rule:

Pm1,t = µm1,tMC x
1(Wt/K1,t, R

k
t ), µm1,t ≡

εmd,t
εmd,t − 1

> 1,

εmd,t ≡ −
∂X1,t

∂P1,t

P1,t

X1,t
=
ασ(Pm1,t)

1−σ + σ(1− α)σ(P c2,t)
1−σ

ασ(Pm1,t)
1−σ + (1− α)σ(P c2,t)

1−σ
,

=
ασ(pmt )

1−σ + σ(1− α)σ

ασ(pmt )
1−σ + (1− α)σ

> 1,

µm1,t =
ασ(Pm1,t)

1−σ + σ(1− α)σ(P c2,t)
1−σ

(σ − 1) (1− α)σ(P c2,t)
1−σ

,

=
ασ(pmt )

1−σ + σ(1− α)σ

(σ − 1) (1− α)σ
,

with:

pmt ≡
Pm1,t
P c2,t

.

• For future use we note that:

µm1,t − 1 =
ασ(pmt )

1−σ + (1− α)σ

(σ − 1) (1− α)σ
.

• Using the expression for MC x
1(Wt/K1,t, R

k
t ) derived above we find:

Pm1,t = µm1,tP
c
2,tmcx1(wt/Kt, r

k
t ),

where mcx1(wt/Kt, r
k
t ) is real marginal cost in the monopolistic sector:

mcx1(wt/Kt, r
k
t ) ≡

(

wt
φKt

)φ( rkt
1− φ

)1−φ
1

Ω
.

• It follows that εmd,t can be written as:

εmd,t =
ασ(µm1 mcx1(wt/Kt, r

k
t )P

c
2,t)

1−σ + σ(1− α)σ(P c2,t)
1−σ

ασ(µm1 mcx1(wt/Kt, rkt )P
c
2,t)

1−σ + (1− α)σ(P c2,t)
1−σ

,

=
ασ
(

εm
d,t

εm
d,t

−1mcx1(wt/Kt, r
k
t )
)1−σ

+ σ(1− α)σ

ασ
(

εm
d,t

εm
d,t

−1mcx1(wt/Kt, rkt )
)1−σ

+ (1− α)σ
.

• The elasticity and thus the markup µm1,t depend on mcx1(wt/Kt, r
k
t ) = 1 and are thus

constant!
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• The derived demands for capital and labour are obtained by employing Shephard’s Lemma:

Hm
1,t =

∂MC x
1(Wt/Kt, R

k
t )

∂Wt
X1,t =

φ

Wt

(

Wt/Kt

φ1

)φ( Rkt
1− φ

)1−φ
X1,t

Ω
,

=
φMC x

1(Wt/Kt, R
k
t )

Wt
X1,t,

Km
1,t =

∂MC x
1(Wt/Kt, R

k
t )

∂Rkt
X1,t =

(1− φ)MC x
1(Wt/Kt, R

k
t )

Rkt
X1,t.

• In real terms the factor demand are:

rkt = (1− φ)mcx1ΩH
φ
1,t

(

K1,t

Kt

)

−φ

,

wt
Kt

= φmcx1ΩH
φ−1
1,t

(

K1,t

Kt

)1−φ

.

• Aggregate profit equals:

Πm1,t = X1,t

(

P1,t −MC x
1(Wt/Kt, R

k
t )
)

=
(

µm1,t − 1
)

MC x
1(Wt/Kt, R

k
t )X1,t

= Ξt

[

HW y
t

1 + β
+ Iot

]

, (A.65)

where Ξt is an auxiliary term:

Ξt ≡
ασ (pmt )

1−σ

ασ (pmt )
1−σ + σ(1− α)σ

. (A.66)

• We find (after using (A.63)) that:

HW y
t

1 + β
+ Iot =

1

1 + β

(

(1− ε)Πm1,t + λyWt +
λoWt+1

1 +Rnt+1

)

+ λoWt +
[

(1− δ)Qt +Rkt

]

Kt. (A.67)

So (as before) current profit depends in part on itself because young agents consume part

of it.

• By solving (A.65) and (A.67) for Πm1,t and
HW

y
t

1+β + Iot we find:

Πm1,t =
Ξt

1 + β − (1− ε)Ξt

[

λyWt +
λoWt+1

1 +Rnt+1

+ (1 + β)
[

λoWt +
[

(1− δ)Qt +Rkt

]

Kt

]

]

. (A.68)
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and:

HW y
t

1 + β
+ Iot =

1

1 + β − (1− ε)Ξt

[

λyWt +
λoWt+1

1 +Rnt+1

+ (1 + β)
[

λoWt +
[

(1− δ)Qt +Rkt

]

Kt

]

]

. (A.69)

• It follows that Πm1,t and
HW

y
t

1+β + Iot are both proportional to the growing variable Kt

• Demand for good 2 originates from the young and the old.

– Young demand for good 2:

Xy
2,t =

∂PV,t
∂P2,t

cyt =
∂PV,t
∂P2,t

1

1 + β

HW y
t

PV,t
=

(1− α)σP−σ
2,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

HW y
t

1 + β
.

– Old demand for good 1:

Xo
2,t =

(1− α)σP−σ
2,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

Iot ,

Iot = λoWt +
[

(1− δ)Qt +Rkt

]

Kt.

– Total demand is thus:

X2,t =
(1− α)σP−σ

2,t

ασP 1−σ
1,t + (1− α)σP 1−σ

2,t

[

HW y
t

1 + β
+ Iot

]

.

• Using (A.68) in (A.64) we can write aggregate saving as:

QtKt+1 =
β

1 + β − (1− ε)Ξt

[

λyWt + (1− ε)Ξt

[

λoWt +
[

(1− δ)Qt +Rkt

]

Kt

] ]

−
(1 + β) [1− (1− ε)Ξt]

1 + β − (1− ε)Ξt

λoWt+1

1 +Rnt+1

. (A.70)

A.5.4.1 Verify Walras Law

• Spending at time t:

PV,t [c
y
t + cot ]+Qt [Zt + (1− δ)Kt] =Wt [λ

y − ēt]+Πm1,t+λ
oWt+

[

(1− δ)Qt +Rkt

]

Kt.

• The old sell the remaining capital to the young so:

PV,t [c
y
t + cot ] +QtZt =Wt [λ

y − ēt] + Πm1,t + λoWt +RktKt.
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• But PV,t [c
y
t + cot ] = P1,tX1,t + P2,tX2,t and Ht = λy + λo − ēt so we get:

P1,tX1,t + P2,tX2,t +QtZt =WtHt +Πm1,t +RktKt.

• But Πm1,t = (P1,t−MC x
1(Wt/K1,t, R

k
t ))X1,t, P2,t = MC x

2(Wt/K2,t, R
k
t ), andQt = MC z(Wt/Kz,t, R

k
t )

so we get:

MC x
1(Wt/K1,t, R

k
t )X1,t+MC x

2(Wt/K2,t, R
k
t )X2,t+MC z(Wt/Kz,t, R

k
t )Zt =WtHt+R

k
tKt.

Right-hand side: total factor income. Left-hand side: total spending on consumption and

investment goods evaluated at the true marginal cost of producing these goods.

A.5.4.2 Checking market equilibrium conditions

• Market for good 1 (demand and supply):

X1,t

Kt
=

ασp−σ1,t

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

(1− ε)πm1,t + λywt

Kt
+ λo

1 + γt+1

1 + rt+1

wt+1

Kt+1

)

+ λo
wt
Kt

+
[

(1− δ) qt + rkt

]

]

,

X1,t

Kt
= ΩHφ

1,t

(

K1,t

Kt

)1−φ

.

• Market for good 2 (demand and supply):

X2,t

Kt
=

(1− α)σ

ασp1−σ1,t + (1− α)σ

[

1

1 + β

(

(1− ε)πm1,t + λywt

Kt
+ λo

1 + γt+1

1 + rt+1

wt+1

Kt+1

)

+ λo
wt
Kt

+
[

(1− δ) qt + rkt

]

]

,

X2,t

Kt
= ΩHφ

2,t

(

K2,t

Kt

)1−φ

.

• Market for investment goods (demand and supply):

qt
Zt
Kt

=
β

1 + β

[

(1− ε)πm1,t + λywt

Kt

]

−
1

1 + β
λo

1 + γt+1

1 + rt+1

wt+1

Kt+1
− qt(1− δ)

Zt
Kt

= ΩHφ
z,t

(

Kz,t

Kt

)1−φ

.

• Aggregate output:

Yt
Kt

= pt
X1,t

Kt
+
X2,t

Kt
+ qt

Zt
Kt
.
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A.5.5 Recalibration

• Model must be recalibrated to yield an ‘observationally equivalent’ competitive steady-

state growth path. Otherwise we are comparing apples with oranges. Calibrate sequen-

tially, starting with a one-sector version of the model

• One-sector model: φ1 = φ2 = ψ = φ, Ω1 = Ω2 = Ωz = Ω, h̄ = 1, and α = 0.5.

– Dynamic model:

Kt+1

Kt
=

h̄

1 + β

[

βλy
wt
Kt

−
λo

1 + rt+1

wt+1

Kt+1

Kt+1

Kt

]

,

rt = (1− φ) ΩHφ
t − δ,

wt
Kt

= φΩHφ−1
t ,

Yt
Kt

= ΩHφ
t ,

Ht = λy + λo,

It
Kt

=
Kt+1

Kt
− (1− δ).

– Features of the steady-state growth path:

1 + γ∗ =
h̄

1 + β

[

βλy − λo
1 + γ∗

1 + r∗

](

wt
Kt

)

∗

,

r∗ = (1− φ) Ω(λy + λo)φ − δ,
(

wt
Kt

)

∗

= φΩ(λy + λo)φ−1

(

Yt
Kt

)

∗

= Ω(λy + λo)φ,

(

It
Kt

)

∗

= γ∗ + δ.

• Numerical content one-sector model:

– We set parameters:

α = 0.5, λy = 0.9, λo = 0.5, δ = 0.8437, φ1 = φ2 = ψ = 0.75, T = 30.

– We set targets:

γ∗a = 0.025, r∗a = 0.05.

A-57



– We know that:

r∗ = (1 + r∗a)
T − 1 = 3.3219,

γ∗ = (1 + γ∗a)
T − 1 = 1.0976

(rk)∗ = r∗ + δ = 4.1657,

y∗ =
r∗ + δ

1− φ
= 16.6627,

z∗ = γ∗ + δ = 1.9413,

x∗ = y∗ − z∗ = 14.7214,
(

wt
Kt

)

∗

=
φy∗

λy + λo
= 8.9264.

– Note that (X/Y )∗ = 0.8835 and (Z/Y )∗ = 0.1165.

– We choose β and Ω to make it fit the model:

β = 0.6608, Ω = 12.2936.

• Special case of the three-sector model: φ1 = φ2 = ψ = φ and Ω1 = Ω2 = Ωz = Ω.

– General model: see Table A.7

– Steady-state competitive growth path features p∗ = q∗ = 1 and ē∗ = (πm1 )∗ = 0 so

that:

1 + γ∗ =
1

1 + β

(w

K

)

∗

[

βλy − λo
1 + γ∗

1 + r∗

]

(rk)∗ = r∗ + δ

(w

K

)

∗

= φΩ

(

H∗

1

u∗1

)φ−1

= φΩ

(

H∗

2

u∗2

)φ−1

= φΩ

(

H∗

z

u∗z

)φ−1

(rk)∗ = (1− φ)Ω

(

H∗

1

u∗1

)φ

= (1− φ)Ω

(

H∗

2

u∗2

)φ

= (1− φ)Ω

(

H∗

z

u∗z

)φ

H∗ = H∗

1 +H∗

2 +H∗

z

z∗ = γ∗ + δ

H∗ = λy + λo

y∗ = x∗1 + x∗2 + z∗

x∗1 =
ασ

ασ + (1− α)σ

[

1

1 + β

(w

K

)

∗

(

λy + λo
1 + γ∗

1 + r∗

)

+ λo
(w

K

)

∗

+ 1− δ + (rk)∗

]

x∗1 = Ω(H∗

1 )
φ(u∗1)

1−φ
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x∗2 = Ω(H∗

2 )
φ(u∗2)

1−φ

z∗ = Ω(H∗

z )
φ(u∗z)

1−φ

1 = u∗1 + u∗2 + u∗z

• Calibrations steps:

– Keep

r∗ = 3.3219,

γ∗ = 1.0976

(rk)∗ = r∗ + δ = 4.1657,

y∗ = 16.6627,

x∗1 = x∗2 =
14.7214

2
,

z∗ = γ∗ + δ = 1.9413,
(w

K

)

∗

= 8.9265.

– Define the wage-rental ratio, ξ∗ ≡ (wt/(r
k
tKt))

∗ and note:

H∗

i

u∗i
=

φ

1− φ

1

ξ∗
, (1 + λo)ξ∗ =

φ

1− φ
⇔ φ = 0.75.

– Hence:

H∗

i

u∗i
= λy + λo = 1.4.

– It follows that:

x∗1 = Ω

(

H∗

1

u∗1

)φ

u∗1 = Ω(λy + λo)φ u∗1,

x∗2 = Ω

(

H∗

2

u∗2

)φ

u∗2 = Ω(λy + λo)φ u∗2,

z∗ = Ω

(

H∗

z

u∗z

)φ

u∗z = Ω(λy + λo)φ u∗z,

so that:

y∗ = Ω(λy + λo)φ .

– Hence Ω is:

Ω = y∗ (λy + λo)−φ = 12.9464.
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– To determine u∗z, ans u
∗

1 = u∗2 = (1− u∗z)/2 we note that:

[z∗ =] γ∗ + δ = Ω(λy + λo)φ u∗z ⇔ u∗z =
γ∗ + δ

y∗
= 0.1165.

– Hence:

u∗1 = u∗2 =
1− u∗z

2
= 0.4417.

– Finally, we choose β to ensure that the followsing relationship is satisfied:

1 + γ∗ =
1

1 + β

[

βλy − λo
1 + γ∗

1 + r∗

]

(w

K

)

∗

⇔

β =
1 + γ∗

λy(w/K)∗ − (1 + γ∗)

[

1 +
λo(w/K)∗

1 + r∗

]

= 0.7182.

• To summarize, the structural parameters are as given in Table 3 with the following excep-

tions:

β = 0.7182, φ1 = φ2 = ψ = 0.75, Ω1 = Ω2 = Ωz = 12.9464, φe = θ = 0.

• See Table A.7 for a full listing and Table 6 in the paper for a compact listing of the

capital-externality model with rent-seeking.

• See Table A.8 for the quantitative steady-state results.
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Table A.7: Rent-seeking and growth with a physical capital externality

qt(1 + γt+1) =
1

1 + β

[

β
(1− ε)πm1,t + λywt

Kt
− λo

1 + γt+1

1 + rt+1

wt+1

Kt+1

]

(AT7.1)

πm1,t
Kt

=
Ξ

1 + β − (1− ε)Ξ

[

λy
wt
Kt

+ λo
1 + γt+1

1 + rt+1

wt+1

Kt+1

]

+
(1 + β)Ξ

1 + β − (1− ε)Ξ

[

λo
wt
Kt

+ (1− δ)qt + rkt

]

(AT7.2)

wt
Kt
ēt = ε

πm1,t
Kt

(AT7.3)

1 + rt+1 ≡
rkt+1 + (1− δ)qt+1

qt
(AT7.4)

wt
Kt

= φmcx1,tΩ

(

H1,t

u1,t

)φ−1

= φΩ

(

H2,t

u2,t

)φ−1

= φqtΩ

(

Hz,t

uz,t

)φ−1

(AT7.5)-(AT7.7)

rkt = (1− φ)mcx1,tΩ

(

H1,t

u1,t

)φ

= (1− φ)Ω

(

H2,t

u2,t

)φ

= (1− φ)qtΩ

(

Hz,t

uz,t

)φ

(AT7.8)-(AT7.10)

Ht = H1,t +H2,t +Hz,t (AT7.11)

zt = γt+1 + δ (AT7.12)

Ht = λo + λy − ēt (AT7.13)

yt = px1,t + x2,t + qtzt (AT7.14)

Ξ ≡
ασp1−σ

ασp1−σ + σ(1− α)σ
(AT7.15)

p =
ασp1−σ + σ(1− α)σ

(σ − 1) (1− α)σ
mcx1,t (AT7.16)

px1,t =
ασp1−σ

ασp1−σ + (1− α)σ

[

1

1 + β

(

(1− ε)πm1,t + λywt

Kt
+ λo

1 + γt+1

1 + rt+1

wt+1

Kt+1

)

+ λo
wt
Kt

+ (1− δ)qt + rkt

]

(AT7.17)

x1,t = ΩHφ
1,tu

1−φ
1,t (AT7.18)

x2,t = ΩHφ
2,tu

1−φ
2,t (AT7.19)

zt = ΩHφ
z,tu

1−φ
z,t (AT7.20)

1 = u1,t + u2,t + uz,t (AT7.21)

Notes The endogenous variables are γt+1 ≡ (Kt+1 − Kt)/Kt, ēt, π
m
1,t/Kt, rt, qt, r

k
t , wt/Kt,

x1,t ≡ X1,t/Kt, x2,t ≡ X2,t/Kt, zt ≡ Zt/Kt, u1,t ≡ K1,t/Kt, u2,t ≡ K2,t/Kt, uz,t ≡ Kz,t/Kt,
H1,t, H2,t, Hz,t, Ht, mcx1,t, Ξ, p, and yt ≡ Yt/Kt.
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Table A.8: Features of the steady-state growth path (KE case)

(a) (b) (c) (d) (e) (f)

ε 0.0800 0.1600 0.0800 0.0800 0.0800
σ 2.0000 2.0000 2.0000 4.0000 2.0000 2.0000
α 0.5000 0.5000 0.5000 0.5000 0.7000 0.5000
φ 0.7500 0.7500 0.7500 0.7500 0.7500 0.6000

y∗ 16.6627 19.2956 19.0425 17.7584 25.0668 18.3257
x∗1 7.3607 2.0232 2.0015 2.6818 3.5961 1.9077
x∗2 7.3607 11.7918 11.6657 11.6611 8.2706 11.1190
i∗ 1.9413 2.6194 2.5447 2.2247 4.0713 2.6010
e∗ 0.0255 0.0503 0.0107 0.0806 0.0315
γ∗ 1.0976 1.7757 1.7009 1.3810 3.2275 1.7573
γ∗a × 100% 2.5000 3.4616 3.3674 2.9339 4.9227 3.4386
γ∗ca × 100% 2.5000 2.2658
(w/K)∗ 8.9265 8.9676 9.0085 8.9435 9.0598 6.8518
(rk)∗ 4.1657 4.1086 4.0530 4.1419 3.9845 6.2511
r∗ 3.3219 3.2649 3.2092 3.2981 3.1407 5.4074
r∗a × 100% 5.0000 4.9535 4.9076 4.9807 4.8502 6.3872
p∗ 1.0000 2.4142 2.4142 1.4440 3.5386 2.4142
(mcx)∗ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
q∗ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
u∗1 0.4417 0.1231 0.1235 0.1619 0.2256 0.1221
u∗2 0.4417 0.7175 0.7196 0.7038 0.5189 0.7115
u∗z 0.1165 0.1594 0.1570 0.1343 0.2554 0.1664
H∗ 1.4000 1.3745 1.3497 1.3893 1.3194 1.3685
H∗

1 0.6184 0.1692 0.1666 0.2249 0.2977 0.1671
H∗

2 0.6184 0.9862 0.9712 0.9779 0.6847 0.9737
H∗

z 0.1631 0.2191 0.2119 0.1866 0.3370 0.2278
(πm1 /K)∗ 0.0000 2.8612 2.8306 1.1908 9.1289 2.6979

Notes The perfectly competitive steady-state equilibrium (without rent seeking) is reported in
column (a). Column (b) reports on the benchmark rent-seeking equilibrium. Columns (c)–(f)
report on some alternative rent-seeking equilibria for different values of, respectively, ε, σ, α,
and φ,
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A.6 Welfare analysis

• In order to understand the welfare effects of rent seeking we must characterize the first-best

social optimum.

• The model is slightly complicated because:

– There are overlapping generations that need to be weighted in the appropriate man-

ner.

– There are external effects due to human capital accumulation.

• Social welfare function is conform the insights of Calvo and Obstfeld (1988):

SW t =
1

ω
Λyt−1 + Λyt + ωΛyt+1 + ω2Λyt+2 + . . . =

∞
∑

τ=t−1

Λyτω
τ−t

with:

Λyτ ≡

∫ ηH

ηL

Λyτ (η)dF (η)

and:

Λyt (η) ≡ ln cyt (η) + β ln cot+1(η)

cst (η) ≡
[

αxs1,t(η)
1−1/σ + (1− α)xs2,t(η)

1−1/σ
]1/(1−1/σ)

, (for s ∈ {y, o} )

• The social planner treats agents of differing rent-seeking ability symmetrically. This means

that:

– We can impose symmetry up front:

cst (η) = cst , lst (η) = lst , xsi,t(η) = xs1,t, (for all t and η, s ∈ {y, o} )

– There is no rent seeking:

et(η) = 0

• The constraints consist of:

– Technology:

Xi,t = Φx(Hi,t,Ki,t)

Zt = Φz(Hz,t,Kz,t)
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– Total demands for the goods:

Xi,t =

∫ ηH

ηL

[

xyi,t(η) + xoi,t(η)
]

dF (η)

– Resources:

Kt = K1,t +K2,t +Kz,t

Ht = H1,t +H2,t +Hz,t

Ht =

∫ ηH

ηL

[λhot (η) + [1− lt(η)]h
y
t (η)] dF (η)

– Accumulation:

hot+1(η) = hyt (η)

[

1 + φe
lt(η)

1−θ

1− θ

]

Kt+1 = Zt + (1− δ)Kt

– Initial condition for the young:

hyt (η) = h̄t ≡

∫ ηH

ηL

hot (η)dF (η)

• Lagrangian:

Lt ≡
1

ω

[

ln cyt−1 + β ln cot
]

+ ln cyt + β ln cot+1 + . . .

+

∞
∑

τ=t

{

λ1,τ

[

Φx(H1,τ ,K1,τ )− xy1,τ − xo1,τ

]

+ λ2,τ

[

Φx(H2,τ ,K2,τ )− xy2,τ − xo2,τ

]

+ λ3,τ [Kτ −K1,τ −K2,τ −Kz,τ ] + λ4,τ
[

(1 + λ− lt)h̄τ −H1,τ −H2,τ −Hz,τ

]

+ λ5,τ

[

h̄τ

(

1 + φe
l1−θτ

1− θ

)

− h̄τ+1

]

+ λ6,τ [Zτ + (1− δ)Kτ −Kτ+1]

+ λ7,τ [Φ
z(Hz,τ ,Kz,τ )− Zτ ]

}

• Taken as given at time t are cyt−1, Kt, and h̄t

• FONCs for period t:

– Consumption components:

∂Lt
∂xyi,t

=
1

cyt

∂cyt
∂xyi,t

− λi,t = 0 (for i = 1, 2)

∂Lt
∂xoi,t

=
β

ωcot

∂cot
∂xoi,t

− λi,t = 0 (for i = 1, 2)
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– Factor usage:

∂Lt
∂H1,t

= λ1,t
∂Φx(H1,τ ,K1,τ )

∂H1,t
− λ4,t = 0

∂Lt
∂H2,t

= λ2,t
∂Φx(H2,τ ,K2,τ )

∂H2,t
− λ4,t = 0

∂Lt
∂Hz,t

= λ7,t
∂Φz(Hz,τ ,Kz,τ )

∂Hz,t
− λ4,t = 0

∂Lt
∂K1,t

= λ1,t
∂Φx(H1,τ ,K1,τ )

∂K1,t
− λ3,t = 0

∂Lt
∂K2,t

= λ2,t
∂Φx(H2,τ ,K2,τ )

∂K2,t
− λ3,t = 0

∂Lt
∂Kz,t

= λ7,t
∂Φz(Hz,τ ,Kz,τ )

∂Kz,t
− λ3,t = 0

• Investment in physical and human capital (schooling):

∂Lt
∂Zt

= λ6,t − λ7,t = 0

∂Lt
∂lt

=
[

λ5,tφel
−θ
t − λ4,t

]

h̄t = 0

• Accumulation:

∂Lt
∂Kt+1

= −λ6,t + λ6,t+1(1− δ) + λ3,t+1 = 0

∂Lt
∂h̄t+1

= −λ5,t + λ4,t+1(1 + λ− lt+1) + λ5,t+1

(

1 + φe
l1−θt+1

1− θ

)

= 0

• Summary of the first-order conditions:

λ1,t
λ2,t

=
α

1− α

(

xs2,t
xs1,t

)1/σ

, (for s ∈ {y, o} )

λ1,t
λ2,t

=
∂Φx(H2,τ ,K2,τ )/∂H2,t

∂Φx(H1,τ ,K1,τ )/∂H1,t
=
∂Φx(H2,τ ,K2,τ )/∂K2,t

∂Φx(H1,τ ,K1,τ )/∂K1,t

λ1,t
λ7,t

=
∂Φz(Hz,τ ,Kz,τ )/∂H2,t

∂Φx(H1,τ ,K1,τ )/∂H1,t
=
∂Φz(Hz,τ ,Kz,τ )/∂Kz,t

∂Φx(H1,τ ,K1,τ )/∂K1,t

λ6,t = λ6,t+1(1− δ) + λ3,t+1 = 0

λ5,t = λ5,t+1

[

φel
−θ
t+1(1 + λ− lt+1) +

(

1 + φe
l1−θt+1

1− θ

)]
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