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Introduction



2 Chapter 1

In contrast to its Keynesian counterpart, neoclassical macroeconomics prides itself

that it is rigorously derived from solid microeconomic foundations. Indeed, the canon-

ical neoclassical macroeconomic model is typically based on the aggregate behaviour

of infinitely-lived rational agents maximizing their life-time utility. But, really, how

micro-founded are these models? Is it proper to suppose that the aggregate economy

acts as though it were one agent? Is it proper to assume that individuals live forever?

The commonplace reaction to these questions is, of course, to ignore them under the

Friedman norm that if the model is able to replicate reality then it must be fine.

The neoclassical model, however, is not able to replicate reality. This simple obser-

vation induced a long line of research trying to incorporate features into large macro-

economic models that would bring them closer to reality. To no avail it seems, for Sims

(1980) went so far as to argue that macroeconomics is so out of touch with reality that

a straightforward “measurement without theory” approach seemed to outperform the

most sophisticated models. Measurement without theory, however, also implies out-

comes without policy implications. For the mechanisms at play remain hidden from

view.

In a seminal contribution Blanchard (1985) introduced the most basic of human

features into an otherwise standard macroeconomic model and came to a surprising

conclusion. If non-altruistic individuals are finitely lived, then one of the key theo-

rems of neoclassical thought – the Ricardian equivalence theorem – no longer holds.

Innovative as it was, the Blanchard model still suffers from serious shortcomings. For

instance, it assumes that individuals have a mortality rate that is independent of their

age, that is, a 10-year old child and a 969-year old Methuselah have the same proba-

bility of dying (indeed in Blanchard’s model there is not even an upper limit for the

age of individuals). Furthermore, it assumes that perfect life-insurance markets exist

so that, from the point of view of the individual, mortality hardly matters much at all.

In reaction to Blanchard’s analysis, a vast body of literature evolved introducing

additional features aimed at improving the description of the life-cycle behaviour of

the individual who stands at the core of the model. As computing power became more

readily available, the so-called computable general equilibrium (CGE) approach was

close to follow.

The outward shift in the computational technology frontier made ever more com-
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plex models feasible but Sims’ (1980) critique seemed to have had a short echo for

within foreseeable time these models had again become so complex that the mecha-

nisms translating microeconomic behaviour into macroeconomic outcomes were lost

in aggregation and details of the solution algorithm.

The challenge thus remains to construct macroeconomic models that, on the one

hand, are solidly founded in the microeconomic environment of the individual agent

and, on the other hand, are able to show to the analyst which main mechanisms are at

play.* In this thesis we contribute our part to this challenge. That is, we construct a se-

ries of tractable macroeconomic models that can replicate basic facts of the individual

life-cycle and, at the same time, clearly show which mechanisms drive the two-way

interaction between microeconomic behaviour and macroeconomic outcomes.

The advantage of this approach over the basic Blanchard (1985) framework is that

it can replicate the most important life-cycle choices that an individual makes. The ad-

vantage of the approach over the CGE framework is that it retains the flexibility nec-

essary to analyze which factors are driving the relationship between individuals and

their macroeconomic environment. Although CGE models can account for numerous

institutional traits that are beyond our model, such models fare worse at identifying

which mechanisms are at play.

This thesis consists of three substantially independent parts. In the first part we

take the assumption of perfect life-insurance markets by the horns and develop a mo-

del in which we study the consequences of imperfect annuity markets and use the

model to study the effects of different types of taxation and to study how the pension

system moderates the impact of a demographic shock. In the second part we return to

the theme of annuity markets but ask whether annuities are desirable in the first place.

In the final part we focus once more on the impact of demographic changes by study-

ing the different impact of changes in the population growth rate driven by either a

change in the birth rate, a change in the mortality rate or a combination of the two.

In a seminal contribution, Yaari (1965) showed that, faced with longevity risk, in-

dividuals derive substantial benefits from life-annuities. In fact, in the absence of a

bequest motive individuals should invest all their assets in such annuities. Annuities

* For an eloquent yet vociferous eulogy of the use of small models in macroeconomics see Turnovsky (2011).
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are life-insured financial assets that pay out conditional on the survival of the indi-

vidual. If the individual survives he receives a premium over and above the market

interest. In return, if he dies his savings flow to the annuity firm. Although welfare

enhancing from an individual perspective annuity markets are notoriously thin. That

is, the availability of annuities is generally limited and, if they exists, annuities are

over-priced.

The objective of the chapters 2-4 is to develop an overlapping generations model of

a closed economy that incorporates possible imperfections on the annuity market. We

introduce these imperfections by allowing for a load factor on the price of annuities

that assures that annuities become overpriced. In the second chapter we use the basic

framework to study the impact of overpriced annuities on labour-supply and savings

decisions at the individual level and growth at the aggregate level. By departing from

the classical Blanchard (1985) model and adding sequentially more realistic features we

are able to highlight the mechanisms along which the individual life-cycle impedes on

the macroeconomic environment. This procedure allows us to stress the importance

of both a realistic demographic structure and a realistic labour productivity schedule

over the life-cycle. We find that annuity market imperfections have a mild impact on

both the aggregate economy and individual decisions.

In the third chapter we apply the basic framework to study the impact of con-

sumption and labour-income taxation. As before, we focus on savings and labour-

supply decisions at the individual level and economic growth at the aggregate level.

We provide special attention to the way in which the tax income of the government is

distributed over the agents. That is, we compare and contrast regimes in which gov-

ernment income is distributed equally over all agents, distributed with a skew toward

the elderly or distributed with a skew toward the young. We find that, in principle,

the consumption tax redistributes funds from the elderly, who are strong consumers

and thus pay the lion’s share of tax, to the young, who barely consume but save a lot.

The labour income tax, on the other hand, redistributes funds between the working

and the idle. Idleness being an attribute of the retired, the tax induces redistribution

from saving workers to consuming retirees. Hence, both in welfare and growth terms

a consumption tax dominates a labour income tax.

In the fifth chapter we use the model to study the moderating role of the pension
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system during an ageing shock. We introduce a pay-as-you-go pension system that

can be financed on either a defined benefit or a defined contribution basis. In addition,

the retirement age may be used as policy parameter. In the wake of an ageing shock

we find that the growth rate increases. The rise in the growth rate occurs because

individuals have to save for a longer retirement period and, hence, accumulate more

capital. This effect is mitigated, though not nullified, if a defined benefit system is in

place because the contribution rate has to adjust to accommodate the change in the

dependency ratio. Surprisingly, we find that increasing the retirement age dampens

economic growth. Intuitively, a higher retirement age decreases the period spent in

retirement and therefore the funds necessary to finance it.

Whilst in chapters 2-4 we put emphasis on the consequences of imperfect annu-

ity markets, we do not answer the question of whether these markets are beneficial

in the first place. From a microeconomic perspective, we know that annuities are

welfare maximizing because they allow for risk sharing between lucky (long-lived)

and unlucky (short-lived) individuals. From a macroeconomic perspective, matters

are less clear because the microeconomic analysis ignores two key mechanisms. First,

the change in savings induced by the opening of an annuities market influences the

capital stock and, thereby, wages and the interest rate. Second, in the absence of an

annuity market individuals leave accidental bequests that are in one way or the other

distributed over the surviving agents.

Thus, the objective of the fifth chapter is to study the general equilibrium effects

of opening up an annuity market. Our point of departure is the two period Diamond

(1965)-Samuelson (1958) model of overlapping generations. This model contrasts the

model in chapters 2-4 in that it does not allow for a very detailed description of the in-

dividual life-cycle. However, being more stylized, the model allows us to obtain a full

analytical description of the impact, transition and long-run effects of the introduction

of annuities. The model features individual agents that can live for a maximum of two

periods but transition between the periods is probabilistic. In the absence of annuity

markets accidental bequests flow to the government, which can then decide between

distributing the funds to the currently young, the currently old or to outright waste

them.
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Starting from any of these three redistribution possibilities we study the opening

up of an annuity market. In line with the microeconomic literature we find that open-

ing up an annuity market is beneficial from an individual perspective. From a macro-

economic perspective, however, matters differ dramatically. We find that there exists

a tragedy of annuitization; although full annuitization of assets is privately optimal it

may not be socially optimal due to adverse general equilibrium repercussions.

We show that there are two instances of this tragedy. The strong version describes

the situation in which accidental bequests were initially wasted by the government. In

that case opening up an annuity market induces individuals to save less (because they

are now receiving a higher rate on their savings). Because it is welfare enhancing to

annuitize all individuals will save less so that the aggregate capital stock and, thereby,

wages decline over time. The decline in wages makes individuals worse off, so much

that the level of welfare after the introduction of annuities is far less than it was without

the annuities.

In the weaker version of the tragedy the government was initially distributing the

funds to the young. In that case the introduction of an annuity market sets the econ-

omy on a lower welfare path because young agents lose the accidental bequests that

they were initially receiving. Part of these were used for savings, hence, their abolish-

ment decreases aggregate capital accumulation because all agents now have less assets

to save. Naturally, if the bequests were initially given to the elderly the introduction of

an annuity market is welfare enhancing because they eliminate transfers received late

in life. These transfers initially acted as a disincentive to save, so that their abolishment

increases private, and aggregate, savings.

In the final chapter we return to the analysis of demographic change. However,

rather than studying the moderating role of the pension system we use this chapter

to study how different types of demographic change affect the aggregate economy.

How does a change in the birth rate affect the capital stock? How does a change in

the mortality rate affect the capital stock? And what is the impact of a combined mor-

tality and birth rate shock? To analyse these issues, we construct a continuous-time

overlapping generations model similar to the one used in the first part of this thesis.

However, in contrast to the earlier chapters, in this chapter we focus on an exogenous
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growth model featuring perfect annuity markets. This set-up allows us to study how

demographic changes affect the aggregate capital stock and gives us a basic idea of the

dynamics governing the model.

In the theoretical part of the chapter we highlight the mechanisms whereby the

demographic life-cycle of the individual agents impedes on the macroeconomic equi-

librium. This happens through the “generational turnover term”, which refers to the

reduction in aggregate consumption due to the addition of newborn agents having no

accumulated assets, together with the departure of agents with accumulated lifetime

assets. By explicitly setting out the underlying dynamic system, we are able to estab-

lish that there are in fact two steady-state equilibria instead of just one as implied in

the literature.

The two equilibria contrast sharply in how they are influenced by the demographic

structure. In the first equilibrium (the one previously identified in the literature) de-

mographic factors play an important role. They impede on equilibrium per capita

consumption directly, through the impact of the mortality function on the discount-

ing of future consumption. In contrast, in the second equilibrium we identify, demo-

graphic factors play no direct role, except insofar as they influence the overall popula-

tion growth rate. The key feature of this equilibrium is that the equilibrium growth rate

of consumption just equals the growth rate of population. However, through deeper

analysis of this equilibrium we are able to establish that it implies a bubble on the

goods market and can only be sustained in the presence of intergenerational or inter-

national transfers. Hence, in the remainder of the chapter we focus on the equilibrium

previously established in the literature.

To obtain a better understanding of the dynamics governing the model and to pre-

pare for the numerical analysis, we add more demographic structure by focusing on

a parameterized mortality function. Using this function we provide an explicit rep-

resentation of the aggregate macroeconomic dynamic system. This turns out to be a

highly nonlinear fifth order system involving not only capital and consumption, as

in the standard representative agent economy, but also the dynamics of the various

elements of the intergenerational turnover term. This extensive model embeds the

classical Blanchard (1985) model, the dynamics of which simplifies dramatically due

to the constant mortality assumption.
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In our numerical simulations we study the long-run behavior of the model in re-

sponse to both structural and demographic changes, illustrating their effects on ag-

gregate quantities, as well as on the distributions of consumption and wealth across

cohorts. Our numerical results show how the effects of a given increase in the popula-

tion growth rate contrast sharply – both qualitatively and quantitatively – depending

upon whether it occurs through an increase in the birth rate or a decrease in mortality.

Whereas in the former case an increase in the population growth rate is associated with

a mild decline in the capital stock, in the latter case it leads to a substantial increase in

the per capita stock of capital. In addition, a combination between the two can exist

such that the impact on the capital stock is exactly off-set. Hence, an increase in the

population growth rate can increase, decrease or not affect the capital stock.

As it stands, the final chapter studies mainly theoretical and quantitative issues

pertaining to fertility and mortality in the neoclassical framework. However, just as

the model in the second chapter served as a stepping stone to the analysis of taxation

and pensions in follow-up chapters, this chapter will serve as a stepping stone for the

analysis of public policy issues in future research.



Chapter 2

Annuity market imperfections,

retirement and economic

growth∗

* This chapter is based on Heijdra and Mierau (2009).
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2.1 Introduction

One of the most robust findings in economic theory is that individuals facing an uncer-

tain date of death derive great benefits from annuitization. In a seminal paper, Yaari

(1965) showed that in the absence of a bequest motive individuals should fully annu-

itize all of their savings. One of the key assumptions adopted by Yaari concerns the

availability of actuarially fair annuities. In a recent paper, Davidoff et al. (2005) have

demonstrated that the full annuitization result holds in a much more general setting

than the one adopted by Yaari, e.g. it obtains also when annuities are less than actuar-

ially fair.

The objective of this chapter is to develop an overlapping generations model of

finitely-lived households featuring annuity market imperfections. While the model

lays the ground work for the chapters to come, we also use it to study the macroeco-

nomic effects of annuity market imperfections. Are the optimal retirement age and the

macroeconomic growth rate significantly affected by the degree of actuarial fairness of

annuities or is this imperfection quantitatively unimportant? To answer this question

we construct a stylized overlapping generations model of a closed economy featuring

endogenous growth due to an inter-firm external effect of the “AK”-type.

Our starting point is the celebrated Blanchard (1985) model, featuring perfect annu-

ities and age-independent mortality (perpetual youth). We extend this model in four

directions. First, we endogenize the agent’s life-cycle labour supply decision. Second,

we introduce an annuity imperfection parameter, which allows us to study the cases

of actuarially fair and unfair annuities in one single framework. In the latter case, an-

nuity firms make profits which are taxed away by the government and redistributed

to households. Third, we introduce age-dependent labour efficiency. Fourth, we in-

corporate the insights of Heijdra and Romp (2008) and postulate an age-dependent

mortality process.

Our main findings are as follows. First, the imperfection on the annuity market

leads individuals to discount future consumption by their mortality rate as well as

their pure rate of time preference. In a perpetual-youth model this leads to a flatter

consumption profile. In an age-dependent mortality context this leads to a hump-

shaped consumption profile. In both cases capital accumulation, and thereby eco-
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nomic growth, is depressed.

Second, in terms of labour supply we find that both in the perpetual-youth mo-

del and the age-dependent productivity model individuals supply less labour during

their working life. However, in the perpetual-youth model individuals retire earlier

whereas in the age-dependent mortality model individuals retire later. This discrep-

ancy arises because the magnitude of profits made by annuity firms is lower in the

age-dependent mortality case. Less profit means lower transfers and thus a smaller

wealth effect via that channel.

Third, we show that the way in which annuity firms’ profits are recycled plays a key

role in the analysis. If these profits are redistributed in the form of lump-sum transfers

to households, then the growth and retirement effects of even fairly substantial annu-

ity market imperfections are quantitatively rather small. In contrast, if these profits

are drained from the economy via wasteful government consumption, then growth

deteriorates dramatically and the retirement age is reduced substantially.

Fourth, our analysis highlights the importance of a correctly modelled demog-

raphy. Under the Blanchard (1985) assumption the impact of imperfect annuities is

grossly overestimated. This is because for a properly modelled demography only the

elderly are significantly affected by annuity market imperfections and of these elderly

only a small portion is alive at any point in time. Hence, the individual as well as the

aggregate effect is mild.

The two papers most closely associated with ours are Bütler (2001) and Hansen and

İmrohoroğlu (2008). We extend the insights of Bütler (2001) to the general equilibrium

case and explicitly take into account the impact of imperfect annuities on the retire-

ment decision (as opposed to Hansen and İmrohoroğlu (2008)). Furthermore, we also

study imperfect annuities in general equilibrium, not only on the individual level as

Bütler (2001) and Hansen and İmrohoroğlu (2008).

Like Bütler (2001) and Hansen and İmrohoroğlu (2008) we find that imperfections

on the annuity market lead to a hump-shaped profile in consumption. In addition we

find that the imperfect annuity market leads to late retirement and depresses economic

growth due to less capital accumulation. Furthermore, we find that labour supply

during work life decreases. Finally, we show that the profits made by annuity firms

play a key role in the analysis.
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The remainder of the chapter is structured as follows. Section 2 sets out the core

model, whilst section 3 studies the relationship between the annuity market imper-

fection, the retirement decision, and macroeconomic growth. Section 4 introduces the

two extensions that allow our model to better resemble realistic features of life-cycle

choices. Section 5 concludes.

2.2 Model

2.2.1 Firms

The production side of the model makes use of the insights of Romer (1989) and pos-

tulates the existence of sufficiently strong external effects operating between private

firms in the economy. There is a large and fixed number, N , of identical, perfectly

competitive firms. The technology available to firm i is given by:

Yi (t) = Ω (t)Ki (t)
εK Li (t)

1−εK , 0 < εK < 1, (2.1)

where Yi (t) is output, Ki (t) is capital use, Li (t) is the labour input, and Ω (t) rep-

resents the general level of factor productivity which is taken as given by individual

firms. The competitive firm hires factors of production according to the following

marginal productivity conditions:

w (t) = (1 − εK)Ω (t) κi (t)
εK , (2.2)

r (t) + δ = εKΩ (t) κi (t)
εK−1 , (2.3)

where κi (t) ≡ Ki (t) /Li (t) is the capital intensity, w(t) is the wage rate, r(t) is in-

terest rate and δ is the depreciation rate. The rental rate on each factor is the same

for all firms, i.e. they all choose the same capital intensity and κi (t) = κ (t) for all

i = 1, · · · ,N . This is a very useful property of the model because it enables us to

aggregate the microeconomic relations to the macroeconomic level.

Generalizing the insights of Saint-Paul (1992, p. 1247) and Romer (1989) to a grow-
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ing population, we assume that the inter-firm externality takes the following form:

Ω (t) = Ω0κ (t)1−εK , (2.4)

where Ω0 is a positive constant, κ (t) ≡ K (t) /L (t) is the economy-wide capital inten-

sity, K (t) ≡ ∑i Ki (t) is the aggregate capital stock, and L (t) ≡ ∑i Li (t) is aggregate

employment. According to (2.4), total factor productivity depends positively on the

aggregate capital intensity, i.e. if an individual firm i raises its capital intensity, then

all firms in the economy benefit somewhat because the general productivity indicator

rises for all of them. Using (2.4), equations (2.1)–(2.3) can now be rewritten in aggre-

gate terms:1

Y (t) = Ω0K (t) , (2.5)

w (t) L (t) = (1 − εK)Y (t) , (2.6)

r (t) = r = εKΩ0 − δ, (2.7)

where Y (t) ≡ ∑i Yi (t) is aggregate output and we assume that capital is sufficiently

productive, i.e. εKΩ0 − δ > 0. The aggregate technology is linear in the capital stock

and the interest rate is constant.2

2.2.2 Consumers

Individual behaviour

We generalize the Blanchard (1985) model of consumer behaviour by including an

endogenous labour-leisure decision and by assuming potentially imperfect annuity

markets. At time t, expected remaining-lifetime utility of an individual born at time v

1 All firms use the same capital intensity (κi (t) = κ (t)), so that Yi (t) = Ω (t) Li (t) κ (t)εK and Y (t) =
L (t)Ω (t) κ (t)εK . By using (2.4) in this expression, we find (2.5). For the wage we find w (t) =
(1 − εK)Ω (t) κ (t)εK = (1 − εK)Ω0κ (t), which can be rewritten to get (2.6). Finally, for the rental rate on

capital we find r (t) + δ = εKΩ (t) κ (t)εK−1 = εKΩ0.
2 Romer (1989, p. 90) makes Ω (t) dependent on the stock of capital K (t), an approach also adopted by

Saint-Paul (1992, p. 1247). Romer rationalizes his formulation by appealing to the public good character
of knowledge and by assuming that physical capital and knowledge are produced in constant proportions.
Both Romer and Saint-Paul assume a constant labour force. In order to accommodate population growth, we
make the knowledge spillover dependent on the capital intensity. Note that the original Romer specification

would result in r (t) + δ = εKΩ0L (t)εK−1, i.e. a downward trend in the real interest rate contra Kaldor’s
stylized facts.
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(v ≤ t) is given by:

EΛ (v, t) ≡
∫ ∞

t
ln

[
C(v, τ)εC · [1 − L(v, τ)](1−εC)

]
· e(ρ+µ)(t−τ)dτ, (2.8)

where C (v, τ) is consumption, L (v, τ) is labour supply (the time endowment is equal

to unity), ρ is the pure rate of time preference, and µ is the instantaneous mortality

rate.3

The agent’s budget identity is given by:

Ȧ(v, τ) = rA A(v, τ) + w(τ)L (v, τ)− C(v, τ) + TR (v, τ) , (2.9)

where A (v, τ) is the stock of financial assets, rA is the annuity rate of interest, w (τ) is

the wage rate, and TR (v, τ) are lump-sum transfers from the government (see below),

all defined in real terms. Following Yaari (1965), we postulate the existence of annuity

markets, but unlike Yaari we allow the annuities to be less than actuarially fair. Since

the agent is subject to lifetime uncertainty and has no bequest motive, he/she will fully

annuitize so that the annuity rate of interest facing the agent is given by:

rA ≡ r + θµ, (2.10)

where r is the real interest rate (see (2.7)), and θ is a parameter (0 ≤ θ ≤ 1). Our

specification for the annuity rate can be rationalized in three ways. First, 1 − θ may be

interpreted as a load factor needed to cover the administrative costs of organizing the

annuity firm – see Horneff et al. (2008, p. 3595). Second, as Hansen and İmrohoroğlu

(2008, p. 569) suggest, θ may represent the fraction of assets that are annuitized. Pro-

vided θ is strictly less that unity, there will be unintended bequests under this interpre-

3 As is well known from the Real Business Cycle (RBC) literature, in the presence of technological change,
certain restrictions must be imposed on preferences in order to allow for a meaningful steady state to exist.
King et al. (2002, p. 94-95) show that the only admissible felicity functions take the following form:

U ≡
1

1 − σ
C1−σ · υ (1 − L) , σ 6= 1, σ > 0 (A)

≡ ln C + υ (1 − L) (B)

With specification (A), υ (1 − L) must be increasing and concave if σ < 1 and decreasing and convex if
σ > 1. Further restrictions are needed to ensure overall concavity. Under specification (B), all we need is
that υ (1 − L) is increasing and concave. Our function is a special case of (B) with υ (1 − L) log-linear in
leisure.
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tation. Third, annuity firms may possess some market power, allowing them to make

a profit by offering a less than actuarially fair annuity rate. In this chapter, we adopt

the market-power interpretation. We shall refer to 1 − θ as the degree of imperfection

in the annuity market.4

Our specification is quite general and incorporates three important cases:

• Perfect annuities (PA). The case of perfect (actuarially fair) annuities is obtained

by setting θ = 1. Life insurance companies break even, and TR (v, τ) = 0.

• Imperfect annuities (IA). The case of imperfect (less than actuarially fair) annuities

is obtained by assuming 0 < θ < 1. Life insurance companies make excess

profits, µ (1 − θ) A (τ), which are taxed away by the government and distributed

in a lump-sum fashion to surviving agents.

• No annuities (NA). For θ = 0 there are no annuity markets. The agent can save

at the interest rate r, but borrowing is impossible because, with lifetime uncer-

tainty, he/she faces a probabilistic time-of-death wealth constraint of the form,

prob {A (v, τ) ≥ 0} = 1 (Yaari, 1965, p. 139). By definition, TR (v, τ) = 0.

In the remainder of this chapter we restrict attention to the PA and IA cases.

The agent chooses time profiles for C (v, τ), A (v, τ), and L (v, τ) (for τ ≥ t) in

order to maximize (2.1), subject to (i) the budget identity (2.2), (ii) a No Ponzi Game

(NPG) condition, limτ→∞ A (v, τ) e(r+θµ)(t−τ) = 0, (iii) the initial asset position in the

planning period, A (v, τ), and (iv) a non-negativity condition, L (v, τ) ≥ 0. We restrict

attention to the optimal individual life-cycle decisions in the context of an economy

moving along a steady-state balanced growth path.

Along the balanced growth path, labour productivity grows at a constant exponen-

tial rate, γ (see below), and as a result individual agents face an upward sloping path

4 Another explanation for the overpricing of annuities is adverse selection (Finkelstein and Poterba, 2002).
That is, agents with a low mortality rate are more likely to buy annuities than agents with high mortal-
ity rates. However, because mortality is private information annuity firms “mis-price” annuities for low-
mortality agents, thus creating a load factor. Abel (1986) and Heijdra and Reijnders (2009) study this ad-
verse selection mechanism in a general equilibrium model featuring healthy and unhealthy people and
with health status constituting private information. The unhealthy get a less than actuarially fair annuity
rate whilst the healthy get a better than actuarially fair rate for part of life. An alternative source of imper-
fection may arise from the way that the annuity market is structured. Yaari (1965) assumes that there is a
continuous spot market for annuities. In reality, however, investments in annuities are much lumpier. See
Pissarides (1980) for an early analysis of this issue.
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Figure 2.1. Life-cycle consumption, labour supply, and retirement

for real wages over their lifetimes:

w (τ) = w (v) eγ(τ−v). (2.11)

The individual consumption Euler equation is given by:

Ċ (v, τ)

C (v, τ)
= r − ρ − (1 − θ) µ > 0. (2.12)

With imperfect annuities, individual consumption growth is affected by the mortality

rate, a result first demonstrated for the case with θ = 0 by Yaari (1965, p. 143). During

the working period, the agent equates the marginal rate of substitution between leisure

and consumption to the wage rate at all times:

(1 − εC) / (1 − L (v, τ))

εC/C (v, τ)
= w (τ) . (2.13)

The consumption-leisure choice is illustrated in Figure 1, where C (v, v + u) /w (v) and
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L (u) stand for, respectively, consumption (scaled by the wage rate at birth) and labour

supply of the agent at age u. The initial choice at age u = 0 is at point E0 where there

is a tangency between an indifference curve (labeled U0) and a “budget line” (labeled

BE0).5 If there were no economic growth, the wage rate would be constant over the

agent’s lifetime and the optimum would gradually move along the dashed line from

E0 to A at which point it is optimal to retire. This move reflects the positive wealth

effect on the demands for consumption and leisure. After retirement, the agent would

move along the vertical leisure constraint in the direction of points E1 and E2.

Matters are slightly more complicated in the presence of economic growth and an

upward sloping wage profile (2.11). Over the agent’s life the utility-expansion path

rotates in a counter-clockwise fashion inducing substitution effects. In terms of Figure

1, the agent retires at point E1 where the marginal rate of substitution between leisure

and consumption is equal to w (R), where R stands for this agent’s age at retirement.

Using the dotted utility-expansion line through point E1 we find that the total effect on

consumption and leisure during working life is given by the move from E0 to E1. The

pure substitution effect is given by the move from E0 to E′, and the wealth effect is the

move from E′ to E1.

Armed with this graphical apparatus we can explain the following analytical ex-

pressions. Consumption of a newborn is given by:

C (v, v) =
εC (ρ + µ)

εC + (1 − εC)
[
1 − e−(ρ+µ)R(v)

] · LI (v, v) , (2.14)

where R (v) is the retirement age chosen by an agent born at time v, and LI (v, v) is

lifetime income of the agent:

LI (v, v) = w (v) ·
1 − e−(r−γ+θµ)R(v)

r − γ + θµ
+ LT (v, v) , (2.15)

5 During the working period, the budget line is given by:

X (v, τ) = w (τ) [1 − L (v, τ)] + C (v, τ) ,

where X (v, τ) is full consumption. The line BE0 is obtained by substituting X (v, v).
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where LT (v, v) are lifetime transfers received from the government:

LT (v, v) ≡
∫ ∞

v
TR (v, τ) e(r+θµ)(v−τ)dτ. (2.16)

Equation (2.14) shows that consumption of a newborn is proportional to lifetime in-

come. The marginal propensity to consume out of lifetime income is decreasing in

the retirement age. Equation (2.15) provides the definition of lifetime income. The

first term on the right-hand side represents the present value of the time endowment

during working life, using the growth-corrected annuity rate of interest (r − γ + θµ)

for discounting. The later one retires, the larger is this term. The second term on the

right-hand side of (2.15) is just the present value of transfers, defined in (2.16).

Point E1 in Figure 1 is attained at the point where consumption satisfies:

C (v, v + R (v)) =
εC

1 − εC
w (v) eγR(v). (2.17)

By using (2.12) we find that C (v, τ) = C (v, v) e(r−ρ−(1−θ)µ)(τ−v) so that (2.17) can be

rewritten as:
C (v, v)

w (v)
=

εC

1 − εC
e−[r−γ−ρ−(1−θ)µ]R(v). (2.18)

Equations (2.14) (with (2.15) substituted), and (2.18) represent a simultaneous system

implicitly determining C (v, v) /w (v) and R (v) as a function of the structural parame-

ters (εC, ρ, µ, r, and θ), the macroeconomic growth rate (γ), and scaled lifetime transfers

(LT (v, v) /w (v)).

We illustrate the optimal retirement choice in Figure 2. This figure is based on the

following parameter settings. The interest rate is set at six percent per annum (r =

0.06) whilst the rate of time preference is three and a half percent (ρ = 0.035). These

values imply that in the presence of perfect annuities, individual consumption grows

at 2.5 percent per annum (see (2.12)). The instantaneous mortality rate is estimated

with Dutch mortality data for the cohort born in 1960 (see below for details). This

yields a value of 1.26 percent per annum (µ = 0.0126), implying an expected remaining

lifetime of 79.4 years. We assume that labour productivity growth equals two percent

per annum (γ = 0.02), and set the utility parameter for consumption at such a value

that the optimal retirement age with perfect annuities is R = 42 years. This yields a
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Figure 2.2. Optimal retirement age

value of εC = 0.1145. Finally, we assume that annuities are perfect, i.e. θ = 1 in Figure

2. This simplifies matters somewhat because LT (v, v) = 0 for this case.

In Figure 2, the Ψ (R) function plots the combinations between C (v, v) /w (v) and

R (v) implied by equations (2.14)–(2.15) (with LT (v, v) = 0 imposed). Despite the fact

that the marginal propensity to consume is a downward sloping function of the retire-

ment age, lifetime income is sharply increasing in the retirement age and Ψ (R) is up-

ward sloping as a result. The downward sloping Φ (R) function plots equation (2.18)

and intersects Ψ (R) at point EPA
0 . There is a unique optimal retirement age which, for

the parameters used here, equals R = 42.

Figure 2 also illustrates the partial equilibrium effects of a change in the macro-

economic growth rate, γ. Indeed, the thin dashed lines depict the Φ (R) and Ψ (R)

functions for the zero-growth case (γ = 0), for which the optimal retirement age is

R = 15.6 years. In terms of Figure 1, this is the case where the agent moves from E0
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to A along the dashed utility-expansion curve. With a flat wage profile, equilibrium

consumption at birth (and at all ages) and the retirement age are both lower than with

an upward sloping wage profile. Finally, we note that an increase in lifetime transfers

leads to an upward shift in Ψ (R), higher consumption at birth and a lower retirement

age. The transfers thus cause a negative wealth effect on the optimal retirement age.

With imperfect annuities (0 < θ < 1) we must confront the issue of redistribution

of excess profits and recognize the fact that LT (v, v) will be positive in general. To keep

things as simple as possible, we assume that the lump-sum transfers are set according

to:

TR (v, τ) = z · w (τ) , (2.19)

where z is a positive parameter, that is taken as given by individual agents but deter-

mined endogenously in general equilibrium via the balanced budget requirement of

the redistribution scheme (see below). By using (2.19) in (2.16) we find:

LT (v, v)

w (v)
≡

z

r − γ + θµ
. (2.20)

It is easy to show that z is constant along the balanced growth path.6 Equations (2.14)–

(2.15), (2.18), and (2.20) in combination imply that the retirement age is independent

of v, i.e. R (v) = R for all v. We summarize this important result in the following

proposition.

Proposition 2.1. Consider lump-sum redistribution of excess profits of life-insurance compa-

nies, of the form TR (v, τ) = z · w (τ). In that case: (i) the optimal retirement age is indepen-

dent of v, i.e. R (v) = R for all v; (ii) the optimal ratio between consumption at birth and the

wage rate at birth is independent of v, i.e. C (v, v) /w (v) = εC
1−εC

e−(r−γ−ρ−(1−θ)µ)R for all

v.

6 An alternative feasible redistribution scheme would set TR (v, τ) = z · w (v), implying that
LT (v, v) /w (v) = z/ (r + θµ) along the balanced growth path. Interestingly, “actuarially fair” lump-sum re-
distribution, setting transfers according to TR (v, τ) = µ (1 − θ) A (v, τ), is infeasible. Under such a scheme,
LT (v, v) becomes unbounded which is clearly infeasible.
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Aggregate household behaviour

In this subsection we derive expressions for per-capita average consumption, saving,

and labour supply. We allow for constant population growth π and distinguish be-

tween the birth rate, β, and the mortality rate rate, µ, so that π ≡ β − µ. The relative

cohort weights evolve according to:

p (v, t) ≡
P (v, t)

P (t)
= βeβ(v−t), t ≥ v, (2.21)

where P (v, t) is the size of cohort v at time t and P (t) is the total population. Using

(2.21), we can define per-capita average values in general terms as:

x (t) ≡
∫ t

−∞
p (v, t) X (v, t) dv, (2.22)

where X (v, t) denotes the variable in question at the individual level and x (t) is the

per capita average value of the same variable.

Off the steady-state growth path, exact analytical aggregation of the individual

behavioural decision rules is impossible. To see why this is the case, note, for example,

that consumption of workers features an age-dependent propensity to consume out of

age-dependent wealth making aggregation impossible. We, therefore, focus on steady-

state relationships. We know that R (v) = R for all v, so for consumption we find:

C (v, v) =
εC

1 − εC
w (v) e−[r−γ−ρ−(1−θ)µ]R, (2.23)

C (v, t) = C (v, v) e[r−ρ−(1−θ)µ](t−v), (2.24)

whilst the wage rate satisfies equation (2.11). Using (2.22), per capita average con-

sumption is thus given by:

c (t) ≡
∫ t

−∞
p (v, t)C (v, t) dv ≡

C (v, v)

w (v)
·

βw (t)

γ + β + ρ + (1 − θ) µ − r
. (2.25)

It follows from (2.13) and (2.23)-(2.24) that labour supply of workers in period t



22 Chapter 2

(t − v ≤ R) can be written as:

L (v, t) = 1 − e−[r−γ−ρ−(1−θ)µ](R+v−t). (2.26)

Since L (v, t) = 0 for retirees (t − v > R), per capita average labour supply is equal to:

l (t) ≡
∫ t

t−R
p (v, t) L (v, t) dv

=
[
1 − e−βR

]
− βe−βR ·

e[γ+β+ρ+(1−θ)µ−r]R − 1

γ + β + ρ + (1 − θ) µ − r
≡ l, (2.27)

with 0 < l < 1. The term in square brackets on the right-hand of (2.27) provides

the first mechanism by which l falls short of unity: agents retire and their unit time

endowment is consumed in full in the form of leisure. The second composite term on

the right-hand side of (2.27) represents the other mechanism by which l falls short of

unity: as workers age they reduce their labour supply.

At the individual level, financial assets are accumulated according to:

Ȧ (v, t) = (r + θµ) A (v, t) + w (t) L (v, t) + zw (t)− C (v, t) , (2.28)

where L (v, t) = 0 for retirees (for t − v > R). Per capita aggregate assets are defined

as a (t) ≡
∫ t
−∞

p (v, t) A (v, t) dv so that:

ȧ (t) =
∫ t

−∞
p (v, t) Ȧ (v, t) dv − βa (t) , (2.29)

where we have incorporated the fact that individual agents are born bare of financial

assets (A (v, v) = 0) and that cohort shares evolve over time according to ṗ (v, t) =

−βp (v, t). Substituting (2.28) into (2.29) and noting (2.27) we obtain:

ȧ (t) = (r + θµ − β) a (t) + w (t) l (t) + zw (t)− c (t) . (2.30)

The balanced-budget requirement for the lump-sum redistribution scheme is given in

per capita terms by:

µ (1 − θ) a (t) = zw (t) . (2.31)
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Table 2.1. Balanced growth and retirement in the core model

(a) Microeconomic relationships:

C (v, v)

w (v)
=

εC (ρ + µ)

εC + (1 − εC)
[
1 − e−(ρ+µ)R

] · 1 − e−(r−γ+θµ)R + z

r − γ + θµ
(T1.1)

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ−ρ−(1−θ)µ)R (T1.2)

(b) Macroeconomic relationships:

z = µ (1 − θ)
k (t)

w (t)
(T1.3)

γ ≡
k̇ (t)

k (t)
= r − π +

[
l −

c (t)

w (t)

]
·

w (t)

k (t)
(T1.4)

w (t) l

k (t)
= (1 − εK)Ω0 (T1.5)

l ≡ 1 − e−βR − βe−βR e[γ+β+ρ+(1−θ)µ−r]R − 1

γ + β + ρ + (1 − θ) µ − r
(T1.6)

c (t)

w (t)
≡

β

γ + β + ρ + (1 − θ) µ − r
·

C (v, v)

w (v)
(T1.7)

Definitions: Endogenous are C(v, v)/w(v), R, z, γ, l, w(t)/k(t), and c(t)/k(t). Parameters: birth

rate β, mortality rate µ, population growth rate π ≡ β − µ, imperfection annuities θ, rate of time

preference ρ, capital coefficient in the technology εK , consumption coefficient in tastes εC, scale

factor in the technology Ω0. The interest rate is r ≡ εKΩ0 − δ, where δ is the depreciation rate of

capital.

Finally, by substituting (2.31) into (2.30) we obtain:

ȧ (t) = (r + µ − β) a (t) + w (t) l (t)− c (t) . (2.32)

Like in the standard case with perfect annuities, the aggregate per capita annuity re-

ceipts, θµa (t), do not feature directly in (2.32) because they constitute pure transfers

from the dead to the living. In each period, life insurance companies receive µa (t)

from the estates of the deceased and pay θµa (t) to their surviving customers. The

resulting profit, (1 − θ) µa (t), is taxed away by the government and redistributed to

the surviving agents. The transfers are eliminated from the per capita average asset

accumulation equation.



24 Chapter 2

2.2.3 Balanced growth path

The capital market equilibrium condition is given by A (t) = K (t). In per capita aver-

age terms we thus find:

a (t) = k (t) , (2.33)

where k (t) ≡ K (t) /P (t) is the per capita stock of capital. From (2.5)-(2.6) we easily

find:

y (t) = Ω0k (t) , (2.34)

w (t) l (t) = (1 − εK) y (t) , (2.35)

where y (t) ≡ Y (t) /P (t) is per capita output.

The macroeconomic growth model has been written in a compact format in Table 1.

Equation (T1.1) is obtained by substituting (2.15) and (2.20) into (2.14). Equation (T1.2)

is the same as (2.23). Equation (T1.3) is (2.31) with (2.33) substituted. Equation (T1.4)

is obtained by substituting (2.33) into (2.32). Equation (T1.5) is obtained by combining

(2.34)-(2.35) and noting (2.27). Equation (T1.6) is the same as (2.27). Finally, (T1.7) is

the same as (2.25).

The model features a two-way interaction between the microeconomic decisions

and the macroeconomic outcomes. Equations (T1.1)-(T1.2) determine scaled newborn

consumption, C (v, v) /w (v), and the optimal retirement age, R, as a function of the

key macroeconomic variables. Equations (T1.3)-(T1.7) determine equilibrium trans-

fers, z, the macroeconomic growth rate, γ, the overall wage-capital ratio, w (t) /k (t),

aggregate labour supply, l, and the c (t) /w (t) ratio as a function of the optimal retire-

ment age and scaled newborn consumption.

2.3 Retirement, growth and annuities

In this section we compute and visualize the comparative static general equilibrium

effects for the core model of Table 1. To compute the initial general equilibrium we

assume that annuities are perfect (θ = 1) and use the coefficient values mentioned

above (in the paragraph below equation (2.18)). We assume that rate of population
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growth is one percent per annum (π = 0.01). Since π ≡ β − µ, this implies that, for

the mortality rate that was postulated above, the birth rate is β = 0.0226. The capital

depreciation rate is ten percent per annum (δ = 0.10). We use the efficiency parameter

of capital as a calibration parameter and find εK = 0.8348.7 It follows that the constant

in the production function is equal to Ω0 = (r + δ) /εK = 0.1917. The initial steady-

state growth path has the following features: C (v, v) /w (v) = 0.1048, R = 42, z = 0,

γ = 0.02, l = 0.0691, c (t) /w (t) = 0.1346, and w (t) /k (t) = 0.4583. For convenience

these values are restated in the first column in Table 2(a).

Figure 3 visualizes some of the key features of the calibration. Figure 3(a) depicts

the general equilibrium determination of the retirement age and the macroeconomic

growth rate. The solid line represents the microeconomic equilibrium condition, i.e.

it depicts (γ, R) combinations for which (T1.1) and (T1.2) are equated (recall that z = 0

in the base case, so the microeconomic equilibrium can be computed conditional on the

macroeconomic growth rate only). In Figure 3(a), the dashed line depicts the macro-

economic equilibrium conditions, i.e. it depicts (γ, R) combinations for which (T1.3)–

(T1.7) are satisfied. The equilibrium is at point E0, where the two lines intersect.

Figure 3 also illustrates the steady-state age profiles for the key variables (solid

lines). Figure 3(b) shows that scaled consumption is exponential in the agent’s age.

Figure 3(c) shows that the agent gradually reduces the number of hours supplied to

the labour market, and retires permanently at age R = 42. Finally, Figure 3(d) shows

that the path of financial assets is monotonically increasing in age, and features a slight

kink at the retirement age.

Next we consider the equilibrium under imperfect annuities. Instead of setting

θ = 1, we simulate the model with a value of θ = 0.70 and keep all other parameters

the same.8 The new equilibrium values for the different variables are reported in the

second column in Table 2(a). Obviously, with imperfect annuities lump-sum transfers

become positive. Interestingly, agents reduce lifetime labour supply slightly but retire

at about the same age as under perfect annuities.

7 This is, of course, an implausibly high value, signalling that it is hard to obtain a calibration for the core
model that yields plausible values for all parameters. Below we introduce some model extensions that allow
us to substantially improve the quality of the calibration in this respect.

8 Friedman and Warshawsky (1988, p. 59) estimate a load factor of 48 cents per dollar of expected present
value. They suggest that 15 cents of this amount may be due to adverse selection and the remaining 33 cents
due to costs, taxes, and profit.
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The new growth rate is about thirty five basis points lower than under perfect an-

nuities. In Figure 4 we visualize the general equilibrium effects of θ on the retirement

decision and scaled consumption of a newborn. The solid lines depict the case with

perfect annuities (θ = 1). The equilibrium is at point EPA. The thick dashed lines

illustrate the case with imperfect annuities (θ = 0.70), taking into account the gen-

eral equilibrium effects on γ and z. The equilibrium with imperfect annuities is at

point EIA, which lies north-east of point EPA. Agents retire slightly later on in life and

consume more at birth. The thinly dashed line in Figure 4 depicts the Ψ (R)-line for

imperfect annuities, but assuming that the transfers are zero. The total effect of the

move from EPA to EIA can thus be decomposed into a part that is caused by the effect

of the growth rate, and a part that is caused by lump-sum transfers.

In order to better understand these growth effects, we use (2.34), (T1.5) in (T1.4) to

obtain:

γ = r − π + Ω0 ·

[
1 − εK −

c (t)

y (t)

]
. (2.36)

The model features an inverse relationship between the growth rate and the macro-

economic consumption-output ratio. In the bottom row of Table 2(a) we find that the

decrease in the growth rate is accompanied by an increase in the consumption-output

ratio from 0.3217 to 0.3398.

The new steady-state age profiles for the imperfect annuity case have been illus-

trated in Figures 3(b)–(d) (see the dashed lines). The growth rate in individual con-

sumption is reduced somewhat because − (1 − θ) µ features in equation (2.12). Figure

3(c) shows that the agent reduces labour supply especially at early age levels. Finally,

Figure 3(d) shows that the age profile for scaled financial assets continues to be upward

sloping, though it is lower than under perfect annuities.

2.4 Extensions

In the previous section we used a calibrated version of the core model to show that an

imperfection in the annuity market leads to a slight increase in the optimal retirement

age and a decrease in the macroeconomic growth rate. The core model, though useful

for analytical purposes, suffers from a number of empirical deficiencies. These are:
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Table 2.2. Growth and retirement: quantitative effects

(a) Core case (b) Productivity (c) Mortality (d) Combined
θ = 1.0 θ = 0.7 θ = 1.0 θ = 0.7 θ = 1.0 θ = 0.7 θ = 1.0 θ = 0.7

(i) (ii)
C (v, v)

w (v)
0.1048 0.1062 0.0926 0.0934 0.1028 0.1057 0.1017 0.1007 0.0963

S (years) 0 0 7.47 7.65 0 0 7.47 7.40 6.75

R (years) 42 42.02 42 41.83 42 48.78 42 42.40 39.97

z 0 0.0078 0 0.0044 0 0.0031 0 0.0025 0

γ (%) 2.00 1.65 2.00 1.64 2.00 1.92 2.00 1.89 1.69

l (or n) 0.0691 0.0651 0.0831 0.0802 0.0825 0.0804 0.1100 0.1078 0.1060

c (t)

w (t)
0.1346 0.1340 0.1188 0.1189 0.1179 0.1157 0.1166 0.1144 0.1158

w (t)

k (t)
0.4583 0.4863 0.8401 0.8701 0.8482 0.8712 4.6038 4.6995 4.7792

c (t)

y (t)
0.3217 0.3398 0.4343 0.4501 0.4348 0.4384 0.8050 0.8067 0.8300
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(a) growth and retirement age (b) scaled consumption newborns
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Figure 2.3. General equilibrium in the core model
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(ED1). The age profile for consumption is monotonically increasing, whereas it is

hump-shaped in reality (Gourinchas and Parker, 2002, and Fernández-Villaverde

and Krueger, 2007).

(ED2). The age profile for labour supply is monotonically decreasing. In reality,

labour supply is constant and age-invariant for most of working life and tapers

off rapidly near the optimal retirement age (see, for example, McGrattan and

Rogerson (2004) for the United States).

(ED3). Labour productivity is age-independent, whereas in reality it appears to

be hump-shaped (cf. Hansen, 1993 and Rios-Rull, 1996).

(ED4). Under perfect annuities, the age profile for financial assets is monotoni-

cally rising. In reality, financial assets (a) display a hump-shaped profile, and (b)

remain non-negative in old age (Huggett, 1996).

(ED5). To calibrate the model for a realistic retirement age and macroeconomic

growth rate, an implausibly high efficiency parameter for capital must be postu-

lated.

In this section we consider two important model extensions, namely age-dependent

labour productivity and age-dependent mortality. In each case we study whether, and

to what extent, the model extension under consideration can solve the empirical defi-

ciencies of the core model. Both individual decisions and (simulated) general equilib-

rium effects are studied.

2.4.1 Hump-shaped productivity

In this section we directly address empirical deficiency (ED3) and assume that labour

productivity of individuals is hump-shaped. That is, labour productivity is non-negative

throughout life, starts out positive, is rising during the first life phase, and declines

thereafter. For ease of exposition and future reference we collect the results concerning

the individual labour productivity profile in Box 2.1 below.

The production side of the model is affected as follows. The total stock of efficiency
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(i) Labour productivity of an u-year old is given by:

E (u) = α0e−ζ0u − α1e−ζ1u. (B1.1)

we assume that α0 > α1 > 0, ζ1 > ζ0 > 0, and α1ζ1 > α0ζ0.

(ii) We easily find that:

E (0) = α0 − α1 > 0, lim
u→∞

E (u) = 0, (B1.2)

E′ (u) = −ζ0α0e−ζ0u + β1α1e−ζ1u

{
> 0 for 0 ≤ u < ū
< 0 for u ≥ ū

(B1.3)

where ū is the age at which labour productivity is at its maximum:

ū =
1

ζ1 − ζ0
ln

(
α1ζ1

α0ζ0

)
. (B1.4)

(iii) Along the balanced growth path the wage of an u-year old is given by (see be-
low):

w (u) = w (0) eγu
[
α0e−ζ0u − α1e−ζ1u

]
, (B1.5)

Box 2.1: Labour Productivity Profile

units of labour at time t is denoted by N (t) and is defined in the usual way:

N (t) ≡
∫ t

−∞
P (v, t) E (t − v) L (v, t) dv, (2.37)

where L (v, t) stands for raw labour supply in hours, and P (v, t) is the size of cohort v

at time t. Replacing Li by Ni in equation (2.1), and redefining κi ≡ Ki/Ni and κ ≡ K/N,

we find that (2.5) and (2.7) are still satisfied but (2.6) must be changed to:

w (t) N (t) = (1 − εK)Y (t) , (2.38)

where w (t) stands for the rental rate on efficiency units of labour. The wage faced at

time t by a worker born at time v is thus given by:

w (v, t) ≡ E (t − v)w (t) . (2.39)

The household side of the model is affected as follows. In the household budget
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identity (2.9), w (τ) is replaced by w (v, τ). Along the balanced growth path, w (v, τ)

can be written as:

w (v, τ) = w (v) eγ(τ−v)
[
α0e−ζ0(τ−v) − α1e−ζ1(τ−v)

]
, (2.40)

where we have used (B1.1) and (2.39).9 The consumption Euler equation is still given

by (2.12). Interestingly, with a hump-shaped wage profile, it may be optimal for the

agent to delay labour market entry somewhat. Indeed, we now have two relevant

dates for the working decision of an agent, namely the optimal labour market entry

date, S, and the optimal retirement date, R.10 Obviously, we must have that R > S ≥ 0.

During working life (S ≤ τ − v ≤ R) the condition (2.13) still holds but with w (v, τ)

replacing w (τ).

Scaled consumption of a newborn agent is given by:

C (v, v)

w (v)
=

εC (ρ + µ)

εC + (1 − εC)
[
e−(ρ+µ)S − e−(ρ+µ)R

] · LI (v, v)

w (v)
, (2.41)

where LI (v, v) /w (v) is defined as:

LI (v, v)

w (v)
≡

∫ R

S
E (s) e−(r−γ+θµ)sds +

z

r − γ + θµ
. (2.42)

For an interior solution (with S > 0), the labour market entry condition is given by:11

C (v, v)

w (v)
=

εC

1 − εC
E (S) e−[r−γ−ρ−(1−θ)µ]S, (2.43)

9 Equation (2.40) shows that it is in principle possible for the individual’s wage to fall after a certain age,
namely if the fall in labour productivity exceeds the macroeconomic growth rate (Ė (u) /E (u) < −γ). This
effect does not occur in our calibrated model so the wage path is monotonically increasing in age.
10 As was the case in the core model of the previous section, household preferences and the redistribution
scheme are such that S and R are generation independent, i.e. S (v) = S and R (v) = R for all v.
11 It is not difficult to show that an interior solution for S is obtained if the following condition is satisfied:

C (v, v)

w (v)
>

εC

1 − εC
E (0) .

If this condition is violated, then L (v, v) attains an interior solution satisfying:

C (v, v)

w (v)
=

εC

1 − εC
E (0) [1 − L (v, v)] .
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whereas the retirement condition is given by:

C (v, v)

w (v)
=

εC

1 − εC
E (R) e−[r−γ−ρ−(1−θ)µ]R. (2.44)

Equations (2.41) (with (2.42) substituted), (2.43), and (2.44) form a three-equation sys-

tem with three unknowns, viz. C (v, v) /w (v), S, and R (see Table 3(a)). This system

can be solved conditional on the macroeconomic variables, γ and z.

Using cross-section efficiency data for male workers aged between 18 and 70 from

Hansen (1993, p. 74) we find the solid pattern in Figure 5(a). We interpolate these

data by fitting equation (B1.1) using non-linear least squares. We find the following

estimates (t-statistics in brackets): α0 = 4.494 (fixed), α̂1 = 4.010 (71.04), ζ̂0 = 0.0231

(24.20), ζ̂1 = 0.050 (17.81) and the R2 = 0.80 The fitted productivity profile is illus-

trated with dashed lines in Figure 5(a).

We have collected the key equations of the macroeconomic growth model in Table

3. Effectively this table provides the hump-shaped productivity analogue to Table 1.

Compared to Table 1, the main changes are as follows. First, there is an additional

equation governing the entry decision of households. Second, total labour supply

is measured in efficiency units (i.e. n rather than l features in (T3.5)–(T3.7)). Third,

the labour productivity age profile features prominently in (T3.2)–(T3.3) and (T3.7).

The key features of the initial steady-state growth path have been reported in the first

column of Table 2(b).

Figures 5(b)–(d) provide a visualization of the extended model. The key panel

to consider is 5(b), which shows that with a hump-shaped productivity profile, the

labour supply profile also features a hump-shaped pattern. This model extension thus

somewhat alleviates empirical deficiency (ED2) of the core model. That is, we now

have a labour supply profile that increases rapidly in young age, briefly touches a

plateau and then drops to zero (i.e. retirement) quickly. Interestingly, the remaining

empirical deficiencies (ED1) and (ED4)–(ED5) are not solved by the introduction of

age dependent labour productivity. Consumption and assets are not hump shaped,

and the required capital efficiency parameter, though lower than for the core model, is

still too high (εK = 0.6963).

As before, the dashed lines in Figures 5(b)–(d) visualize the implications of an im-
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Table 2.3. Balanced growth and retirement with age-dependent productivity

(a) Microeconomic relationships:

C (v, v)

w (v)
=

εC (ρ + µ)

εC + (1 − εC)
[
e−(ρ+µ)S − e−(ρ+µ)R

]

·

[∫ R

S
E (s) e−(r−γ+θµ)sds +

z

r − γ + θµ

]
(T3.1)

C (v, v)

w (v)
=

εC

1 − εC
E (S) e−(r−γ−ρ−(1−θ)µ)S (T3.2)

C (v, v)

w (v)
=

εC

1 − εC
E (R) e−(r−γ−ρ−(1−θ)µ)R (T3.3)

(b) Macroeconomic relationships:

z = µ (1 − θ)
k (t)

w (t)
(T3.4)

γ ≡
k̇ (t)

k (t)
= r − π +

[
n −

c (t)

w (t)

]
·

w (t)

k (t)
(T3.5)

w (t) n

k (t)
= (1 − εK)Ω0 (T3.6)

n ≡
∫ R

S
βE (s) e−βsds

−βe−βRE (R)
e[γ+β+ρ+(1−θ)µ−r](R−S) − 1

γ + β + ρ + (1 − θ) µ − r
(T3.7)

c (t)

w (t)
≡

β

γ + β + ρ + (1 − θ) µ − r
·

C (v, v)

w (v)
(T3.8)

Definitions: Endogenous are: C(v, v)/w(v), S, R, z, γ, n, w(t)/k(t), and c(t)/w(t). Parameters:

birth rate β, mortality rate µ, population growth rate π ≡ β− µ, imperfection annuities θ, rate of

time preference ρ, capital coefficient in the technology εK , consumption coefficient in tastes εC,

scale factor in the technology Ω0. The interest rate is r ≡ εKΩ0 − δ, where δ is the depreciation

rate of capital.
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Figure 2.5. General equilibrium with age-dependent labour productivity
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perfect annuity market (captured by θ = 0.7). The key features of the new steady-state

growth path have been reported in the second column of Table 2(b). The composite

impact of an imperfect annuity market on individual decisions is that agents delay

labour market entry, work less during working life and retire early. In general equilib-

rium this leads to a substantial reduction in economic growth. Interestingly, the effect

on economic growth is very similar for the core model and the extended model.

Note that because the profits made by annuity firms are taxed away by the govern-

ment, the annuity market imperfection acts as an implicit tax on the annuity premium.

Furthermore, in the initial phase of the life-cycle the annuity market imperfection may

act as a subsidy on loans. Although this is a somewhat troubling feature of the model,

the effect of this feature is negligible because the absolute magnitude of loans as well

as µ (t − v) are low for the young.

2.4.2 Age-dependent mortality

In this section we assume E (u) = 1 for all u and instead augment the core model

by assuming age-dependent mortality. For ease of exposition, we use a demographic

process which incorporates a finite maximum age; the Boucekkine, de la Croix, and

Licandro (BCL) model suggested by Boucekkine et al. (2002). As with the labour pro-

ductivity profile we collect the results concerning the mortality structure in Box 2.2

below.

We use data from age 18 onward for the Dutch cohort that was born in 1960. Fol-

lowing Heijdra and Romp (2008), we denote the actual surviving fraction up until mo-

del age ui by Si, and estimate the parameters of the parametric distribution function

by means of non-linear least squares. The model to be estimated is thus:

Si = 1 − Φ(ui) + εi = d (ui ≤ D) ·
η0 − eη1ui

η0 − 1
+ εi, (2.45)

where d (ui ≤ D̄) = 1 for ui ≤ D̄, and d (ui ≤ D̄) = 0 for ui > D̄, and εi is the stochastic

error term. We find the following estimates (with t-statistics in brackets): η̂0 = 122.643

(11.14), η̂1 = 0.0680 (48.51). The standard error of the regression is σ̂ = 0.02241, and the

implied estimate for D̄ is 70.75 model years (i.e., the maximum age in biological years
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(i) The surviving fraction up to age u (from the perspective of birth) is given by:

1 − Φ (u) ≡
η0 − eη1u

η0 − 1
, (B2.1)

with η0 > 1, η1 > 0 and D̄ = (1/η1) ln η0 is the maximum attainable age.

(ii) For 0 < s < D̄, the cumulative mortality rate is:

M (u) ≡ − ln [1 − Φ (u)] , (B2.2)

so that the exponential discounting factors are given by:

e−M(s) ≡
η0 − eη1s

η0 − 1
, eM(s) ≡

η0 − 1

η0 − eη1s . (B2.3)

(iii) The instantaneous mortality (or hazard) rate at age u is given by:

µ (u) ≡
Φ′ (u)

1 − Φ (u)
=

η1eη1u

η0 − eη1u . (B2.4)

The mortality rate is increasing in age and becomes infinite at u = D̄.

(iv) The relative cohort size is:

p (v, t) ≡
P (v, t)

P (t)
≡ βe−π(t−v)−M(t−v) = β

η0 − eη1(t−v)

η0 − 1
e−n(t−v) (B2.5)

where β is the crude birth rate and π is the population growth rate.

(v) The demographic steady-state is given by (see d’Albis (2007, p.416) and Heijdra
and Romp (2008, p.94)):

1

β
=

1

η0 − 1

[
η0

1 − e−nD̄

n
+

1 − e(η1−n)D̄

η1 − n

]
(B2.6)

For a given birth rate, equation (B2.6) determines the unique population growth
rate consistent with the demographic steady state. The average population-wide
mortality rate, µ̄, follows residually from the fact that π ≡ β − µ̄.

Box 2.2: Boucekkine, de la Croix and Licandro (2002) Mortality Structure
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(a) mortality process (b) labour supply
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Figure 2.6. General equilibrium with age-dependent mortality

is 88.75). Figure 6(a) depicts the actual and fitted survival rates with, respectively, solid

and dashed lines. Up to age 69, the BCL model fits the data rather well. For higher

ages the fit deteriorates as the BCL model fails to capture the fact that some people are

expected to live to very ripe old ages in reality.

Using the same data, we also estimate the parameter of the Blanchard demography,

by running the following regression by means of non-linear least squares: Si = e−µui +

εi. We find µ̂ = 0.0126 (11.41), and σ̂ = 0.2466. The dotted line in Figure 6a depicts

the fitted survival rates implied by the Blanchard demography. The fit is much worse

than that of the BCL model. Relative to the data, the Blanchard model “kills off” the
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young too quickly and the old too slowly.

In the presence of age-dependent mortality, the core model is changed as follows.

First, as is explained in Heijdra and Romp (2008, p. 92), the lifetime utility function

(2.8) is now given by:

EΛ (v, t) ≡ eM(t−v).
∫ v+D̄

t
ln

[
C(v, τ)εC · [1 − L(v, τ)](1−εC)

]
· e−ρ(τ−t)−M(τ−v)dτ,

(2.46)

where (a) the maximum possible age is incorporated in the upper limit of the integral,

and (b) the discounting factor due to lifetime uncertainty, e−M(τ−v), depends on the

agent’s age at some future time τ.

Second, the annuity rate given in (2.10) above is modified to reflect the fact that the

mortality rate depends on age:

rA (τ − v) ≡ r + θµ (τ − v) , (for 0 ≤ τ − v < D̄). (2.47)

Older agents attract a higher annuity rate than younger agents do because they feature

a higher mortality rate (note that at age τ − v = D̄ no life insurance is available). Utility

maximization gives rise to an individual consumption Euler equation that is different

from the one given in (2.12) above:

Ċ (v, τ)

C (v, τ)
= r − ρ − (1 − θ) µ (τ − v) . (2.48)

Provided annuities are imperfect (θ < 1), optimal consumption growth is age depen-

dent.

The key expressions characterizing individual behaviour are given in equations

(T4.1)–(T4.3) in Table 2.4. Equation (T4.1) gives the expression for scaled consumption

at birth. It contains specific values for a general demography-dependent function that

is defined as follows:

Ξ (λ1, λ2)
u1
u0

=
∫ u1

u0

e−λ1s ·

[
η0 − eη1s

η0 − 1

]λ2

ds, (2.49)

with 0 ≤ u0 < u1 ≤ D̄ and λ2 ≥ 0. Provided λ1 is finite, the integral exists and is



40 Chapter 2

strictly positive. It follows that Ξ (r − γ, θ)R
S > 0, Ξ (r − γ, θ)D̄

0 > 0, Ξ (ρ, 1)R
S > 0, and

Ξ (ρ, 1)D̄
0 > 0, so scaled newborn consumption is positive and depends positively on

the amount of transfers.12

Interestingly, despite the fact that productivity is age-independent, equation (T4.2)

shows that with imperfect annuities it is in principle possible for the individual agent

to postpone labour market entry somewhat, i.e. to choose S > 0. With a realistic

demography, however, this scenario does not materialize, i.e. in practice labour market

entry is immediate and S = 0. Intuitively, this results from the fact that the mortality

process only cuts in toward the end of the agent’s life.

The macroeconomic part of the model is given by equations (T4.5)–(T4.9) in Table

2.4. Compared to the core model, the main changes are found in (T4.5) and (T4.8)–

(T4.9). In (T4.5), transfers can no longer be related to a single aggregate variable but

must be computed (numerically) by using the scaled wealth paths of existing cohorts.

Expressions (T4.8)–(T4.9) generalize (T1.6)–(T1.7), making use of the Ξ (λ1, λ2)
u1
u0

func-

tion defined in (2.49) above.

Just as for the previous two models, we calibrate the model for an initial steady

state with perfect annuities (θ = 1), a growth rate of two percent (γ = 0.02), and an

optimal retirement age of 42 years (R = 42). The key features of the initial steady-state

growth path have been reported in the first column of Table 2(c). As was mentioned

above, labour market entry is immediate for the cases considered in Table 2(c).

Figures 6(b)–(d) provide a visualization of the extended model. The key panels to

consider are 6(c) and 6(d). With imperfect annuities, consumption features a hump-

shaped pattern thus addressing empirical deficiency (ED1)–see the dashed lines in

Figure 6(c). This finding is in line with Yaari (1965), Abel (1985), Bütler (2001), and

Hansen and İmrohoroğlu (2008): with imperfect annuities the mortality rate features

in the individual Euler equation. Hence, if the mortality rate is age-dependent, agents

will discount consumption later on in life more heavily, thus creating a hump-shaped

profile. From an empirical point of view it should be noted that we–like Bütler (2001)

and Hansen and İmrohoroğlu (2008)–also find that the hump occurs too late in life.

Also, as is illustrated in Figure 6(d), financial assets feature a hump-shaped pattern

12 Using the Ξ-function we can define the demographic steady-state as 1
β = Ξ (π, 1)D̄

0 which simply gener-

alizes (2.21) to the case with age-dependent mortality.
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Table 2.4. Balanced growth and retirement with age-dependent mortality

(a) Microeconomic relationships:

C (v, v)

w (v)
=

εCΞ (r − γ, θ)R
S + εCΞ (r − γ, θ)D̄

0 · z

(1 − εC)Ξ (ρ, 1)R
S + εCΞ (ρ, 1)D̄

0

(T4.1)

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ−ρ)S+(1−θ)M(S) (T4.2)

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ−ρ)R+(1−θ)M(R) (T4.3)

A (v, v + u)

w (v)
· e−ru−θM(u) = −

C (v, v)

w (v)
· Ξ (ρ, 1)u

0 + z · Ξ (r − γ, θ)u
0 (T4.4a)

= −
C (v, v)

w (v)
·

[
Ξ (ρ, 1)S

0 +
1

εC
Ξ (ρ, 1)u

S

]
+ z · Ξ (r − γ, θ)u

0

+Ξ (r − γ, θ)u
S (T4.4b)

=
C (v, v)

w (v)
· Ξ (ρ, 1)D̄

u − z · Ξ (r − γ, θ)D̄
u (T4.4c)

(b) Macroeconomic relationships:

z = (1 − θ) ·
∫ D̄

0
βe−(π+γ)u−M(u)µ (u)

A (v, v + u)

w (v)
du (T4.5)

γ ≡
k̇ (t)

k (t)
= r − π +

[
l −

c (t)

w (t)

]
·

w (t)

k (t)
(T4.6)

w (t) l

k (t)
= (1 − εK)Ω0 (T4.7)

l = β ·
[
Ξ (π, 1)R

S −

1 − εC

εC

C (v, v)

w (v)
· Ξ (π + ρ + γ − r, 2 − θ)R

S

]
(T4.8)

c (t)

w (t)
≡

C (v, v)

w (v)
· βΞ (π + ρ + γ − r, 2 − θ)D̄

0 (T4.9)

Definitions: Endogenous are C(v, v)/w(v), S, R, z, γ, l, w(t)/k(t), and c(t)/w(t). Parameters:

birth rate β, aggregate mortality rate µ̄, population growth rate π ≡ β − µ̄, imperfection annu-

ities θ, rate of time preference ρ, capital coefficient in the technology εK , consumption coefficient

in tastes εC, scale factor in the technology Ω0. The interest rate is r ≡ εKΩ0 − δ, where δ is the

depreciation rate of capital.
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both with perfect and with imperfect annuities.13 The model extension thus fixes em-

pirical deficiency (ED4) to a large extent. Finally, empirical deficiency (ED5) is reduced

somewhat in this extension as the required efficiency parameter for capital is equal to

εK = 0.6956 (rather than 0.8348 in the core model).

As before, the dashed lines in Figures 6(b)–(d) visualize the implications of an im-

perfect annuity market (captured by θ = 0.7). The key features of the new steady-state

growth path have been reported in the second column of Table 2(c). Just as in the core

model, individual and aggregate saving and thus the macroeconomic growth rate are

all lower when annuity markets are imperfect rather than perfect.14 Furthermore, and

in contrast to both the core model and the model with age-dependent productivity,

we now find that agents also delay labour market exit by almost seven years. Hence,

the composite impact of an imperfect annuity market on individual decisions is that

agents work slightly fewer hours during most of their working life, but retire much

later thus limiting the fall in the aggregate supply of labour. In general equilibrium,

this retirement effect explains why the reduction in economic growth is smaller than

for the previous two models.

Compared to the core model, the annuity market imperfection operates quite dif-

ferently in the model with a realistic demographic structure – compare panels (a) and

(c) in Table 2. First, instead of finding a near-zero retirement effect, in the extended

model agents delay retirement by almost 7 years. Intuitively, with age-dependent mor-

tality and imperfect annuities, agents discount future felicity by their ever increasing

mortality rate. This ensures that both consumption and leisure are hump-shaped and

hence labour supply is U-shaped. Because retirement is an absorbing state, however,

the upward sloping part of the labour supply path is not attained – see Figure 6(b).15

In the calibration underlying Table 2(c), labour supply bottoms out at zero thus ex-

plaining the large shift in the retirement age.

Second, instead of experiencing a reduction in the economic growth rate of 35 basis

13 In contrast to the core model, with age-dependent mortality an actuarially fair redistribution scheme of
the form TR (v, τ) = (1 − θ) µ (τ − v) A (v, τ) is feasible. See also footnote 6 on this issue.
14 This finding regarding growth has previously been highlighted by Abel (1985) and Fuster (1999) who sug-
gest that capital accumulation decreases with imperfect annuities provided (i) the elasticity of intertemporal
substitution is no less than unity and (ii) there is steady-state growth.
15 In Figure 6(b) the thin dotted line after retirement gives the labour supply path if retirement were not an
absorbing state. Similar, the thin solid line gives labour supply if negative labour supply were allowed.
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(a) annuity imperfection (b) cohort size
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Figure 2.7. The annuity market imperfection

points, in the extended model we see a much smaller reduction of only 8 basis points.

To appreciate the origin of these differences, note Figures 7(a)–(b). Figure 7(a) visual-

izes the annuity market imperfection faced by the agent over the life-cycle. The dashed

line shows the imperfection for the Blanchard mortality process whilst the solid line

depicts the imperfection for the realistic-mortality case. From here it is immediately

clear that the Blanchard mortality process overstates the magnitude of the annuity

market imperfection for a substantial part of the life-cycle. In contrast, for a realistic

demography the annuity market imperfection only becomes an issue later on in life.

Furthermore, as can be seen in Figure 7(b), the relative size of cohorts that are actu-

ally affected is quite small. In the core model assets grow indefinitely with age, thus

overstating the effect of older agents on the growth rate. A given change in θ thus has

a large effect on growth because it most strongly affects the asset-rich older agents of

whom there are too many. In the extended model, however, these agents are not only

relatively few in numbers but are also decumulating assets. As a result, they have a

much smaller effect on the growth rate.

2.4.3 Full model

In this section we visualize the full model, simultaneously incorporating age-dependent

labour productivity and mortality. The key equations for the full model have been col-
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lected in Table 2.5, whilst Figure 8 visualizes some of its salient life-cycle features.

Finally, the quantitative effect of imperfect annuities are reported in Table 2(d).

Figure 8(a) plots the right-hand sides of (T5.2) and (T5.3) as a function of age. For

θ = 1, there is a unique entry age (S = 7.47, at point A) and a unique retirement age

(R = 42, at point B). In contrast, for θ = 0.7, there appears to be a second labour market

entry point located to the right of point B. This point is not feasible, however, because

we assume that labour market exit is an absorbing state. Hence, also for θ = 0.7, there

are unique entry and exit ages, i.e. S = 7.40 and R = 42.40 – see Table 2(d).

Figure 8(b) shows the age profile for labour supply. It is hump-shaped because

labour productivity is, i.e. Figure 8(b) looks very much like Figure 5(b) above.

Figure 8(d) shows the age profile for financial assets. This figures captures the main

features of Figure 6(d), but adds a borrowing period at the start of life. Agents delay

labour market entry and –upon entry– face rather low wages and supply few hours

early on in life. They finance their rising consumption profile by borrowing during

that first life phase.

Interestingly, the quantitative effects of θ on the optimal retirement age and growth

are rather small, as is revealed in column (i) of Table 2(d). The full model is a hybrid

of the two extended models. With respect to the optimal retirement decision, the ef-

fects explained by age-dependent productivity outweigh the effects of age-dependent

mortality. In contrast, the impact of θ on the growth rate is predominantly driven

by the effects of age-dependent mortality. Furthermore, empirical deficiency (ED5) is

eliminated in the full model as the required efficiency parameter for capital is equal to

εK = 0.2402.

2.4.4 The role of transfers in the full model

Up until now we have focused on the situation where the profits made by the annuity

firms are redistributed toward the agents in the form of a lump-sum transfer. These

transfers have allowed us to focus solely on the substitution effect of the annuity mar-

ket imperfection. However, in order to study the full (i.e. income and substitution)

effect of the imperfection we need to consider an alternative general equilibrium mech-

anism by which the profits of the annuity firms are spent. In this subsection we assume
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Table 2.5. Balanced growth and retirement with age-dependent productivity and mor-
tality

(a) Microeconomic relationships:

C (v, v)

w (v)
=

α0εCΞ (r + ζ0 − γ, θ)R
S − α1εCΞ (r + ζ1 − γ, θ)R

S

(1 − εC)Ξ (ρ, 1)R
S + εCΞ (ρ, 1)D̄

0

+
εCΞ (r − γ, θ)D̄

0 · z

(1 − εC)Ξ (ρ, 1)R
S + εCΞ (ρ, 1)D̄

0

(T5.1)

C (v, v)

w (v)
=

εC

1 − εC
E (S) e−(r−γ−ρ)S+(1−θ)M(S) (T5.2)

C (v, v)

w (v)
=

εC

1 − εC
E (R) e−(r−γ−ρ)R+(1−θ)M(R) (T5.3)

A (v, v + u)

w (v)
· e−ru−θM(u) = −

C (v, v)

w (v)
· Ξ (ρ, 1)u

0 + z · Ξ (r − γ, θ)u
0 (T5.4a)

= −
C (v, v)

w (v)
·

[
Ξ (ρ, 1)S

0 +
1

εC
Ξ (ρ, 1)u

S

]
+ z · Ξ (r − γ, θ)u

0

+
[
α0Ξ (r + ζ0 − γ, θ)u

S − α1Ξ (r + ζ1 − γ, θ)u
S

]
(T5.4b)

=
C (v, v)

w (v)
· Ξ (ρ, 1)D̄

u − z · Ξ (r − γ, θ)D̄
u (T5.4c)

(b) Macroeconomic relationships:

z = (1 − θ) ·
∫ D̄

0
βe−(π+γ)u−M(u)µ (u)

A (v, v + u)

w (v)
du (T5.5)

γ ≡
k̇ (t)

k (t)
= r − π +

[
n −

c (t)

w (t)

]
·

w (t)

k (t)
(T5.6)

w (t) n

k (t)
= (1 − εK)Ω0 (T5.7)

n = β ·

[
α0Ξ (π + ζ0, 1)R

S − α1Ξ (π + ζ1, 1)R
S

−
1 − εC

εC

C (v, v)

w (v)
· Ξ (π + ρ + γ − r, 2 − θ)R

S

]
(T5.8)

c (t)

w (t)
≡

C (v, v)

w (v)
· βΞ (π + ρ + γ − r, 2 − θ)D̄

0 (T5.9)

Definitions: Endogenous are C(v, v)/w(v), S, R, z, γ, n, w(t)/k(t), and c(t)/w(t). Parameters:

birth rate β, aggregate mortality rate µ̄, population growth rate π ≡ β − µ̄, imperfection annu-

ities θ, rate of time preference ρ, capital coefficient in the technology εK , consumption coefficient

in tastes εC, scale factor in the technology Ω0. The interest rate is r ≡ εKΩ0 − δ, where δ is the

depreciation rate of capital.
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(a) labour market entry/exit condition (b) labour supply
L(u)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

θ=1

θ=0.7

θ=0.5

A B

economic age
0 10 20 30 40 50 60

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

economic age (u)

(c) scaled consumption newborns (d) scaled financial assets
C(v, v + u)

w(v)

A(v, v + u)

w(v)

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

economic age (u)
0 10 20 30 40 50 60 70

−2

−1

0

1

2

3

4

economic age (u)

Figure 2.8. General equilibrium with age-dependent productivity and mortality



Annuity market imperfections 47

that the government uses the funds for non-productive spending.

Compared to Table 5, there are two major changes. First, transfers are zero both

with perfect and imperfect annuities. Second, the imperfection surfaces directly in the

relationship for the growth rate. Indeed, equation (T5.5) is replaced by:

γ =
k̇ (t)

k (t)
= r − π − (1 − θ) ·

w (t) Γ

k (t)
+

[
n −

c (t)

w (t)

]
w (t)

k (t)
, (T5.5′)

where w (t) Γ is given by:

w (t) Γ ≡
∫ t

t−D̄
p (v, t) µ (t − v) A (v, t) dv.

Figure 9 visualizes the impact of the annuity market imperfection on labour supply

and financial assets (as in the full model with transfers, consumption is hump shaped).

Figure 9(b) shows that assets accumulation is increased slightly for younger agents and

reduced substantially for older agents.

Comparing columns (i) and (ii) two main features stand out. First, the growth

rate drops substantially under non-productive government spending. This is a direct

consequence of draining productive resources from the economy. Second, in the model

with unproductive spending agents enter and retire at an earlier age and shorten the

length of their working career. The retirement effect is a direct consequence of the fall

in the growth rate – see for example the discussion surrounding Figure 2.

2.5 Conclusions

We study the impact of imperfect annuity markets on individual decisions and macro-

economic outcomes. We develop a concise overlapping generations model of a closed

economy featuring endogenous growth. We demonstrate that this model replicates the

most salient life-cycle features of asset holdings, labour supply, and consumption. For

this, annuities must be imperfect and both the mortality process and labour produc-

tivity must be age dependent. The annuity imperfection accounts for a hump-shaped

consumption profile, age-dependent mortality gives rise to a life-cycle pattern of sav-

ing, and age-dependent productivity captures the life-cycle pattern of labour supply.
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(a) labour supply (b) scaled financial assets
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Figure 2.9. Full model with useless government spending

The empirical evidence suggests that the annuity imperfection parameter employed

in this chapter may be quite substantial. Our model shows that the microeconomic ef-

fects of such an imperfection are rather large if the lump-sum transfers (arising from

annuity firms’ profits) are not taken into account. But this partial equilibrium result,

though commonly stressed in the literature, is rather misleading. Indeed, in the pres-

ence of transfers, i.e. in a general equilibrium setting, both microeconomic and macro-

economic effects of quantitatively significant annuity imperfections are small.

The model developed in this chapter can be amended and extended in a straight-

forward fashion to study a variety of public policy issues. In the next chapter we use

the model to study the implications of labour income and consumption taxation. In

Chapter 4 we amend the model slightly and study how different public pension ar-

rangements affect a decrease in adult mortality.



Chapter 3

Labour-income and consumption

taxes∗

* This chapter is based on Heijdra and Mierau (2010).
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3.1 Introduction

In this chapter we use the model developed in the previous chapter to revisit a clas-

sic theme in dynamic public finance theory, namely the effects of consumption and

labour-income taxation on the macroeconomic allocation and long-run growth rate.

Rather than studying corrective taxation aimed at internalizing the knowledge exter-

nality, we focus on a number of traditional public tax policy questions. How do the

taxes affect individual decisions regarding consumption, labour supply and saving?

And by which mechanisms is the macroeconomic growth rate affected? And to what

extent does the method of tax revenue recycling affect the microeconomic decisions

and the macroeconomic outcomes?

The government’s budgetary policy plays a vital role in our analysis. We analyze

three different revenue recycling methods via lump-sum transfers. The first method

assumes that these transfers are the same for everybody, regardless of age. The sec-

ond method gives higher transfers to the young, whereas the third method biases

the transfers to favour the old. In order to demonstrate the vital importance of the

revenue-recycling mechanism we also discuss the hypothetical scenario in which the

government uses its tax revenue for useless government consumption expenditures.

Among other things, we find that tax/transfer combinations that redistribute funds

away from the “dissaving elderly” toward the “saving young” leads to higher eco-

nomic growth. Not surprisingly, wasteful government consumption has a disastrous

effect on economic growth. In addition we find that a consumption tax positively

dominates a labour-income tax, both in growth and in welfare terms.

The paper that comes closest to ours is Heijdra and Ligthart (2000) which studies

the consequences of capital, labour, and consumption taxes on aggregate capital for-

mation and welfare in a perpetual-youth overlapping-generations model of the Blan-

chard (1985) type. Their model highlights the importance of intergenerational redistri-

bution effects of taxes. These effects are not present in the infinitely-lived representative-

agent model but turn out to play a crucial role. That is, whereas representative-agent

models predict an unambiguous negative effect of any form of taxation, Heijdra and

Ligthart show that intergenerational transfers may redistribute funds toward individ-

uals with a higher marginal propensity to save, thereby increasing the steady-state
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capital stock.

In a similar vein, Petrucci (2002) studies the impact of consumption taxation in a

model akin to the Heijdra and Ligthart model but with endogenous rather than ex-

ogenous growth. He finds that the transfers arising from consumption taxation can

induce higher growth due to intergenerational transfers. This result is in stark contrast

to the remainder of the literature, which focuses on representative-agent models and

finds that taxation, regardless of its base, reduces economic growth (Turnovsky, 2000)

or is, at best, neutral (Stokey and Rebelo, 1995).

We thus extend both Petrucci (2002) (by endogenizing the labour supply and re-

tirement decision) and Heijdra and Ligthart (2000) (by including a retirement decision

and endogenizing the long-run growth rate). In addition, our model features realistic

life-cycle features as mentioned above. In accordance with Petrucci we find that the

intergenerational transfers arising from consumption taxation lead to higher economic

growth. In line with Heijdra and Ligthart we find that consumption and labour taxa-

tion are not equivalent, as they are in the representative-agent model. In addition, we

show that the equivalence breaks down not only because of demographic factors but

also because old individuals retire. The non-equivalence between consumption and

labour taxation assures that the intergenerational transfer effects of these two taxes

differ substantially. In particular, for certain transfer schemes the positive growth ef-

fect found for consumption taxation fails to uphold for labour taxes.

The remainder of the chapter is set up as follows. The next section outlines the

model. Sections 3 and 4 study consumption and labour taxes, respectively. The final

section concludes.

3.2 Model

We use the model developed in Chapter 2 and extend it to include taxes on consump-

tion and labour income and alternative redistribution schemes. We refer the reader to

Chapter 2 for a complete description of the model and use the remainder of this section

to outline the model and its the extensions.
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3.2.1 Consumers

Individual behaviour

Expected remaining-lifetime utility of an individual born at time v is given by:

EΛ (v, v) ≡
∫ v+D̄

v
ln

[
C(v, τ)εC · [1 − L(v, τ)]1−εC

]
· e−ρ(τ−v)−M(τ−v)dτ, (3.1)

where C (v, τ) is consumption, L (v, τ) is labour supply (the time endowment is equal

to unity), ρ is the pure rate of time preference, D̄ is the maximum attainable age for the

agent, and e−M(τ−v) is the probability that the agent is still alive at some future time

τ (≥ v). Here, M(τ − v) ≡
∫ τ−v

0 µ(s)ds stands for the cumulative mortality rate and

µ (s) is the instantaneous mortality rate of an agent of age s.

The agent’s budget identity is given by:

Ȧ(v, τ) = rA (τ − v) A(v, τ) + w(v, τ) (1 − θL) L (v, τ)− (1 + θC)C(v, τ) + TR (v, τ) ,

(3.2)

where A (v, τ) is the stock of financial assets, rA (τ − v) is the age-dependent annu-

ity rate of interest rate, w (v, τ) ≡ E (τ − v)w (τ) is the age-dependent wage rate,

E (τ − v) is exogenous labour productivity, θL is the labour income tax, θC is the con-

sumption tax, TR (v, τ) are lump-sum transfers (see below). As in Chapter 2 our model

contains a number of distinguishing features, which we briefly summarize below.

Feature 1. We postulate the existence of annuity markets, but we allow the annuities

to be less than actuarially fair. Since the agent is subject to lifetime uncertainty and has

no bequest motive, he/she will fully annuitize so that the annuity rate of interest facing

the agent is given by:

rA (τ − v) ≡ r + λµ (τ − v) , (for 0 ≤ τ − v < D̄). (3.3)

where r is the real interest rate, and λ is a parameter (0 < λ ≤ 1) indicating the degree

of imperfection on the annuity market.

Feature 2. We assume that labour productivity is hump-shaped over the life-cycle.

This assures that labour supply is similarly hump-shaped over the life-cycle. A useful
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parameterization of the productivity profile is:

E (t − v) = α0e−ζ0(t−v) − α1e−ζ1(t−v), (for 0 ≤ t − v ≤ D̄), (3.4)

where αi and ζ i are the parameters governing the curvature of the productivity profile

(see Box 2.1 for details).

Feature 3. Following Boucekkine et al. (2002) we assume that e−M(t−v) takes the

following rather convenient functional form:

e−M(t−v) ≡
η0 − eη1(t−v)

η0 − 1
, (for 0 ≤ t − v ≤ D̄), (3.5)

where η0 > 1 and η1 > 0 are parameters and D̄ is the maximum attainable age (see

Box 2.2 for details).

The agent chooses time profiles for C (v, τ), A (v, τ), and L (v, τ) (for v ≤ τ ≤ v +

D̄) in order to maximize (3.1), subject to (i) the budget identity (3.2), (ii) a transversality

condition, A (v, v + D̄) = 0, (iii) the initial asset position at birth, A (v, v) = 0, and

(iv) a non-negativity condition for labour supply, L (v, τ) ≥ 0. The solution of this

optimization problem is fully characterized by the following equations:

C (v, t) = C (v, v) · e(r−ρ)(t−v)−(1−λ)M(t−v), (3.6)

(1 − εC) / (1 − L (v, t))

εC/C (v, t)
=

1 − θL

1 + θC
· w(v, t) (for S ≤ t − v ≤ R), (3.7)

L (v, t) = 0 (for 0 ≤ t − v ≤ S and R ≤ t − v ≤ D̄), (3.8)

C (v, v)

w (v)
=

εC

1 − εC
E (S)

1 − θL

1 + θC
e−(r−ρ−γ)S+(1−λ)M(S), (3.9)

C (v, v)

w(v)
=

εC

1 − εC
E (R)

1 − θL

1 + θC
e−(r−ρ−γ)R+(1−λ)M(R), (3.10)

(1 + θC) ·
C (v, v)

w(v)
=

εC

(1 − εC)
∫ R

S e−ρs−M(s)ds + εC

∫ D̄
0 e−ρs−M(s)ds

·
H (v, v)

w (v)
, (3.11)

H (v, v)

w (v)
≡ (1 − θL)

∫ R

S
E (s) e−(r−γ)s−λM(s)ds

+
∫ D̄

0

TR (v, v + s)

w (v + s)
e−(r−γ)s−λM(s)ds, (3.12)

where H(v, v) is human wealth at birth and γ is macroeconomic growth rate. The
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intuition behind these expressions is as follows. Equation (3.6) is best understood by

noting the consumption Euler equation resulting from utility maximization:

Ċ (v, τ)

C (v, τ)
= r − ρ − (1 − λ) µ (τ − v) . (3.13)

By using this expression, future consumption can be expressed in terms of consump-

tion at birth as in (3.6). In the absence of an annuity market imperfection (λ = 1),

consumption growth only depends on the gap between the interest rate and the pure

rate of time preference. In contrast, with imperfect annuities, individual consumption

growth is negatively affected by the mortality rate, a result first demonstrated for the

case with λ = 0 by Yaari (1965, p. 143).

Equations (3.7)–(3.10) characterize the agent’s labour supply plans during the life

cycle. There are two critical ages in the worker’s life cycle, namely the labour market

entry age S and the retirement age R. During youth, for 0 ≤ t − v ≤ S the agent has

not yet entered the labour market. Toward the end of life, for R ≤ t − v ≤ D̄, the agent

no longer works. During the working period, the agent equates the marginal rate

of substitution between leisure and consumption to the wage rate at all times – see

equation (3.7). The optimal labour market entry and retirement points are determined

in, respectively (3.9) and (3.10).

The consumption-leisure choice over the life cycle is illustrated in Figure 2, where

C(v,v+u)
w(v)

and L (u) stand for, respectively, consumption (scaled by the wage rate at

birth) and labour supply of the agent at age u ≡ t − v. To facilitate the discussion we

assume that annuities are perfect (λ = 1) so that consumption grows monotonically

over the life cycle. We show four moments in the agent’s life. The initial choice at

age u = 0 is at point E0. The wage rate is low, leisure is cheap, and the agent faces

a binding non-negativity constraint on labour supply. For 0 < u < S, this constraint

remains binding but the agent chooses an increasing path for consumption. This is the

gradual move from E0 to ES.

At age u = S the agent achieves a tangency between an indifference curve, US =

C(v, v+S)εC · [1 − L(v, v + S)]1−εC and a “budget equation” X (v, v + S) = C (v, v + S)+

w (v, v + S) · [1 − L(v, v + S)], where X (v, τ) is full consumption and, of course, L (v, v + S) =

0. Equation (3.9) describes point ES in terms of the key economic variables in the mo-
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Figure 3.1. Life-cycle consumption and labour supply

del.

For S < u < R the agent makes interior choices for both consumption and labour

supply, and the optimum moves in north-westerly direction from point ES. The wage

increases with age but the substitution effect dominates the wealth effect and labour

supply rises initially. During that life phase (and with perfect annuities), full consump-

tion increases exponentially according to Ẋ (v, v + u) /X (v, v + u) = r − ρ > 0. This

causes the wealth effect to strengthen.

At some age u = M, the wealth effect exactly matches the substitution effect and

labour supply reaches its peak. This occurs at point EM in Figure 2. The wage at

that point exceeds the wage at labour market entry, w (v, v + M) > w (v, v + S), so

the budget equation through EM is steeper than the one through ES. Beyond age M,

the wealth effect dominates and labour supply falls gradually. In the parameterized

version of our model, an individual’s wage path is uniformly upward sloping (see

Figure 3(d)) so the budget equation continues to rotate in a clockwise fashion as the

agent gets older.

At age u = R, the agent retires from the labour market. Equation (3.10) describes

point ER in terms of the key economic variables in the model. The wage rate is high,

leisure is expensive, but the agent is rather wealthy and thus faces a binding non-



56 Chapter 3

negativity constraint on labour supply, just as at the start of life but for diametrically

opposite reasons. Beyond age R, consumption continues to increase. The optimum

gradually moves from ER in the direction of point E1 in Figure 1.

Equation (3.11) shows that scaled consumption of a newborn is proportional to hu-

man wealth. The marginal propensity to consume out of human wealth at birth is

decreasing in the length of the agent’s working career. Finally, equation (3.12) pro-

vides the definition of human wealth at birth. The first term on the right-hand side

represents the present value of the time endowment during working life, using the

growth-corrected annuity rate of interest for discounting. The later one retires, the

larger is this term. The second term on the right-hand side of (3.12) is just the present

value of transfers.

In the presence of an age-dependent mortality process, the following demography-

dependent function is quite convenient as it shows up in various places in the model

characterization:

Ξ (ξ1, ξ2)
u1
u0

=
∫ u1

u0

e−ξ1s ·

[
µ0 − eµ1s

µ0 − 1

]ξ2

ds, (3.14)

with 0 ≤ u0 < u1 ≤ D̄ and ξ2 ≥ 0. Provided ξ1 and ξ2 are finite, the integral exists

and is strictly positive.

Aggregate household behaviour

In this subsection we derive expressions for per-capita average consumption, labour

supply, and saving. With age-dependent mortality the demographic steady-state equi-

librium has the following features:

1 = βΞ (π, 1)D̄
0 , (3.15)

p (v, t) ≡
P (v, t)

P (t)
≡ βe−π(t−v)−M(t−v), (3.16)

where β is the crude birth rate, π is the growth rate of the population, p (v, t) and

P (v, t) are, respectively, the relative and absolute size of cohort v at time t ≥ v, and

P (t) is the population size at time t. The average population-wide mortality rate, µ̄,

follows residually from the fact that π ≡ β − µ̄.
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Using (3.16), we can define per-capita average values in general terms as:

b (t) ≡
∫ t

−∞
p (v, t) B (v, t) dv, (3.17)

where B (v, t) denotes the variable in question at the individual level, and b (t) is the

per capita average value of that same variable. Using (3.6) and (3.17), we find that per

capita average consumption can be written as follows:

c (t)

w (t)
=

C (v, v)

w (v)
· βΞ (π + ρ + γ − r, 2 − λ)D̄

0 . (3.18)

Efficiency units of labour of vintage t− v are defined as N (t − v) ≡ E (t − v) L (v, t).

Using this expression, as well as (3.4), (3.6)–(3.7), and (3.17) we find the per capita av-

erage supply of efficiency units of labour:

n = β
∫ R

S
E (s) e−πs−M(s)ds −

C (v, v)

w(v)

1 − εC

εC

1 + θC

1 − θL
βΞ (π + ρ + γ − r, 2 − λ)R

S ,

(3.19)

with 0 < n < n̄, where n̄ ≡ β
∫ D̄

0 E (s) e−πs−M(s)ds is the maximum labour potential in

the economy. The first term on the right-hand side of (3.19) provides the first mecha-

nism by which n falls short of n̄: agents only work during part of their lives. Prior to

labour market entry and after retirement, they consume their unit time endowment in

the form of leisure. The second composite term on the right-hand side of (3.19) repre-

sents the second mechanism by which n falls short of n̄: during their productive career,

workers never supply their full time endowment to the labour market.

Finally, using (3.17) we observe that per capita average assets are defined as a (t) ≡
∫ t
−∞

p (v, t) A (v, t) dv so that its rate of change is:

ȧ (t) =
∫ t

t−D̄
p (v, t) Ȧ (v, t) dv −

∫ t

t−D̄
[π + µ (t − v)] A (v, t) dv, (3.20)

where we have incorporated the fact that individual agents have zero financial assets

at birth and at the maximum attainable age (A (v, v) = A (v, v + D̄) = 0) and that the

relative cohort size evolves over time according to ṗ (v, t) = − [π + µ (t − v)]p (v, t).
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Using (3.2)–(3.3) in (3.20) we thus find:

ȧ (t) = (r − π) a (t) + (1 − θL)w (t) n − (1 + θC) c (t) +
∫ t

t−D̄
p (v, t)TR (v, t) dv

− (1 − λ)
∫ t

t−D̄
µ (t − v) p (v, t) A (v, t) dv. (3.21)

3.2.2 Government

We assume that the government maintains continuous budget balance and does not

use debt financing. Total per capita tax receipts are given by:

tax (t) ≡ θCc (t) + θLw (t) n + (1 − λ)
∫ t

t−D̄
µ (t − v) p (v, t) A (v, t) dv, (3.22)

where the last term on the right-hand side represents the excess profits of the annuity

industry that are taxed away by the government. We write the per capita government

budget constraint as follows:

tax (t) = g · k (t) +
∫ t

t−D̄
p (v, t)TR (v, t) dv, (3.23)

where g · k (t) is useless government spending and g is a non-negative parameter.

By using (3.22)–(3.23) in (3.21) and noting that the capital market equilibrium con-

dition is given by a (t) = k (t), we find the macroeconomic accumulation equation for

the per capita capital stock:

k̇ (t) = (r − π − g) k (t) + w (t) n − c (t) . (3.24)

In the remainder of the chapter, we consider two financing scenarios.

• Transfer scenario. Government consumption is zero, and the entire tax revenue is

transferred to households, i.e. g = 0 and TR (v, t) > 0 for all v and t. Within this

scenario we consider three prototypical modes of transfer redistribution. To cap-

ture these three options we assume that government transfers are set according

to:
TR (v, t)

w (t)
= z · eφ(t−v), (3.25)
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Table 3.1. The model

(a) Microeconomic relationships:

(1 + θC)C (v, v)

w (v)
=

(1 − θL) εC

[
α0Ξ (r + ζ0 − γ, λ)R

S − α1Ξ (r + ζ1 − γ, λ)R
S

]

(1 − εC)Ξ (ρ, 1)R
S + εCΞ (ρ, 1)D̄

0

+
εCΞ (z, r − φ − γ, λ)D̄

0 · z

(1 − εC)Ξ (ρ, 1)R
S + εCΞ (ρ, 1)D̄

0

(T1.1)

(1 + θC)C (v, v)

w (v)
=

εC

1 − εC
E (S) (1 − θL) e−(r−γ−ρ)S+(1−λ)M(S) (T1.2)

(1 + θC)C (v, v)

w (v)
=

εC

1 − εC
E (R) (1 − θL) e−(r−γ−ρ)R+(1−λ)M(R) (T1.3)

A (v, v + u)

w (v)
· e−ru−λM(u) = −

(1 + θC)C (v, v)

w (v)
· Ξ (ρ, 1)u

0 + z · Ξ (r − φ − γ, λ)u
0 (T1.4a)

= −
(1 + θC)C (v, v)

w (v)
·

[
Ξ (ρ, 1)S

0 +
1

εC
Ξ (ρ, 1)u

S

]
+ z · Ξ (r − φ − γ, λ)u

0

+ (1 − θL)
[
α0Ξ (r + ζ0 − γ, λ)u

S − α1Ξ (r + ζ1 − γ, λ)u
S

]
(T1.4b)

=
(1 + θC)C (v, v)

w (v)
· Ξ (ρ, 1)D̄

u − z · Ξ (r − φ − γ, λ)D̄
u (T1.4c)

(b) Macroeconomic relationships:

0 = g · k (t) + z · w (t) βΞ (π − φ, 1)D̄
0 − θCc (t)− θLw (t) n

− (1 − λ) · w (t)
∫ D̄

0
βe−(π+γ)u−M(u)µ (u)

A (v, v + u)

w (v)
du (T1.5)

γ ≡
k̇ (t)

k (t)
= r − π − g +

[
n −

c (t)

w (t)

]
·

w (t)

k (t)
(T1.6)

w (t) n

k (t)
= (1 − εK)Ω0 (T1.7)

n = β ·

[
α0Ξ (π + β0, 1)R

S − α1Ξ (π + β1, 1)R
S

−
1 − εC

εC

C (v, v)

w (v)

1 + θC

1 − θL
· Ξ (π + ρ + γ − r, 2 − λ)R

S

]
(T1.8)

c (t)

w (t)
≡

C (v, v)

w (v)
· βΞ (π + ρ + γ − r, 2 − λ)D̄

0 (T1.9)

Note: The expressions (T1.4a)–(T1.4c) are valid for, respectively, 0 ≤ u ≤ S, S ≤ u ≤ R, and

R ≤ u ≤ D̄. Either g or z balances the government budget.



60 Chapter 3

where z is the policy tool assuring budget balance and φ is the parameter gov-

erning the government’s choice of redistribution scheme. The government either

gives the same lump-sum transfer to everyone (captured by setting φ = 0), redis-

tributes with a bias toward the young (φ = −1/D̄), or redistributes with a bias

toward the elderly (φ = +1/D̄). The equilibrium value for z follows from the

government budget constraint:

z · w (t) · βΞ (π − φ, 1)D̄
0

= θCc (t) + θLw (t) n + (1 − λ)
∫ t

t−D̄
µ (t − v) p (v, t) A (v, t) dv.

• Wasteful scenario. Government tax revenue is entirely spent on wasteful govern-

ment consumption and transfers are zero, i.e. g > 0 and TR (v, t) = 0 for all v

and t. The spending parameter g is endogenously determined by the govern-

ment budget constraint:

g · k (t) = θCc (t) + θLw (t) n + (1 − λ)
∫ t

t−D̄
µ (t − v) p (v, t) A (v, t) dv.

3.2.3 Balanced growth path

We need to tidy up some loose ends. We remember that output and the factor prices

can be written as:

y (t) = Ω0k (t) , w (t) n = (1 − εK) y (t) , (3.26)

where k (t) ≡ K (t) /P (t) is the per capita stock of capital and y (t) ≡ Y (t) /P (t) is

per capita output. The macroeconomic growth model has been written in a compact

format in Table 1. In various places the demographic function (3.14) has been applied.

Equation (T1.1) is obtained by using (3.11)–(3.12), (3.4), and (3.25). Equations (T1.2)–

(T1.3) follow directly from (3.9)–(3.10). The scaled asset path, (T1.4), has been derived

by solving (3.2) and features three segments, depending on the agent’s life-cycle phase.

Equation (T1.5) is the government budget equation in its most general form. Equation

(T1.6) is a slightly rewritten version of (3.24), whilst (T1.7) follows from the expressions

in (3.26). Equation (T1.8) is obtained by using (3.4) in (3.19). Finally, equation (T1.9) is
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the same as (3.18).

The model features a two-way interaction between the microeconomic decisions

and the macroeconomic outcomes. Equations (T1.1)–(T1.4) determine scaled newborn

consumption, C (v, v) /w (v), the optimal labour market entry and retirement ages, S

and R, and the life-cycle path for assets as a function of the key macroeconomic vari-

ables (γ and z) and the tax rates (θC and θL). In turn, equations (T1.5)–(T1.9) determine

equilibrium transfers or wasteful spending, z or g, the macroeconomic growth rate, γ,

the overall wage-capital ratio, w (t) /k (t), aggregate labour supply in efficiency units,

n, and the c (t) /w (t) ratio as a function of the microeconomic variables.

We parameterize the model to capture the key features of an advanced economy.

The productivity and demographic parameters1 are taken from the estimates outlined

in Chapter 2. For the set of structural parameters we assume that r = 0.06, ρ = 0.035,

π = 0.01, and δ = 0.10. Using π in combination with the demographic parameters

in (3.15) we find that β = 0.0234. The remaining parameters are used for calibration

purposes. The utility parameter, εC, has been chosen so as to induce retirement at

model age u = 42 (i.e., 60 years in biological age), the capital share, εK, has been

chosen to assure a growth rate of two percent per annum in the initial calibration, and

Ω0 is set to produce the right interest rate. We find Ω0 = 0.6661, εK = 0.2402, and

εC = 0.0935. The policy parameters {θC, θL, φ, z, g} and the wedge factor, λ, are set

according to need in the separate calibrations below. In the initial calibration annuities

are perfect, i.e. λ = 1. For an imperfect annuity market we assume that λ = 0.7.2

The main features of the benchmark calibration are reported in column (a) of Ta-

ble 2.3 Figure 3 shows some life-cycle features of the initial model calibration with

lump-sum transfers but without consumption and labour income taxes. The solid line

indicates the scenario with a perfect annuity market (λ = 1), whereas the dotted line

indicates the scenario with an imperfect annuity market (λ = 0.7). Figure 3(a) shows

1 Remember that we consider agents from age 18 onward so that a model age of 0 corresponds to a biological
age of 18.

2 These values relate to the literature as follows. Auerbach and Kotlikoff (1987, pp. 35, 50-53) assume that
r = 0.067, π = 0.01, and εK = 0.25. They assume that the intratemporal substitution elasticity between
consumption and leisure is 0.8, which is close to the unitary value used by us. The depreciation rate, δ, is in
the range reported in the empirical literature (e.g., Nadiri and Prucha, 1996, p. 49). For the annuity wedge,
1 − λ, we use the values inferred from Friedman and Warshawsky (1988) and Hansen and İmrohoroğlu
(2008).

3 Naturally, columns (a) and (b) of Table 2 correspond to column (d) in Table 2 of Chapter 2.
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that individuals enter the labour market at age 7.47, quickly increase labour supply to

full-time levels, about twenty percent of the total time endowment, and then smoothly

ease into retirement at age 42. Figure 3(b) shows that, in the presence of perfect an-

nuity markets, individuals opt for an ever increasing consumption level, whereas in

the presence of imperfect annuity markets, they choose a hump-shaped consumption

profile. The latter effect is a direct consequence of equation (3.13) where we see that

λ < 1 causes individuals to discount future consumption by a term proportional to

their instantaneous probability of death, µ (t − v). As µ (t − v) is increasing in age,

future consumption is discounted more heavily. In terms of assets, the hump-shaped

consumption profile implies a lower demand for assets to finance old-age consump-

tion. Hence, the imperfect (dotted) annuity path lies below the perfect (solid) annuity

path in Figure 3(c). The decrease in capital accumulation translates into lower growth

(see the column (b) in Table 2) because capital accumulation – including the external-

ities associated with it – constitutes the engine of endogenous growth. Finally, Figure

3(d) shows that the individual’s scaled wage path is monotonically increasing over the

life-cycle. Hence, the macroeconomic growth effect dominates the reduction in labour

productivity for ageing workers.

From the initial calibration in Figure 3 we see that the core model with imperfect

annuities captures the basic features of the empirically observed life-cycle. In par-

ticular, individuals exhibit a hump-shaped profile in consumption (although peaking

somewhat late in life), labour supply, and assets. Furthermore, from a macroeconomic

perspective, we see that the model captures the broad features of the aggregate econ-

omy. That is, the model exhibits an economic growth rate of 2% and implies a capital

efficiency parameter of 0.24. In combination, the realistic life-cycle and macroeconomic

features allow us to analyze how public policy influences the intergenerational alloca-

tion of resources and affects economic growth. In the following sections we study two

classical public policies, namely consumption and labour income taxation.

3.3 Consumption tax

Figure 3 shows the effects of a twenty percent tax on consumption expenditures (θC =

0.2). The labour income tax is assumed to be zero (θL = 0). The solid line is the
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Table 3.2. Taxation, retirement, and growth: quantitative effects

Benchmark Consumption Tax Labour Tax
(a) (b) (c) (d) (e) (f) (g)

λ = 1.0 λ = 0.7 λ = 1.0 λ = 0.7 λ = 1.0 λ = 0.7 λ = 1.0
θL = 0.225

C (v, v)

w (v)
0.1017 0.1007 0.0878 0.0867 0.0648 0.0638 0.0841

S (years) 7.47 7.40 8.22 8.11 9.00 8.81 8.26

R (years) 42.00 42.40 41.05 41.27 38.15 38.01 40.00

z 0 0.0025 0.0199 0.0216 0.0281 0.0285 0.0199

γ (%) 2 1.89 2.05 1.93 1.99 1.86 2

n 0.1101 0.1079 0.0939 0.0920 0.0703 0.0688 0.0882

c (t)

w (t)
0.1167 0.1145 0.0994 0.0976 0.075 0.073 0.0934

w (t)

k (t)
4.60 4.70 5.39 5.50 7.20 7.36 5.74

EΛ(v0, v0) −6.9474 −7.2824 −7.0474 −7.4007 −7.5224 −7.8984 −7.1808
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Figure 3.2. General equilibrium in the core model
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benchmark calibration (featuring θC = θL = 0), the dashed line is the benchmark cali-

bration with the consumption tax imposed, and the thin dotted line is the model with

the consumption tax and imperfect annuities. Figure 3(a) reveals that the consump-

tion tax prompts individuals to enter the labour market later, to spend fewer hours

working and to retire earlier. See columns (a) and (c) in Table 2 for the quantitative

effects. Figure 3(b) shows that consumption decreases at all ages in the presence of

taxes. Intuitively, the consumption tax increases the retail price of consumption goods.

Furthermore, the consumption tax acts as an implicit labour tax, hence individuals de-

crease their supply of labour. As before, imperfections on the annuity market lead to a

hump-shaped profile in consumption.

In terms of growth we see in column (c) of Table 2 that steady-state growth is

slightly higher in the presence of consumption taxes. As can be seen in Figure 3(d)

this is a direct consequence of intergenerational redistribution effects arising from the

recycling of tax revenues. Indeed, scaled net transfers to individuals are defined as

follows:

NTR (v, t)

w (v)
≡

TR (v, t)

w (v)
− θL

w(v, t)

w (v)
L (v, t)− θC

C(v, t)

w (v)
− (1 − λ) µ (t − v)

A (v, t)

w (v)
,

(3.27)

where the first element of right-hand side are the transfers received from the govern-

ment, the second and the third elements are the taxes paid, and the final term repre-

sents the part of annuity income that is lost due to the imperfection on the annuity

market. Over the life-cycle an individual may alternate between being a net recipient

of transfers and a net donor of transfers because the four elements in equation (3.27)

exhibit different life-cycle patterns – see Figure 3.

In Figure 3(d) we see that under consumption taxation, individuals are net recipi-

ents of transfers when young whilst they are net donors when old. Figure 4(d) shows

that this result follows from the rising profile of consumption. As the young are accu-

mulators of assets, and the elderly are decumulators of assets this leads to an increase

in aggregate capital accumulation, and, hence, an increase in economic growth.

If annuity market imperfections are also taken into account, we find that individu-

als start out as net recipients, are donors during mid-life, and become recipients again

later in life. Again from Figure 3(d) we see that part of the different transfer profile is
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Figure 3.3. Consumption Taxation
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due to the hump-shape in consumption induced by the annuity market imperfection.

Furthermore, from Figure 3(c) we see that the implicit tax on annuity income falls es-

pecially on the wealthy middle-aged so that the elderly and the young benefit from the

transfers whereas the middle aged pay. The growth effect, however, remains positive

as a comparison between columns (b) and (d) in Table 2 reveals.

The positive growth effect, however, does not carry over to welfare. Comparing

columns (a) and (c) (or (b) and (d)) in Table 2 reveals that individual welfare, mea-

sured as the discounted utility of the steady-state generation, decreases in the presence

of consumption taxation. From Figures 3(a) and (b) we observe that there are two op-

posing forces at work. On the one hand, welfare increases because agents supply less

labour over the life-cycle, see also the n row in Table 2. On the other hand, life-time

consumption decreases. At the aggregate level the consumption effect outpaces the

leisure effect so that welfare decreases.

To highlight the impact of intergenerational redistribution, we study the conse-

quences of alternative redistribution schemes in Figure 4. The solid line assumes that

the transfers are spread evenly (φ = 0, the case discussed above), in the dashed line

we skew the distribution of transfers toward the elderly (φ = +1/D̄) and in the dotted

line we skew the transfers toward the young (φ = −1/D̄). In Table 3 these cases cor-

responds to the second, third, and fourth column, respectively. Comparing rows (a)

and (c) (or indeed (b) and (d)) we find that the positive impact on growth disappears

for the regime in which transfers are skewed toward the elderly. In contrast, the pos-

itive impact is enhanced if transfers are skewed toward the young. This observation

allows us to conclude that the increase in the growth rate arises from the intergener-

ational redistribution effect that channels funds from the decumulating elderly to the

accumulating young.

A similar effect is found in Heijdra and Ligthart (2000, p. 697) where it is shown

that a consumption tax may lead to a higher steady-state capital stock; the exogenous

growth equivalent of a higher growth rate. However, Heijdra and Ligthart dismiss

this possibility as empirically unlikely because it would require an unreasonably high

instantaneous probability of death. The discrepancy between their results and ours

arises from the fact that they assume a constant instantaneous probability of death

whereas we assume an age-dependent one.
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Figure 3.4. Alternative transfers
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Table 3.3. Economic growth*

{λ, θC, θL} φ = 0 φ = + 1
D̄

φ = − 1
D̄

z = 0

(a) {1, 0, 0} 2.00 2.00 2.00 2.00
(b) {0.7, 0, 0} 1.89 1.88 1.90 1.69
(c) {1, 0.2, 0} 2.05 1.95 2.14 −1.20
(d) {0.7, 0.2, 0} 1.93 1.81 2.03 −1.53
(e) {1, 0, 0.4} 1.99 1.72 2.24 −2.60
(f) {0.7, 0, 0.4} 1.86 1.57 2.13 −2.96

*Cell entries show the percentage of economic growth per annum in the respective scenario.
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To emphasize the importance of government transfers in general, we conclude

this section with a study of the case in which the government pursues the wasteful

scenario, i.e. tax revenue is spent entirely on wasteful government expenditure (see

above). The growth effects are reported in the final column of Table 3. The compar-

ison of row (a) and (c) (or (b) and (d)) immediately reveals the detrimental growth

effects of wasteful government expenditures. For consumption taxation and annuity

market imperfection the growth rate drops from 2 percent in the initial calibration to

−1.20 percent and −1.53 percent for the pure taxation and the combined case, respec-

tively. These detrimental effects derive from the fact that the government now not only

distorts the market through taxation but also drains resources from the economy for

wasteful purposes.

3.4 Labour income tax

In Figure 6 we study the impact of a forty percent tax on labour income (θL = 0.4). The

consumption tax is assumed to be zero (θC = 0). As before, the solid lines represent the

benchmark case, the dashed line the scenario with the labour income tax alone, and the

dotted line the taxes and imperfect annuities case. Figure 6(a) shows that the labour

tax induces individuals to postpone labour market entry, to work less during their

active career and to retire early. Compare the columns (a) and (e) in Table 2 for the

quantitative effects. In Figure 5(b) we see that the tax decreases initial consumption

and that the annuity market imperfection causes the familiar hump-shaped profile.

Finally, Figure 5(c) reveals that agents accumulate less debt early on in life but also

substantially fewer assets later on in life.

From an intuitive point of view the labour tax decreases the benefits from work, so

that individuals reduce their labour effort, both on the intensive and the extensive mar-

gin. The labour tax also acts as an implicit tax on consumption, hence consumption

is reduced in a fashion akin to the imposition of the explicit consumption tax stud-

ied above. Even though the consumption and labour tax act as each others implicit

equivalents, the standard labour-consumption tax equivalence result (Atkinson and

Stiglitz, 1980) no longer holds. The failure of the equivalence results is also derived

in Heijdra and Ligthart (2000) where it is shown that the life-cycle paths of consump-
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Figure 3.5. Labour Taxation
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tion and labour induced by finite lives lead to asymmetric tax incidence of labour and

consumption. In our model the equivalence result also fails because individuals retire.

In terms of growth we find an asymmetry between consumption and labour taxes,

cf. columns (c) and (e) in Table 2. Whereas consumption taxes lead to a slight increase

in growth, labour taxes lead to a slight decrease in growth. From Figure 5(d) we see

that this is a consequence of the different intergenerational redistribution structure.

Where the consumption tax induced redistribution from the decumulating elderly to

the accumulating young, the labour tax induces redistribution from the working to the

idle. Because idleness is an attribute of the elderly, the labour tax causes a redistri-

bution from the accumulating workers to the decumulating retired, hence depressing

growth.

In terms of welfare we find a much more pronounced effect for labour-income taxa-

tion than for consumption taxation, that is, whereas the welfare effect of a consumption

tax was relatively mild, the welfare effect of a labour-income tax is substantial. Com-

paring Figures 5(a) and (b) reveals once more that the positive welfare effect resulting

from a decrease in labour supply is outpaced by the negative effect resulting from the

drop in consumption.

The comparative effects of consumption and labour-income taxation on growth

and welfare suggest that switching from labour taxation to consumption taxation may

be growth as well as welfare enhancing. Indeed, if we study the impact of a labour tax

that is revenue neutral with respect to the consumption tax (compare columns (c) and

(g)) we find that both in terms of growth and welfare the consumption tax dominates

the labour tax.

In rows (e)–(f) of Table 3 we study the consequences of alternative redistributions

schemes once more. In accordance with the variational exercise depicted in Figure 5,

we find that a redistribution scheme skewed toward the elderly has detrimental effects

on economic growth, whereas a redistribution scheme skewed toward the young has

advantageous effects on economic growth. Notice especially, that the positive growth

effect of a redistribution skewed toward the young outpaces the positive effect found

under consumption taxes. From the entries for z in Table 2 we see that is because the

pie to be redistributed is larger under labour taxation.

Finally, in rows (e)–(f) of the last column of Table 3 we repeat the analysis of a waste-
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ful government for the case of labour income taxes. As before we find that wasteful

government expenditure causes huge detrimental effects on economic growth. In par-

ticular, for labour income taxes and annuity market imperfection the growth rate drops

from 2% to −2.60% and −2.96% for the pure taxation and combined case, respectively.

In accordance with the consumption taxation case the detrimental effect is driven by

the government’s drain of productive resources. The absolute magnitude of the effect

is bigger than in the consumption taxation case because government revenue derived

from labour taxation is larger.

3.5 Conclusions

In this chapter we have studied two classical themes in dynamic public finance theory;

consumption and labour income taxation. In the analysis we have paid special atten-

tion to alternative modes of redistributing the proceeds of taxation. That is we have

analyzed three systems that either redistribute government revenue evenly across all

individuals or with a bias toward the young or the old. Finally, to emphasize the im-

portance of redistribution of government income in general we have also analyzed

a wasteful government that uses the proceeds from taxation for useless consumptive

purposes.

We have found that both consumption and labour income taxation lead to an in-

crease in economic growth if the proceeds are redistributed with a bias toward the

young. This is due to the beneficial intergenerational redistribution effects that chan-

nel resources from the dissaving elderly to the saving young. In addition, we have

found that the two taxes lead to lower growth if proceeds are redistributed toward the

elderly. In this case, the intergenerational redistribution effect is negative because re-

sources flow from the saving young to the dissaving elderly. For the case of lump-sum

transfers we have found that growth increases slightly for consumption taxation and

decreases slightly for labour income taxation. The differing consequences of the two

taxes are, again, due to intergenerational redistribution effects. The consumption tax

redistributes funds from the elderly, who are strong consumers and thus pay the lion’s

share of tax, to the young, who barely consume but save a lot. The labour income

tax, on the other hand, redistributes funds between the working and the idle. Idleness
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being an attribute of the retired, the tax induces redistribution from saving workers

to consuming retirees. Finally, we have found that wasteful government expenditures

have strong detrimental effects on growth. Besides distorting the economy through

the taxation, the government also drains productive resources.

Having studied various aspects of labour-income and consumption taxation we

now turn our attention to the role of the pension system. That is, in the next chapter

we modify the model from Chapter 2 to study how various public pension designs

moderate the impact of a demographic shock.





Chapter 4

Pensions and ageing∗

* This chapter is based on Heijdra and Mierau (2011).
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4.1 Introduction

The coming generational storm is arguably the strongest tempest against which cur-

rent and future politicians have to sail. The policy-panacea, however, has not yet been

developed and, maybe even worse, there is no consensus on what the economic con-

sequences of an ageing population actually are. Hence, in this chapter we use a sim-

plified version of the model developed in Chapter 2 to study the macroeconomic con-

sequences of an increase in old age mortality. We introduce a simple Pay-As-You-Go

(PAYG) pension system, which may either be run on a defined benefit (DB) or a de-

fined contribution (DC) basis. In the former case the replacement rate acts as a policy

variable whereas in the latter case the contribution rate is the policy variable. Further-

more, and in contrast to the previous chapters, we let retirement be exogenous, which

allows us to consider the retirement age as a policy variable.

We find that, in principle, ageing is good for economic growth because it increases

the incentive for individuals to save. However, if a defined benefit system is in place

the higher contributions necessary to finance the entitlement of the additional pension-

ers will reduce individual savings and thereby dampen the growth increase following

a longevity shock. In order to circumvent this reduction in growth the government

could opt to introduce a defined contribution system in which the benefits are ad-

justed downward to accommodate the increased dependency ratio. Surprisingly, we

find that if the government increases the retirement age such that the old age depen-

dency ratio remains constant economic growth drops compared to both the defined

benefit and the defined contribution system. This is due to an adverse savings effect

following from the shortened retirement period.

The remainder of this chapter is set-up as follows. The next section introduces the

model and discusses how we feed in a realistic life-cycle. Section 3 analyses the steady-

state consequences of ageing and provides some policy recommendations. The final

section concludes.



Pensions and ageing 77

4.2 Model

We use the model developed in Chapter 2 and extend it to include a public pension

system on the government side but simplify it by making the retirement decision ex-

ogenous on the consumer side. We refer the reader to Chapter 2 for a complete de-

scription of the model and use the remainder of this section to outline the model and

its the extensions.

4.2.1 Consumers

Individual behaviour

We develop the individual’s decision rules from the perspective of birth. Expected

lifetime utility of an individual born at time v is given by:

EΛ (v, v) ≡
∫ v+D̄

v

C(v, τ)1−1/σ − 1

1 − 1/σ
· e−ρ(τ−v)−M(τ−v)dτ, (4.1)

where C (v, τ) is consumption, σ is the intertemporal substitution elasticity (σ > 0), ρ

is the pure rate of time preference (ρ > 0), D̄ is the maximum attainable age for the

agent, and e−M(τ−v) is the probability that the agent is still alive at some future time

τ (≥ v). Here, M(τ − v) ≡
∫ τ−v

0 µ(s)ds stands for the cumulative mortality rate and

µ (s) is the instantaneous mortality rate of an agent of age s.

The agent’s budget identity is given by:

Ȧ(v, τ) = rA (τ − v) A(v, τ) + w(v, τ)L (v, τ)− C(v, τ) + PR (v, τ) + TR (v, τ) , (4.2)

where A (v, τ) is the stock of financial assets, rA (τ − v) is the age-dependent annu-

ity rate of interest rate, w (v, τ) ≡ E (τ − v)w (τ) is the age-dependent wage rate,

E (τ − v) is exogenous labour productivity, L (v, τ) is labour supply, PR(v, τ) are pay-

ments received from the public pension system, and TR (v, τ) are lump-sum transfers

(see below). Labour supply is exogenous and mandatory retirement takes place at age
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R. Since the time endowment is unity, we thus find:

L (v, τ) =





1 for 0 ≤ τ − v < R

0 for R ≤ τ − v < D̄

. (4.3)

There is a simple PAYG pension system which taxes workers and provides benefits

to retirees:

PR (τ) =




−θw (v, τ) for 0 ≤ τ − v < R

ζw (τ) for R ≤ τ − v < D̄

(4.4)

where w(τ) is the economy wide wage rate, θ (0 < θ < 1) is the contribution rate and ζ

is the benefit rate (ζ > 0). Under a DC system, θ is exogenous and ζ adjusts to balance

the budget (see below). The opposite holds under a DB system. Finally, we postulate

that lump-sum transfers are age-independent:

TR (v, τ) = z · w (τ) , (4.5)

where z is endogenously determined via the balanced budget requirement of the re-

distribution scheme (see below).

In order to replicate the salient features of the individual life-cycle we add a num-

ber of distinguishing features to our model. As these features have been discussed at

length in Chapters 2-3 we suffice by stating them here and referring the reader to the

previous chapters.

Imperfect annuity markets: The annuity rate of interest facing the agent is given by:

rA (τ − v) ≡ r + λµ (τ − v) , (for 0 ≤ τ − v < D̄). (4.6)

where r is the real interest rate and λ is a parameter (0 < λ ≤ 1) indicating the degree

of imperfection on the annuity market.

Age-dependent productivity: Labour productivity is hump-shaped over the life-cycle.

A useful parameterization of the productivity profile is:

E (t − v) = α0e−ζ0(t−v) − α1e−ζ1(t−v), (for 0 ≤ t − v ≤ D̄), (4.7)



Pensions and ageing 79

where αi and ζ i are the parameters governing the curvature of the productivity profile

(see Box 2.1 for details).

Age-dependent mortality: Individual mortality increases over the life-cycle. We as-

sume that e−M(t−v) takes the following useful functional form:

e−M(t−v) ≡
η0 − eη1(t−v)

η0 − 1
, (for 0 ≤ t − v ≤ D̄), (4.8)

where η0 > 1 and η1 > 0 are parameters (see Box 2.2 for details).

The agent chooses time profiles for C (v, τ) and A (v, τ) (for v ≤ τ ≤ v + D̄) in

order to maximize (4.1), subject to (i) the budget identity (4.2), (ii) a transversality

condition, A (v, v + D̄) = 0, and (iii) the initial asset position at birth, A (v, v) = 0. The

optimal consumption profile for a vintage-v individual of age u (0 ≤ u ≤ D̄) is fully

characterized by the following equations:

C(v, v + u) = C(v, v) · eσ[(r−ρ)u−(1−λ)M(u)], (4.9)

C (v, v)

w (v)
=

1
∫ D̄

0 e(σ−1)[rs+λM(s)]−σ[ρs+M(s)]ds
·

H (v, v)

w (v)
, (4.10)

H (v, v)

w (v)
= (1 − θ)

∫ R

0
E (s) e−(r−g)s−λM(s)ds + ζ

∫ D̄

R
e−(r−g)s−λM(s)ds

+z
∫ D̄

0
e−(r−g)s−λM(s)ds. (4.11)

The intuition behind these expressions is as follows. Equation (4.9) is best understood

by noting that the consumption Euler equation resulting from utility maximization

takes the following form:

Ċ (v, τ)

C (v, τ)
= σ · [r − ρ − (1 − λ) µ (τ − v)] . (4.12)

By using this expression, future consumption can be expressed in terms of consump-

tion at birth as in (4.9). In the absence of an annuity market imperfection (λ = 1),

consumption growth only depends on the gap between the interest rate and the pure

rate of time preference. In contrast, with imperfect annuities, individual consumption

growth is negatively affected by the mortality rate, a result first demonstrated for the

case with λ = 0 by Yaari (1965, p. 143).
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Equation (4.10) shows that scaled consumption of a newborn is proportional to

scaled human wealth. Finally, equation (4.11) provides the definition of human wealth

at birth. The first term on the right-hand side represents the present value of the time

endowment during working life, using the growth-corrected annuity rate of interest

for discounting. The second term on the right-hand side denotes the present value

of the pension received during retirement. Finally, the third term on the right-hand

side of (4.11) is just the present value of transfers arising from the annuity market

imperfection.

The asset profiles accompanying the optimal consumption plans are given for a

working-age individual (0 ≤ u < R) by:

A (v, v + u)

w (v)
e−ru−λM(u) = (1 − θ)

∫ u

0
E (s) e−(r−g)s−λM(s)ds + z

∫ u

0
e−(r−g)s−λM(s)ds

−
C(v, v)

w (v)

∫ u

0
e(σ−1)[rs+λM(s)]−σ[ρs+M(s)]ds, (4.13)

and for a retiree (R ≤ u ≤ D̄) by:

A (v, v + u)

w (v)
e−ru−λM(u) =

C(v, v)

w (v)

∫ D̄

u
e(σ−1)[rs+λM(s)]−σ[ρs+M(s)]ds

− (ζ + z)
∫ D̄

u
e−(r−g)s−λM(s)ds. (4.14)

Aggregate household behaviour

In general, we can define per-capita average values in general terms as:

x (t) ≡
∫ t

t−D̄
p (v, t) X (v, t) dv, (4.15)

where X (v, t) denotes the variable in question at the individual level, x (t) is the per

capita average value of that same variable, and p (v, t) ≡ βe−π(t−v)−M(t−v) are the

cohort weights (see Box 2.2 for details).

Per capita aggregate household behaviour is summarized by the following expres-

sions:

c (t)

w (t)
= β

C(v, v)

w (v)

∫ D̄

0
eσ[(r−ρ)s−(1−λ)M(s)]−(π+g)s−M(s)ds, (4.16)
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n (t) = n ≡ β
∫ R

0
E (s) e−πs−M(s)ds, (4.17)

ȧ (t) = (r − π) a (t) + w (t) n (t)− c (t)

+

[
ζ
∫ D̄

R
βe−πs−M(s)ds − θ

∫ R

0
βE (s) e−πs−M(s)ds

]
w (t)

+

[
(1 − λ)

∫ D̄

0
βe−(g+π)s−M(s)µ (s)

A (v, v + s)

w (v)
ds − z

]
w (t) . (4.18)

Equation (4.16) relates the macroeconomic consumption-wage ratio to the optimally

chosen scaled consumption level by newborns. Since this ratio is time-invariant, per

capita consumption grows at the macroeconomic growth rate g. Equation (4.17) shows

that aggregate per capita labour supply (in efficiency units) is a time-invariant con-

stant. Finally, the growth rate in per capita financial assets is given in equation (4.18).

This expression will be discussed in more detail below.

4.2.2 Loose ends

We assume that the PAYG pension scheme is run on a balanced-budget basis. In view

of (4.7), (4.4) and the demographic steady state condition this furnishes the following

budget constraint:

ζw (t)
∫ D̄

R
βe−πs−M(s)ds = θw (t)

∫ R

0
βE (s) e−πs−M(s)ds, (4.19)

where the left-hand side stands for pension payments to retirees and the right-hand

side represents pension contributions by workers. The mandatory retirement age R is

exogenous. Under the assumption of a DC system, θ is also exogenous and ζ adjusts

to balance the budget. The opposite holds under a DB system. In view of (4.19), the

PAYG system does not feature in the expression for aggregate asset accumulation, i.e.

the second line of (4.18) is zero.

Excess profits of annuity firms can be written as follows:

EP (v, t) ≡ (1 − λ)
∫ t

t−D̄
p (v, t) µ (t − v) A (v, t) dv. (4.20)

The integral on the right-hand side represents per capita annuitized assets of all indi-

viduals that die in period t. This is the total revenue of annuity firms, of which only a
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fraction λ is paid out to surviving annuitants. The remaining fraction, 1 − λ, is excess

profit which is taxed away by the government and disbursed to all households in the

form of lump-sum transfers, i.e. EP (v, t) = TR (v, t). Using (4.5) and (4.20) we find the

implied expression for z:

z = (1 − λ)
∫ D̄

0
βe−(g+π)u−M(u)µ (u)

A (v, v + u)

w (v)
du. (4.21)

Just as for the PAYG system, the redistribution of excess profits of annuity firms also

debudgets from the asset accumulation equation, i.e. the third line in (4.18) is also zero.

In the absence of government bonds, the capital market equilibrium condition is

given by A (t) = K (t) or, in per capita average terms, by:

a (t) = k (t) , (4.22)

where k (t) ≡ K (t) /P (t) is the per capita stock of capital. As before we easily find:

y (t) = Ω0k (t) , (4.23)

w (t) n (t) = (1 − ε) y (t) , (4.24)

where y (t) ≡ Y (t) /P (t) is per capita output. From (4.18)–(4.19), (4.21) and (4.22) we

can derive the expression for the macroeconomic growth rate:

g ≡
k̇ (t)

k (t)
= r − π +

[
n (t)−

c (t)

w (t)

]
w (t)

k (t)
. (4.25)

For convenience, the key equations comprising the general equilibrium model have

been gathered in Table 1. Equations (T1.1)–(T1.2), (T1.3a)–(T1.3b), (T1.4)–(T1.6), (T1.8)–

(T1.9) restate, respectively, (4.10)–(4.11), (4.13)–(4.14), (4.19), (4.21), (4.25), (4.17), and

(4.16). Equation (T1.7) is obtained by combining (4.23) and (4.24) and noting (4.17).

The model features a two-way interaction between the microeconomic decisions

and the macroeconomic outcomes. Indeed, conditional on the macroeconomic vari-

ables, equations (T1.1)–(T1.3) determine scaled newborn consumption and human

wealth, C (v, v) /w (v) and H (v, v) /w (v) as well as the age profile of scaled assets

A (v, v + u) /w (v). Conditional on these microeconomic variables, equations (T1.4)–
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(T1.9) determine equilibrium pension payments and transfers, ζ and z, the macroeco-

nomic growth rate, g, the overall wage-capital ratio, w (t) /k (t), aggregate labour sup-

ply, n, and the c (t) /w (t) ratio.

4.2.3 The core model

For the core model we postulate the existence of perfect annuities (PA, with λ = 1)

and parameterized it as follows. The productivity and demographic parameters1 are

taken from the estimates outlined in Chapter 2. We assume that the rate of population

growth is half of one percent per annum (π = 0.005). For the estimated demographic

process, the demographic steady-state yields a birth rate equal to β = 0.0204. Since

µ̄ ≡ β − π, this implies that the average mortality rate is µ̄ = 0.0154. The old-age

dependency ratio equals 22.92%. We model an economy with a steady-state capital-

output ratio of 2.5, which is obtained by setting Ω0 = 0.4. The interest rate is five

percent per annum (r = 0.05), the capital depreciation rate is seven percent per annum

(δ = 0.07), and the efficiency parameter of capital is set at ε = 0.3. The steady-state

growth rate is set equal to two percent per annum (g = 0.02). For the intertemporal

substitution elasticity we use σ = 0.7, a value consistent with the estimates reported by

Attanasio and Weber (1995). The rate of pure time preference is used as a calibration

parameter, yielding a value of ρ = 0.0112.

Regarding the PAYG pension system we assume that the mandatory retirement age

is set at R = 47 (corresponding with 65 in biological years) and that the pension contri-

bution rate is seven percent of wage income, i.e. θ = 0.07 which roughly corresponds

with the Dutch pension system. The implied pension benefit is determined in general

equilibrium.

Table 4.2(a) reports the main features of the initial steady-state growth path. With

perfect annuities, there are no excess profits of annuity firms and thus no transfers,

i.e. z = 0 in Table 4.2(a). Note also that at retirement age R a vintage-v agent re-

ceives ζw (v + R) in the form of a pension whereas the last-received wage for this

agent equals E (R)w (v + R). The replacement rate is thus equal to ζ/E (R) = 0.3189.

We visualize the life-cycle profiles for a number a key variables in Figure 1. The

1 Remember that we consider agents from age 18 onward so that a model age of 0 corresponds to a biological
age of 18.
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Table 4.1. The model

(a) Microeconomic relationships:

C (v, v)

w (v)
=

1
∫ D̄

0 e−(1−σ)[rs+λM(s)]−σ[ρs+M(s)]ds
·

H (v, v)

w (v)
(T1.1)

H (v, v)

w (v)
= (1 − θ)

∫ R

0
E (s) e−(r−g)s−λM(s)ds + ζ

∫ D̄

R
e−(r−g)s−λM(s)ds

+ z
∫ D̄

0
e−(r−g)s−λM(s)ds (T1.2)

A (v, v + u)

w (v)
e−ru−λM(u) = (1 − θ)

∫ u

0
E (s) e−(r−g)s−λM(s)ds + z

∫ u

0
e−(r−g)s−λM(s)ds

−
C(v, v)

w (v)

∫ u

0
e−(1−σ)[rs+λM(s)]−σ[ρs+M(s)]ds (T1.3a)

=
C(v, v)

w (v)

∫ D̄

u
e−(1−σ)[rs+λM(s)]−σ[ρs+M(s)]ds

− (ζ + z)
∫ D̄

u
e−(r−g)s−λM(s)ds (T1.3b)

(b) Macroeconomic relationships:

ζ = θ ·

∫ R
0 βE (s) e−πs−M(s)ds
∫ D̄

R βe−πs−M(s)ds
(T1.4)

z = (1 − λ)
∫ D̄

0
βe−(g+π)u−M(u)µ (u)

A (v, v + u)

w (v)
du (T1.5)

g ≡
k̇ (t)

k (t)
= r − π +

[
n −

c (t)

w (t)

]
w (t)

k (t)
(T1.6)

w (t) n

k (t)
= (1 − ε)Ω0 (T1.7)

n = β
∫ R

0
E (s) e−πs−M(s)ds (T1.8)

c (t)

w (t)
= β

C(v, v)

w (v)

∫ D̄

0
eσ[(r−ρ)s−(1−λ)M(s)]−(π+g)s−M(s)ds (T1.9)

Definitions: Endogenous are C(v, v)/w(v), H(v, v)/w(v), A(v, v + u)/w(v), ζ, z, g, n,

w(t)/k(t), and c(t)/w(t). Parameters: R retirement age, θ pension contribution rate, birth

rate β, aggregate mortality rate µ̄, population growth rate π ≡ β − µ̄, imperfection annu-

ities λ, rate of time preference ρ, capital coefficient in the technology ε, scale factor in the

technology Ω0. The interest rate is r ≡ εΩ0 − δ, where δ is the depreciation rate of capital.
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Table 4.2. Quantitative effects

(a) (b) (c) (d) (e) (f) (g) (h)
Case: PA IA PA IA PA IA PA IA

Core cases DC DB RA
C (v, v)

w (v)
0.8534 0.8609 1.0784 1.0785 0.9078 0.9053 0.9329 0.9369

H (v, v)

w (v)
26.5646 27.0207 36.0229 36.2942 30.3246 30.4653 31.1617 31.5282

g (%) 2.00 1.91 3.36 3.27 2.79 2.68 2.39 2.30

n 0.9675 0.9675 0.8212 0.8212 0.8212 0.8212 0.9589 0.9589

w (t)

k (t)
0.2894 0.2894 0.3410 0.3410 0.3410 0.3410 0.2920 0.2920

c (t)

w (t)
1.0538 1.0570 0.8692 0.8720 0.8861 0.8893 1.0482 1.0514

ζ 0.3632 0.3632 0.1824 0.1824 0.3632 0.3632 0.3632 0.3632

z 0.0200 0.0142 0.0131 0.0185

θ 0.1394 0.1394

R + 18 75.3 75.3

Notes. PA stands for perfect annuities (λ = 1) and IA denotes imperfect annuities (λ = 0.7). Column (a) is the core model. Column (b) shows

the effects of the annuity market imperfection in the core model. Columns (c)–(d) show the effects of a demographic shock under a DC pension

system. Columns (e)–(f) show the effects under a DB system. In this scenario the tax rate θ adjusts to keep ζ at its pre-shock level. Columns

(g)–(h) show the effects under a retirement age (RA) scenario in which θ and ζ are kept at their pre-shock levels and R is adjusted.
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solid lines are associated with the core model featuring perfect annuities. For ease

of interpretation, the horizontal axes report biological age, u + 18. Figure 1(a) shows

that with perfect longevity insurance consumption rises monotonically over the life

cycle. This counterfactual result follows readily from (4.12) which for λ = 1 simplifies

to Ċ (v, τ) /C (v, τ) = σ (r − ρ). Figure 1(b) depicts the age profile of scaled financial

assets. At first the agent is a net borrower, i.e. a buyer of life-insured loans. Thereafter

annuity purchases are positive and the profile of assets is bell-shaped. In the absence

of a bequest motive, the agent plans to run out of financial assets at the maximum age

D̄. Figure 1(c) shows the profile of scaled wages over the life cycle. Despite the fact

that individual labour productivity itself is bell-shaped, wages increase monotonically

as a result of ongoing economic growth. Finally, in Figure 1(d) we illustrate the profile

for scaled pension receipts. During the working career these payments are negative

and proportional to scaled wages, whilst they are positive and proportional to the

economy-wide wage rate during retirement.

Despite its simplicity, the model captures some of the main stylized facts regarding

life cycles. Indeed, as is documented by inter alia Huggett (1996), in real life finan-

cial assets typically display a hump-shaped profile and remain non-negative in old

age. The model also features a realistic age profile for labour supply. Indeed, as is

pointed out by McGrattan and Rogerson (2004) (for the United States), labour supply

is constant and age-invariant for most of working life and tapers off rapidly near the

retirement age.

In contrast, the model does not provide a realistic profile for consumption. In

the core model the age profile for consumption is monotonically increasing, whereas

it is hump-shaped in reality. See, for example, Gourinchas and Parker (2002) and

Fernández-Villaverde and Krueger (2007) for evidence on the US, and Alessie and de

Ree (2009) for a recent study using Dutch data.

Referring to the consumption Euler equation (4.12) it is clear that an annuity mar-

ket imperfection can account for a hump-shaped pattern of consumption. Indeed,

with 0 < λ < 1 it follows from (4.12) and Figure 1(b) that consumption growth is

positive during the early phase of life because the mortality rate is low, i.e. r − ρ >

(1 − λ) µ (u). Toward the end of life, however, the instantaneous death probability

rises sharply, the inequality is reversed, and the optimal consumption profile is down-
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ward sloping.2

In order to quantify and visualize the effects of an annuity market imperfection

we recompute the general equilibrium of the model using the structural parameters

mentioned above but setting λ = 0.7. This degree of annuity market imperfection is in

the order of magnitude found by Friedman and Warshawsky (1988, p. 59). Table 2(b)

reports the quantitative implications of the annuity market imperfection. Two features

stand out. First, in the presence of imperfect annuities excess profits of annuity firms

are positive and transfers are thus strictly positive (z = 0.0200). Each surviving agent

thus receives about two percent of the macroeconomic wage rate in each period in the

form of transfers. Second, the macroeconomic growth rate falls by nine basis points,

from 2 percent to 1.91 percent per annum.

The ultimate effect on newborn consumption of the change in λ depends on the

interplay between the human wealth effect and the propensity effect. Recall from

(T1.1)–(T1.2) that C (v, v) = ∆ · H (v, v) where the propensity to consume is defined

as:

∆ ≡
1

∫ D̄
0 e−(1−σ)[rs+λM(s)]−σ[ρs+M(s)]ds

. (4.26)

It is easy to show that with 0 < σ < 1, the propensity to consume out of human wealth

falls as a result of the reduction in λ:

d∆

dλ
= (1 − σ)∆2 ·

∫ D̄

0
M (s) e−(1−σ)[rs+λM(s)]−σ[ρs+M(s)]ds > 0. (4.27)

The partial derivative of scaled human wealth with respect to λ is given by:

∂

∂λ

H (v, v)

w (v)
= − (1 − θ)

∫ R

0
M (s) E (s) e−(r−g)s−λM(s)ds − ζ

∫ D̄

R
M (s) e−(r−g)s−λM(s)ds

−z
∫ D̄

0
M (s) e−(r−g)s−λM(s)ds < 0. (4.28)

A decrease in λ results in a reduction in the annuity rate of interest at all age levels

and thus an increase in human wealth due to less severe discounting of non-asset in-

2 Consumption peaks at age û, which is defined implicitly by µ(û) = (r − ρ) / (1 − λ). Since µ′ (u) > 0 we
find that dµ̂/dλ > 0 and dµ̂/d (r − ρ) > 0. Hence, the smaller is λ or r − ρ, the lower is the age at which
consumption peaks. Note that whereas λ can help determine the location of the kink, the intertemporal
substitution elasticity σ cannot do so.
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come streams. Human wealth is also affected by two of the macroeconomic variables,

namely transfers z and the growth rate g (note that n, ζ, and w (t) /k (t) are not affected

by λ). Scaled human wealth is boosted as a result of the transfers:

∂

∂z

H (v, v)

w (v)
=

∫ D̄

0
e−(r−g)s−λM(s)ds > 0, (4.29)

but it is reduced by the decrease in the growth rate:

∂

∂g

H (v, v)

w (v)
= (1 − θ)

∫ R

0
sE (s) e−(r−g)s−λM(s)ds + ζ

∫ D̄

R
se−(r−g)s−λM(s)ds

+z
∫ D̄

0
se−(r−g)s−λM(s)ds > 0. (4.30)

The results in Table 2(b) confirm that for our parameterization scaled consump-

tion and human wealth both increase, i.e. the effects in (4.28) and (4.29) dominate the

combined propensity effect (4.27) and growth effect (4.30).

In Figure 1 the dashed lines depict the life-cycle profiles associated with the model

featuring imperfect annuities. Scaled consumption is hump-shaped but peaks at a

rather high age.3 The profiles for scaled financial assets, wages, and pension payments

are all very similar to the ones for the core model.

4.3 Ageing: the big picture

In this section we put our model to work on the big policy issue of demographic

change. Population ageing remains one of the key issues in economic policy in the

Netherlands. During the 2010 Dutch parliamentary election campaign numerous par-

ties went so far as to call future policy on pensions and the retirement age a breaking

point for the post-electoral coalition scramble. In this section we look at the big pic-

ture and study the effect of ageing and demographic change on the steady-state rate

of economic growth of a country.4

3 Bütler (2001) and Hansen and İmrohoroğlu (2008) also find that the hump occurs too late in life. Alessie
and de Ree (2009, p. 113) decompose Dutch consumption into durables and non-durables. They find that
non-durable consumption peaks at age 45 whereas durable consumption reaches its maximum at about age
41.

4 For an accessible survey of the literature on the topic of population ageing and economic growth, see
Bloom et al. (2008). Recent contributions using the endogenous growth framework include Fougère and
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Figure 4.1. Life-cycle profiles and the role of annuity imperfections
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We start our analysis with some stylized facts for the Netherlands.5 In the period

2005-10 the crude birth rate is about β = 1.13% per annum whereas for 2035-40 it is

projected to change to β = 1.05% per annum. The population growth rates are, respec-

tively, π = 0.41% per annum for 2005-10 and π = −0.01% per annum 2035-40. Finally,

the old-age dependency ratio is, respectively 23% in 2010 and 46% in 2040. We wish

to simulate our model using a demographic shock which captures the salient features

of these stylized facts. Since we restrict attention to steady-state comparisons in this

paper, we make the strong assumption that the country finds itself in a demographic

steady state both at present and in 2040.

4.3.1 A demographic shock

The demographic shock that we study is as follows.6 First, we assume that the popula-

tion growth rate changes from π0 = 0.5% to π1 = 0% per annum. Second, we use our

estimated demographic process (4.8) but change the η1 parameter in such a way that an

old-age dependency ratio of 46% is obtained. Writing e−Mi(u) ≡ (η̂0 − eη1,iu) / (η̂0 − 1)

the old-age dependency ratio can be written as:

dr
(

πi, η1,i

)
≡

∫ D̄i
47 e−πis−Mi(s)ds
∫ 47

0 e−πis−Mi(s)ds
, (4.31)

where D̄i ≡
(

1/η1,i

)
ln η0. Using this expression we find that η1 changes from η1,0 =

η̂1 = 0.0680 to η1,1 = 0.0581. The associated values for the crude birth rate are obtained

by imposing the suitably modified demographic steady-state condition. We find that β

changes in the model from β0 = 0.0204 to β1 = 0.0151. Figure 2(a) shows that the new

instantaneous mortality profile shifts to the right. Figure 2(b) illustrates the change

in the population composition. In the new steady state, the population distribution

features less mass at lower ages and more at higher ages, i.e. the population pyramid

becomes narrower and higher.

Mérette (1999), Futagami and Nakajima (2001), Heijdra and Romp (2006), and Prettner (2009).
5 These figures are taken from United Nations, World Population Prospects: The 2008 Revision Population Data

Base, http://esa.un.org/unpp. We use data for the medium variant.
6 In this chapter we focus on demographic changes induced by a change in the mortality rate. When we

return to the analysis of demographic changes in Chapter 6 we study how demographic changes induced
by a change in the birth rate differ from demographic changes induced by a change in the mortality rate.
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The effect on the economic growth rate of the demographic shock depends criti-

cally on the type of pension system. We consider three scenarios. In the first scenario

the pension system is DC, the contribution rate and retirement age are kept constant

(θ0 = 0.07 and R0 = 47), pension payments to the elderly are reduced to balance the

budget of the PAYG system. Columns (c)–(d) in Table 2 report the results for the two

cases with perfect (PA) and imperfect annuities (PA). Since the effects are qualitatively

the same for PA and IA, we restrict attention to the latter case. Comparing columns

(b) and (d) several features stand out. First, the ageing shock has a large effect on the

supply of (efficiency units of) labour, i.e. n falls by more than fifteen percent. This

is an obvious consequence of the fact that the population proportion of working-age

persons declines. Second, the pension payments to retirees are almost halved. Third,

notwithstanding the decrease in pensions, scaled consumption and human wealth at

birth both increase dramatically. More people expect to survive into retirement and,

once retired, the period of retirement is also increased. Fourth, the macroeconomic

growth rate increases dramatically, from 1.91% to 3.27% per annum. The intuition be-

hind this strong growth effect can be explained with the aid of Figure 3. The solid lines

represents the core case of Table 2(b) and the dashed lines illustrate the results from

Table 2(d). Following the demographic shock scaled consumption is uniformly higher

and peaks at a later age. Scaled financial assets are somewhat lower during youth but

much higher thereafter. As Figure 3(b) shows there is a huge savings response which

explains the large increase in the macroeconomic growth rate. In conclusion, of the

main growth channels identified by Bloom et al. (2008, p. 2), labour supply falls (and

thus retards growth) but the capital accumulation effect is so strong as to lead to a

strong positive effect of longevity on economic growth.

In the second scenario the pension system is DB, the pension payments and retire-

ment age are kept constant (ζ0 = 0.3632 and R0 = 47), and pension contributions by

the young are increased to balance the budget of the PAYG system. Columns (e)–(f) in

Table 2 give the results for this case. Comparing columns (b), (d) and (f) the following

features stand out. First, the contribution rate increase is quite substantial, it almost

doubles from θ0 = 0.07 to θ1 = 0.1394. Second, though scaled consumption, scaled

human wealth, and the economic growth rate are higher than in the base case, they are

lower than under the DC scenario. As Figure 3 shows, the capital accumulation effect
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Figure 4.2. Demographic shock
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of the longevity shock is substantially dampened under a DB system. Intuitively, by

taking from the young and giving to the old the PAYG system redistributes from net

savers to net dissavers.

Finally, in the third scenario both θ and ζ are kept at their pre-shock levels and

the retirement age is increased to balance the budget of the PAYG system. Columns

(g)–(h) in Table 2 give the results for this case. Comparing columns (b), (d), (f), and

(h) the following features stand out. First, under the retirement age (RA) scenario

the longevity shock necessitates an increase in the biological retirement age 65 to 75.3

years. i.e. the value of R restoring budget balance changes from R0 = 47 to R1 = 57.3.

Second, compared to the DB and DC cases, labour supply increases strongly in the RA

scenario. Third, the economic growth rate, though still higher than in the base case,

is slightly lower that under DB and much lower than under DC. The intuition behind

this result is clear from Figure 3(b) which shows that the savings response following

the longevity shock is lower than either DB or DC.

The negative relationship between the retirement age and economic growth is sur-

prising in light of the current (Dutch) policy debate in which an increase of the re-

tirement age has become the paradigm for weathering the generational storm (see,

for instance, Bovenberg and Gradus (2008)). This finding, however, fits well with the

analysis of Bloom et al. (2007) who show that the recent increase in adult mortality
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has increased the savings rate in countries where the pension system contains a strong

incentive to retire at the early eligibility age.7

The contrast between the findings from the literature and the policy debate is that

the policy debate is predominantly occupied with the sustainability of government fi-

nances, which have come under pressure due to the additional influx of elderly into

the receiving end of public pensions. The question arises whether the improvement

of government finances due to an increase in the retirement age is not simply bought

against a decreased incentive to save? We leave this interesting trade-off between gov-

ernment finances and the savings rate as an issue for future research because our cur-

rent model is not equipped to give a compelling answer. However, we do emphasize

that the analysis in this chapter highlights the fact that focusing solely on the sustain-

ability of government finances may induce a policy with adverse long-run repercus-

sions.

4.3.2 Robustness

The clear message emerging from the discussion so far is that the type of pension

system in place has a quantitatively large influence on the link between longevity and

macroeconomic growth. Indeed, the same longevity shock can either lead to a huge

increase in growth (under DC) or only a modest increase (under RA). But how robust

are these conclusions? As is pointed out by Bloom et al. (2008, p. 3), “population data

are not sacrosanct” and UN predictions are revised substantially over time. In short,

our stylized demographic facts may be more like “factoids”.8

We study the robustness issue in Table 3. We restrict attention to the case with

imperfect annuities, and column (a) in the table represents the base case. It coincides

with the pre-shock steady state reported in Table 3(b). Columns (b)–(c) in Table 3 report

the results under the DC scenario for alternative demographic shocks. In contrast,

columns (d)-(e) show how a much more broadly defined PAYG system reacts to the

original demographic shock under DC, DB, and RA.

7 In accordance with our other findings Bloom et al. (2007) also find that positive impact of ageing on
economic growth is mitigated if a PAYG system with high benefits is in place.

8 De Waegenaere et al. (2010) provide a survey of the recent literature on longevity risk (i.e. the risk that
mortality predictions turn out to be wrong). In accordance with Bloom et al. (2008) they show that estimates
on future mortality rates differ substantially and depend on a plethora of uncertain factors.
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In column (b) we assume that the old-age dependency ratio is 30% rather than 46%

in 2040. As in the original shock we continue to assume that π1 = 0% per annum. By

using (4.31) we obtain new values for the demographic parameters, i.e. η1,1 = 0.0662

and β1 = µ̄1 = 0.0172. The alternative demographic shock causes a small increase in

the economic growth rate. Whereas the original demographic shock caused growth

to increase from 1.91% to 3.27% per annum (See Table 2, columns (b) and (d)), the

alternative one only raises the growth rate to 2.33% per annum. The alternative ageing

shock is relatively small, and pensions are reduced much less drastically than under

the original demographic shock. The private savings response is quite small as a result.

In column (c) we keep the dependency ratio at 46% but assume that the population

growth rate is 0.5% rather than 0% per annum in 2040. Under this assumption the de-

mographic parameters are equal to η1,1 = 0.0540, β1 = 0.0168, and µ̄1 = 0.0118. This

type of demographic shock produces a huge increase in the macroeconomic growth

rate. The intuition is the same as before – see the discussion relating to Table 2(d)

above. The large growth effect is all the more surprising in view of the growth equa-

tion (T1.6) which directly features −π on the right-hand side. So even though the

demographic shock itself retards growth by 0.5% per annum, the huge private savings

response more than compensates for this effect.

In conclusion, the two alternative demographic shocks give rise to qualitatively the

same predictions as we obtained for the original shock. Under a DC system economic

growth is boosted because the labour supply effect is strongly dominated by the capital

accumulation effect.

As a final robustness check we investigate whether the size of the PAYG system in-

fluences the relationship between longevity and economic growth. We return to the

original demographic shock featuring π1 = 0.05% per annum and an old-age depen-

dency ratio of 46% (η1,1 = 0.0581 and β1 = 0.0151). As was pointed out by Broer (2001,

p. 89), “in an ageing society, both the health insurance system and the pension system

impose an increasing burden on households. . . . Thus as the share of elderly in the

population grows, the contribution base [of the public health insurance system, JM]

shrinks at the same time when demand for health care increases.” In short, it can be

argued that the public health insurance system itself contains elements of a PAYG type,

i.e. it taxes the young (and healthy) and provides resources to the old (and infirm).
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Figure 4.3. Life-cycle profiles before and after the demographic shock
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Whereas it is beyond the scope of the present paper to fully model the health in-

surance system, we take from Broer’s analysis the idea that the PAYG system may be

broader than just the public pension system itself. We study the quantitative conse-

quences of PAYG system size in columns (d)–(g) in Table 3. Column (d) shows what

happens to the initial steady-state economy if the contribution rate is increased from

θ0 = 0.07 to θ1 = 0.15. The comparison between columns (a) and (d) reveals that there

is a huge drop in the growth rate, from g = 1.91% to g = 1.19% per annum. Intuitively

the larger PAYG system takes more from the young and gives more to the old. This

chokes off private savings and retards economic growth.

Columns (e)–(g) in Table 3 shows the effects of the original demographic shock

under DC, DB, and RA. The growth increases under all scenarios with the largest effect

occurring under the DC system. Interestingly, whereas the growth effect was smallest

for the RA case in the original model with the narrowly defined PAYG system, for a

large PAYG system it is smallest for the DB scenario.

4.3.3 Limitations

A few words of caution are in place when interpreting our conclusions. There are sev-

eral limitations. First, our analysis consists of steady-state comparisons and space con-
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4 Table 4.3. Alternative scenarios

Initial PAYG system Large PAYG system
(a) (b) (c) (d) (e) (f) (g)

DC DC DC DB RA
C (v, v)

w (v)
0.8609 0.9268 1.0971 0.7047 0.8818 0.6109 0.7678

H (v, v)

w (v)
27.0207 29.4510 38.0243 22.1187 29.6744 20.5594 25.8384

g (%) 1.91 2.33 3.43 1.19 2.59 1.51 1.71

n 0.9675 0.9217 0.8155 0.9675 0.8212 0.8212 0.9589

w (t)

k (t)
0.2894 0.3038 0.3434 0.2894 0.3410 0.3410 0.2920

c (t)

w (t)
1.0570 1.0094 0.8465 1.0817 0.8918 0.9236 1.0715

ζ 0.3632 0.2796 0.1812 0.7783 0.3910 0.7783 0.7783

z 0.0200 0.0200 0.0111 0.0174 0.0130 0.0120 0.0148

θ 0.2986

R + 18 75.3

Notes. Column (a) is the core model with imperfect annuities (column (b) in Table 2). Column (b) dependency ratio in 2040 equal to 30% instead

of 46%. Column (c) population growth rate in 2040 equal to 0.5% instead of 0% per annum. Column (d) bigger PAYG system (θ = 0.15). Columns

(e)–(f) show the effects of the original demographic shock for the large PAYG system under DC and DB. Column (g) leaves θ and ζ unchanged

and features a higher retirement age.
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siderations prevent us from studying the transitional dynamics of a longevity shock.

Although we find that in the steady state a longevity shock has beneficial effects on

growth, it need not be the case that transition is monotonic. Second, we have merely

analyzed growth but not individual welfare. However, as we assume exogenous labour

supply, higher growth automatically translates into higher welfare because discounted

income of individuals increases. Third, we have assumed that labour supply and the

retirement age are exogenous. We have chosen this approach here in order to keep

the model as simple as possible. Indeed, endogenization of both the hours decision

over the life cycle and/or the retirement date is fairly straightforward – see e.g. Heij-

dra and Romp (2009) and Chapter 2 and 3 above. Fourth, we have ignored aggregate

risk and the risk-sharing properties of pension systems. The interested reader is re-

ferred to Bovenberg and Uhlig (2008) who apply a two-period stochastic overlapping

generations model featuring endogenous growth to study the consequences of par-

ticular pension systems on risk-sharing between generations. Finally, we have stud-

ied a closed economy. This is not a convincing representation of the Dutch economy

which is extremely open and small in world markets. However, aging is a global phe-

nomenon. Hence, to model a small open economy with fixed factor prices is equally

unconvincing. Here we have chosen the closed economy framework to zoom in on the

global consequences of ageing on capital accumulation and economic growth – the big

picture.

4.4 Conclusions

In this chapter we apply the model developed in the previous chapters to study the

relationship between aging and economic growth and the mediating role that govern-

ment policy has on this relationship. We find that, in principle, aging increases the

economic growth rate. However, if a defined benefit system is in place the growth

effect weakens somewhat because of the increase in the contribution rate necessary to

finance the additional pensioners. In order to circumvent this adverse effect on the

growth rate, the government might consider to switch to a defined contribution sys-

tem or to increase the retirement age. Surprisingly, we find that the latter policy option

has adverse effects on the economy.
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This chapter completes the analysis of various economic issues based on the model

developed in Chapter 2. In the initial chapter we set out to analyse what the impact is

of imperfect annuity markets on individual decisions and macroeconomic outcomes.

In further analysis we found that the model is very versatile and can be used to study

two important issues at the forefront of economic policy making. In Chapter 3 we ap-

plied to model to issues of taxation and in Chapter 4 to an analysis of pension systems.

In the next chapter we return to the issue of annuities by asking whether opening up

an annuity market is also welfare enhancing from the macroeconomic perspective. In

Chapter 6 we close the analysis by returning to the issue of demographic change and

study how different sources of demographic change affect the aggregate capital stock.



Chapter 5

The tragedy of annuitization∗

* This chapter is based on Heijdra, Mierau and Reijnders (2010).
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5.1 Introduction

A recurring theme of the previous chapters has been that, in the presence of longevity

risk, life annuties are very attractive insurance instruments. Intuitively, annuities al-

low for risk sharing between lucky (long-lived) and unlucky (short-lived) individuals

(Kotlikoff et al., 1986). These increased risk-sharing opportunities ensure that life an-

nuities are welfare maximizing from a microeconomic perspective.

From a macroeconomic perspective, however, it is not immediately clear whether

or not annuities are welfare improving. There are two key mechanisms that are ig-

nored in a microeconomic analysis. First, in the absence of private annuities there will

be accidental bequests which, provided they are redistributed in one way or another

to surviving agents, boost the consumption opportunities of such agents. See, among

others, Sheshinski and Weiss (1981), Abel (1985), Pecchenino and Pollard (1997), and

Fehr and Habermann (2008) on this point. Second, the availability of annuities affects

the rate of return on an individual’s savings. As a result, aggregate capital accumu-

lation will generally depend on whether or not annuity opportunities are available.

Capital accumulation in turn determines wages and the interest rate if factor prices are

endogenous.

The objective of this chapter is to study the general equilibrium effects of life an-

nuities. Our model has the following features. First, we postulate a simple general

equilibrium model of a closed economy. On the production side we allow for a capital

accumulation externality of the form proposed by Romer (1989). The production side

of the model is quite flexible in that it can accommodate both the exogenous and the

endogenous growth models as special cases.

Second, and in contrast to the previous chapters, we assume that the economy

is populated by overlapping generations of two-period-lived agents facing longevity

risk. Just as in the Diamond (1965) model, life consists of two phases, namely youth

and old age, but unlike that model there is a positive probability of death at the end of

youth. At birth, agents are identical in the sense that they feature the same preferences,

have the same labour productivity, and face the same death probability.

From the perspective of the previous chapters the switch to a two-period model

allows us to give an analytical description of the transition as well as the steady-state
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effects. Naturally, this benefit comes at the cost of not being able to give the same

degree of detail at the individual level. An interesting alley for future research is to

combine the models from chapters 2-4 with the model in the current chapter to come

to a complete description of the consequences of opening up an annuity market in an

elaborately specified general equilibrium model.

Third, in the absence of annuities we assume that the resulting accidental bequests

flow to the government. We investigate the general equilibrium effects of three pro-

totypical revenue recycling schemes. In particular, the policy maker can (a) engage in

wasteful expenditure (the WE scenario), (b) give lump-sum transfers to the old (the

TO scenario), or (c) provide lump-sum transfers to the young (the TY scenario).

Fourth, we compare the different revenue recycling schemes with the case in which

annuities are available. In particular, we assume that private annuity markets are per-

fectly competitive. With perfect annuities (the PA scenario) the probability of death

determines the wedge between the rate of return on physical capital and the annuity

rate of return. Since the latter exceeds the former, rational non-altruistic individuals

fully annuitize their savings.

The main finding of the chapter concerns the phenomenon which we call the tragedy

of annuitization: although full annuitization of assets is privately optimal it may not

be socially beneficial due to adverse general equilibrium repercussions. If all agents

invest their financial wealth in the annuity market, then the resulting long-run equi-

librium leaves everyone worse off compared to the case where annuities are absent

and accidental bequests are redistributed to the young (or even wasted by the govern-

ment). In the exogenous growth model we demonstrate the existence of two versions

of the tragedy. In the strong version, opening up perfect annuity markets in an econ-

omy in which accidental bequests initially go to waste (switch from WE to PA) results

in a decrease in steady-state welfare of newborns. Interestingly, this rather surprising

result holds for a reasonable (i.e. low) value of the intertemporal substitution elasticity.

In such a case the beneficial effects of annuitization are more than offset by a substan-

tial drop in the long-run capital intensity and in wages. Future newborns would have

been better off if no annuity markets had been opened.

There is also a weak version of the tragedy in the exogenous growth model. If the

economy is initially in the equilibrium with accidental bequests flowing to the young,
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then opening up annuity markets will reduce steady-state welfare regardless of the

magnitude of the intertemporal substitution elasticity. Intuitively, private annuities re-

distribute assets from deceased to surviving elderly in an actuarially fair way whereas

transferring unintended bequests to the young constitutes an intergenerational trans-

fer. This intergenerational transfer induces beneficial savings effects, which, in the end,

lead to higher welfare.

In the endogenous growth model and restricting attention to realistic values for the

intertemporal substitution elasticity, both versions of the tragedy show up in terms of

the macroeconomic growth rate. Growth is highest in the TY case, and the rate under

the WE case exceeds the one for the PA scenario.

In light of the finding that the introduction of annuities decreases the macroeco-

nomic growth rate it is interesting to briefly reflect on the findings in Chapter 2 and 3.

In Chapter 2 we saw that the growth rate of the economy decreases if annuities are not

priced in an actuarially fair way. In Chapter 3 we revisited this result and showed that

if the profits made by the annuity firms are redistributed with a skew toward the young

the negative impact on growth is partly mitigated. The difference between the results

in the current and the previous chapters can be traced back to the exact redistribution

structure used in the two models. In the model of Chapter 3 the redistribution has a

skew toward younger generations whereas the model in this chapter redistributes all

the funds to the newborns. This difference suggests that there is a combination of the

TO and TY redistribution scheme in which the negative growth effects can be exactly

off-set or even disappear. In future research it would be interesting to study where this

turning point lies and how it is determined.

The structure of the chapter is as follows. Section 2 presents the model in its most

general form. Section 3 studies the analytical properties of the exogenous growth ver-

sion of the model. It also computes, both analytically and quantitatively, the allocation

and welfare effects of scenario switches. Section 4 is the core of the chapter. It shows

what happens to allocation and welfare if a perfectly competitive annuity market is

opened up at some point in time. It also highlights the importance of initial condi-

tions, i.e. it demonstrates that the results depend not only on the availability of an-

nuities but also on the scenario that is replaced by these insurance markets. Section 5

briefly discusses the effects of annuitization in the endogenous growth version of the
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model. Section 6 restates the main results and presents some possible extensions. All

mathematical results are collected in a seperate appendix and can be found in Heijdra,

Mierau and Reijnders (2010).

5.2 The model

5.2.1 Consumers

Each agent lives for a maximum of two periods and faces a positive probability of

death between the first and the second period. Agents work full-time during the first

period of their lives (labeled “youth”) and – if they survive – retire in the second period

(“old age”). The expected lifetime utility of an individual born at time t is given by:

EΛ
y
t ≡ U(C

y
t ) +

1 − π

1 + ρ
U(Co

t+1), (5.1)

where C
y
t and Co

t+1 are consumption during youth and old age, respectively, ρ > 0 is

the pure rate of time preference, and π > 0 is the probability of death. Individuals

have no bequest motive and, therefore, attach no utility to savings that remain after

they die. We assume that the utility function is of the constant relative risk aversion

(CRRA) type:

U(C) =





C1−1/σ − 1

1 − 1/σ
if σ > 0, σ 6= 1,

ln C if σ = 1,

(5.2)

where σ is the elasticity of intertemporal substitution. The agent’s budget identities

for youth and old age are given by:

C
y
t + St = wt + Z

y
t , (5.3a)

Co
t+1 = Zo

t+1 + (1 + rt+1)St, (5.3b)

where wt is the wage rate, rt is the interest rate, St denotes the level of savings, and Z
y
t

and Zo
t+1 are transfers received from the government during either youth or old age

(see below). Combining the equations in (5.3) yields the consolidated lifetime budget
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constraint:

C
y
t +

Co
t+1

1 + rt+1
= wt + Z

y
t +

Zo
t+1

1 + rt+1
. (5.4)

If an agent dies before reaching old age his savings flow to the government in the form

of an accidental bequest. Due to mortality risk agents are not allowed to hold negative

savings (i.e. loans). In case of premature death their loans would be unaccounted for.

The agent chooses C
y
t , Co

t+1 and St in order to maximize expected lifetime utility

(5.1) subject to the budget constraint (5.4) and a non-negativity constraint on savings.

Assuming an interior optimum (St > 0), the agent’s optimal plans are fully character-

ized by:

C
y
t = Φ (rt+1)

[
wt + Z

y
t +

Zo
t+1

1 + rt+1

]
, (5.5)

Co
t+1

1 + rt+1
= [1 − Φ (rt+1)]

[
wt + Z

y
t +

Zo
t+1

1 + rt+1

]
, (5.6)

St = [1 − Φ (rt+1)]
[
wt + Z

y
t

]
− Φ (rt+1)

Zo
t+1

1 + rt+1
, (5.7)

where Φ(rt+1) is the marginal propensity to consume out of total wealth (wage income

and transfers) in the first period:

Φ (rt+1) ≡

[
1 +

(
1 − π

1 + ρ

)σ

(1 + rt+1)
σ−1

]−1

, 0 < Φ (·) < 1. (5.8)

Note that the impact of a change in the future interest rate on current savings is fully

determined by the elasticity of intertemporal substitution σ. For the special case with

σ = 1 (logarithmic utility) savings are completely independent of the interest rate.1

The income effect of a higher interest rate is exactly offset by the substitution effect

induced by a lower price of second period consumption. In the more general case

with σ > 1 savings increase as the interest increases because the substitution effect

dominates the income effect. If, on the other hand, σ < 1 the income effect is stronger

than the substitution effect and savings decline as the interest rate rises.2

1 If the government provides transfers to the old (Zo
t+1 > 0) there is also a positive human wealth effect

on saving. In this paper, however, such transfers are proportional to the interest factor, 1 + rt+1, so that this
human wealth effect is not operative. If the agent would also work in old age then the human wealth effects
would result in an increase in the savings elasticity.

2 From the empirical perspective the most relevant case appears to be the one with 0 < σ < 1. See, for ex-
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5.2.2 Demography

The population grows at an exogenous rate n > 0 so that every period a cohort of

Lt = (1 + n) Lt−1 young agents is born. In principle each generation lives for two

periods, but not all of its members survive the transition from youth to old age. The

total population at time t is equal to Pt ≡ (1 − π) Lt−1 + Lt.

5.2.3 Production

There is a constant and large number of identical and perfectly competitive firms. The

technology available to each individual firm i is given by:

Yit = ΩtK
α
itN

1−α
it , 0 < α < 1, (5.9)

where Yit is output, Kit is the employed capital stock, Nit is the amount of labour used

in the production process, α is the capital share of output and Ωt is the aggregate level

of technology in the economy which is considered as given by individual firms. Fac-

tor demands of the individual firm are given by the following marginal productivity

conditions:

wt = (1 − α)Ωtk
α
it, (5.10a)

rt + δ = αΩtk
α−1
it , (5.10b)

where kit ≡ Kit/Nit is the capital intensity of firm i and δ > 0 is the depreciation rate.

Under the assumption of perfect competition in both factor markets all firms face the

same factor prices and, therefore, they all choose the same level of capital intensity

kit = kt.

Generalizing the insights of Pecchenino and Pollard (1997, p. 28) to a growing

population we postulate that the inter-firm investment externality takes the following

form:

Ωt = Ω0k
η
t , 0 < η ≤ 1 − α, (5.11)

ample, Skinner (1985) and Attanasio and Weber (1995) who report estimates ranging between, respectively,
0.3 to 0.5, and 0.6 to 0.7.
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where Ω0 is a constant, kt ≡ Kt/Nt is the economy-wide capital intensity, Kt ≡ ∑i Kit

is the total stock of capital and Nt ≡ ∑i Nit is the total labour force.

According to (5.11) total factor productivity increases in line with the aggregate

capital intensity in the economy. That is, if an individual firm increases its capital stock,

all firms benefit through a boost in the general productivity level Ωt. The strength of

this inter-firm investment externality is governed by the parameter η. If 0 ≤ η < 1 − α

then the long-run growth rate in per capita variables is exogenously determined and

equal to zero. In the knife-edge case with η = 1 − α the investment externality exactly

offsets the decrease in marginal productivity following an addition to the capital stock.

The aggregate production sector then exhibits single-sector endogenous growth of the

type described in Romer (1989).

Using the general productivity index (5.11) we can write output (5.9) and factor

prices (5.10) in aggregate terms:

yt = Ω0k
α+η
t , (5.12)

wt = (1 − α)Ω0k
α+η
t , (5.13)

rt = αΩ0k
α+η−1
t − δ, (5.14)

where yt ≡ Yt/Nt is the level of output per worker and Yt ≡ ∑i Yit is aggregate output.

We assume that the economy is sufficiently productive to assure a positive interest rate

even when the investment externality attains its knife-edge value, i.e. αΩ0 > δ.

5.2.4 Government

The government administers the allocation of the accidental bequests, maintains a

period-by-period balanced budget, and does not issue debt or retain funds. The gov-

ernment’s budget constraint is therefore given by:

π (1 + rt) Lt−1St−1 = (1 − π) Lt−1Zo
t + LtZ

y
t + Gt. (5.15)

That is, the total assets left behind by the agents who perish before reaching old age

(left-hand side) are used to finance total transfers to the survivors Zo
t , transfers to the

newly arrived young Z
y
t , and unproductive government expenditure Gt.
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We assume that the government can choose between two financing scenarios. Ei-

ther it redistributes all its proceeds among the surviving agents in the form of lump-

sum transfers or it uses the funds solely for unproductive government spending.

Transfer scenario. The government can either give the revenues exclusively to the young

or exclusively to the old.3

(TY) If all the proceeds go to the young then Zo
t = Gt = 0 in (5.15) and transfers to the

young are given by:

Z
y
t =

π (1 + rt) Lt−1St−1

Lt
. (5.16a)

(TO) If all the transfers accrue to the elderly, both Z
y
t = Gt = 0 in (5.15) and transfers

to the old are given by:

Zo
t =

π (1 + rt) Lt−1St−1

(1 − π) Lt−1
. (5.16b)

Unproductive spending scenario.

(WE) If the full receipts from accidental bequests are used for unproductive govern-

ment spending then Z
y
t = Zo

t = 0 in (5.15) and wasteful government expendi-

tures are:

Gt = π (1 + rt) Lt−1St−1. (5.16c)

5.2.5 Equilibrium

In equilibrium both factor markets must clear. As all young agents work full-time

and all old agents are retired, the labour market equilibrium condition simply states

that the total labour force must equal the total number of young agents, i.e. Nt = Lt.

The capital market clearing condition implies that aggregate savings of the generation

born at time t − 1 must be equal to the total stock of productive capital in period t, i.e.

Kt = Lt−1St−1. It immediately follows that, in equilibrium, the three revenue recycling

3 Any convex combination of these two options is also feasible. We focus on the two extreme cases for ease
of illustration.
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scenarios implied by (5.16a)-(5.16c) above can be rewritten as:

Z
y
t = π (1 + rt) kt, (5.17a)

Zo
t =

1 + n

1 − π
π (1 + rt) kt, (5.17b)

gt = π (1 + rt) kt, (5.17c)

where gt ≡ Gt/Lt are per worker government expenditures.

Substituting individual savings (5.7) into the capital market clearing condition and

using the aggregate factor prices (5.13) and (5.14) provides the fundamental difference

equation of the model:

(1 + n) kt+1 = [1 − Φ (rt+1)]
[
wt + Z

y
t

]
− Φ (rt+1)

Zo
t+1

1 + rt+1
. (5.18)

For future reference we summarize the system of equations that characterizes the

macro-economic equilibrium in Table 1. Equations (T1.1)–(T1.3) are the consumption

and saving demand functions, (T1.4) states the definition for the marginal propensity

to consume, equations (T1.5) and (T1.6) are the factor prices, (T1.7) is the government

budget constraint with capital market equilibrium imposed, and (T1.8) is the funda-

mental difference equation.

5.3 The exogenous growth model

In this section and the next we study the exogenous growth version of our model, i.e.

we assume that the capital accumulation externality parameter satisfies 0 ≤ η < 1 − α

so that there are diminishing returns to the macroeconomic capital stock. (The knife-

edge model with η = 1 − α is briefly discussed in Section 5.5 below.) Throughout the

chapter we assume that the steady-state interest rate exceeds the rate of population

growth. Empirical support for this assumption is provided by Abel et al. (1987).

Assumption 5.1. [Dynamic efficiency] For each scenario the corresponding steady-state in-

terest rate r̂ satisfies r̂ > n.



The tragedy of annuitization 109

Table 5.1. The general model

(a) Individual choices:

C
y
t = Φ (rt+1)

[
wt + Z

y
t +

Zo
t+1

1 + rt+1

]
(T1.1)

Co
t+1

1 + rt+1
= [1 − Φ (rt+1)]

[
wt + Z

y
t +

Zo
t+1

1 + rt+1

]
(T1.2)

St = [1 − Φ (rt+1)]
[
wt + Z

y
t

]
− Φ (rt+1)

Zo
t+1

1 + rt+1
(T1.3)

Φ (rt+1) ≡

[
1 +

(
1 − π

1 + ρ

)σ

(1 + rt+1)
σ−1

]−1

(T1.4)

(b) Factor prices and redistribution scheme:

rt = αΩ0k
α+η−1
t − δ (T1.5)

wt = (1 − α)Ω0k
α+η
t (T1.6)

π (1 + rt) kt =
1 − π

1 + n
Zo

t + Z
y
t + gt (T1.7)

(c) Fundamental difference equation:

(1 + n) kt+1 = [1 − Φ (rt+1)]
[
wt + Z

y
t

]
− Φ (rt+1)

Zo
t+1

1 + rt+1
(T1.8)

Definitions: Endogenous are C
y
t , Co

t+1, St, rt+1, wt, kt, and – depending on the redistribution

scheme – one of Z
y
t or Zo

t or gt. Parameters: mortality rate π, population growth rate n, rate

of time preference ρ, capital coefficient in the technology α, investment externality coefficient η,

scale factor in the technology Ω0, and depreciation rate of capital δ.
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5.3.1 Stability and transition

We first study the dynamic properties of the model under the assumption that the

government wastes the revenues from accidental bequests (the WE scenario). One of

the crucial structural parameters is the intertemporal substitution elasticity, σ. Whilst

the model can accommodate a wide range of values for σ, we nevertheless make the

following assumption.

Assumption 5.2. [Admissible values for σ] The intertemporal substitution elasticity satisfies:

0 < σ ≤ σ̄ ≡
2 − α − η

1 − α − η
.

We defend this assumption on two grounds. First, the restriction is very mild.

Indeed, empirical evidence suggests that σ falls well short of unity whereas – even in

the absence of external effects (η = 0) – σ̄ is much larger than unity. For example, for

a capital share of α = 0.3 we find that σ̄ = 2.43. In the presence of external effects

(η > 0) σ̄ is even larger. Second, by restricting the range of admissible values for σ the

existence and stability proofs are simplified substantially.

The fundamental difference equation under the WE scenario can be written as fol-

lows:

[Ψ (kt+1) ≡]
kt+1

1 − Φ (kt+1)
=

(1 − α)Ω0

1 + n
k

α+η
t [≡ Γ (kt)] , (5.19)

where Φ (k) is given by:4

Φ (k) ≡

[
1 +

(
1 − π

1 + ρ

)σ (
1 − δ + αΩ0kα+η−1

)σ−1
]−1

. (5.20)

It is easy to show that Ψ′
> 0 and Γ′

> 0. We can prove the following proposition.

Proposition 5.1. [Existence and stability of the WE model] Consider the WE model as given

in (5.19)–(5.20) and adopt Assumption 5.2. The following properties can be established:

(i) The model has two steady-state solutions; the trivial one features kt+1 = kt = 0, and the

4 Equation (5.20) is obtained by substituting (T1.5) into (5.8).
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economically relevant satisfies kt+1 = kt = k̂WE, where k̂WE is the solution to:

k̂WE

1 − Φ(k̂WE)
=

(1 − α)Ω0

1 + n
(k̂WE)α+η .

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂WE.

For any positive initial value the capital intensity converges monotonically to k̂WE.

Proof: See Heijdra et al. (2010b, Appendix A). �

We visualize the corresponding phase diagram in Figure 1(a) for different values of

the intertemporal substitution elasticity. This figure is based on the following plausible

parameter values that are used throughout much of the chapter. In the benchmark case

we assume that the elasticity of intertemporal substitution is σ = 1 (i.e. log-utility), and

that the investment externality is absent (η = 0). Each phase of life covers 40 years,

the population grows by one percent per annum (so that n = (1 + 0.01)40 − 1 = 0.49),

individuals face a probability of death between youth and old age of thirty percent

(π = 0.3), the capital share of output is thirty percent (α = 0.3), and the depreciation

rate of capital is six percent per annum (δ = 0.92). We set the production function

constant and time preference rate such that output per worker is equal to unity and

the interest rate is four percent per annum (r̂ = 3.80) in the WE scenario. We obtain

Ω0 = 2.29 and ρ = 3.47 or 3.82% annually. The resulting steady-state values of the key

variables of the model are given in Table 5.2(a).5 Note that Assumptions 5.1 and 5.2

are both satisfied for this calibration.

In Figure 2(a) the solid line represents the fundamental difference equation (5.19)

(for σ = 1) and the dotted line is the steady-state condition kt+1 = kt.
6 The eco-

nomically relevant steady-state equilibrium is at point E where the slope of (5.19) is

strictly less than unity. Figure 1(b) plots Ψ (k) (for different values of σ) and Γ (k)

5 For different values of σ we re-calibrate the model (by choice of ρ and Ω0) such that output and the interest
rate remain the same in the WE scenario.

6 The dash-dotted and dashed lines in Figure 1(a) represent the fundamental difference equation for dif-
ferent values of the intertemporal substitution elasticity, σ. Mathematically, these lines are described by
kt+1 = Ψ−1 (Γ (kt)).
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separately. It conveniently illustrates the existence and stability properties of the two

steady-state equilibria. In particular, it visualizes Proposition 5.1(ii) which proves that

Γ(k) is steeper (flatter) than Ψ(k) around k = 0 (k = k̂) for all feasible values of σ.

Suppose that at some time t the economy has converged to the steady-state implied

by the WE scenario, i.e. kt = k̂WE. What would happen at impact, during transition,

and in the long run if the government were to switch to a transfer scenario? We study

two such policy switches in turn, namely from WE to TO and from WE to TY.

Transfers to the old

The effects of a policy switch from the WE scenario to the TO scenario can be studied

with the aid of the following fundamental difference equation:

[Ψ (kt+1, z1) ≡]
1 + z1

π
1−π Φ (kt+1)

1 − Φ (kt+1)
kt+1 = Γ (kt) , (5.21)

where Γ (kt) is defined in (5.19) above, z1 is a perturbation parameter (0 ≤ z1 ≤ 1) and

Ψ (kt+1, z1) features positive partial derivatives Ψk > 0 and Ψz1
> 0. The case with

z1 = 0 is the WE scenario whilst for z1 = 1 the TO case is obtained. The policy switch

thus consists of a unit increase in z1 occurring at time t in combination with the initial

condition kt = k̂WE. We provide the following proposition.

Proposition 5.2. [Existence and stability of the TO model] Consider the TO model as given

in (5.21) and adopt Assumption 5.2. The following properties can be established:

(i) The model has two steady-state solutions; the trivial one features kt+1 = kt = 0, and the

economically relevant one satisfies kt+1 = kt = k̂TO, where k̂TO is the solution to:

1 + π
1−π Φ(k̂TO)

1 − Φ(k̂TO)
k̂TO =

(1 − α)Ω0

1 + n
(k̂TO)α+η .

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂TO.

For any positive initial value the capital intensity converges monotonically to k̂TO.
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Figure 5.1. Phase diagram and steady-state equilibria

(a) Phase diagram
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(b) Steady-state equilibria
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Table 5.2. Steady-state values with exogenous growth⋆

Panel A: η = 0, σ = 1 Panel B: η = 0, σ = 1
2 Panel C: η = 0, σ = 3

2
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
WE TO TY PA WE TO TY PA WE TO TY PA

Ĉy 0.6053 0.5512 0.7218 0.6053 0.6053 0.5057 0.7393 0.5577 0.6053 0.5681 0.7145 0.6226

Ĉo 0.4546 0.5647 0.4804 0.6495 0.4546 0.5040 0.5002 0.5741 0.4546 0.5893 0.4725 0.6815

Ŝ 0.0947 0.0604 0.1129 0.0947 0.0947 0.0417 0.1284 0.0746 0.0947 0.0693 0.1071 0.1104
Ẑo 0.1694 0.1512 0.1768
Ẑy 0.0968 0.1008 0.0952
ŷ 1.0000 0.8736 1.0542 1.0000 1.0000 0.7821 1.0957 0.8877 1.0000 0.9105 1.0377 1.0472

k̂ 0.0636 0.0405 0.0758 0.0636 0.0636 0.0280 0.0862 0.0428 0.0636 0.0465 0.0720 0.0742
ŵ 0.7000 0.6115 0.7380 0.7000 0.7000 0.5474 0.7670 0.6214 0.7000 0.6374 0.7264 0.7330
r̂ 3.8010 5.5491 3.2541 3.8010 3.8010 7.4546 2.8954 5.3121 3.8010 4.9544 3.4106 3.3198
r̂a 4.00 4.81 3.69 4.00 4.00 5.48 3.46 4.71 4.00 4.56 3.78 3.73
r̂A

a 4.93 5.65 4.65

ÊΛ
y

−0.6253 −0.6851 −0.4406 −0.5695 −0.7930 −1.0930 −0.4699 −0.8801 −0.5816 −0.5988 −0.4322 −0.5003

⋆Hats denote steady-state values. To facilitate interpretation, r̂a and r̂A
a are reported as annual percentage rates of return.
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Figure 5.2. Transitional dynamics in the exogenous growth model

Panel A: Benchmark: σ = 1

(a) capital intensity (kt+τ) (b) expected lifetime utility (EΛ
y
t+τ)
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(c) youth consumption (C
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t+τ) (d) old-age consumption (Co
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(Figure 5.2, continued)

Panel B: Weak intertemporal substitution effect: σ = 1
2

(e) capital intensity (kt+τ) (f) expected lifetime utility (EΛ
y
t+τ)

0 1 2 3 4 5
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

post−shock time (τ)

 

 

WE
TY
TO
PA

0 1 2 3 4 5
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

post−shock time (τ)

 

 

WE
TY
TO
PA

(g) youth consumption (C
y
t+τ) (h) old-age consumption (Co

t+τ)
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(Figure 5.2, continued)

Panel C: Strong intertemporal substitution effect: σ = 3
2

(i) capital intensity (kt+τ) (j) expected lifetime utility (EΛ
y
t+τ)
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(k) youth consumption (C
y
t+τ) (l) old-age consumption (Co

t+τ)
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(iii) The steady-state capital intensity satisfies the following inequality:

0 < k̂TO
< k̂WE.

Proof: See Heijdra et al. (2010b, Appendix B). �

For σ = 1 we visualize the transitional dynamics of the capital intensity in Figure

2(a) whilst the quantitative long-run results are reported in Table 2(b). In Figure 2(a)

the horizontal axis records post-shock time τ and the vertical axis gives the values of

kt+τ . By giving transfers to old agents, the old at the time of the policy switch (τ = 0)

are able to increase their consumption as they had not anticipated this windfall gain

(see Figure 2(d)). The young at the time of the shock, however, react to the transfers

they will receive in old age by reducing their saving below what it would have been

under the WE scenario. This explains why the capital intensity drops substantially for

τ = 1 and beyond. Indeed, by using (5.21) we find the impact and long-run effects:

dkt+1

dz1

∣∣∣∣
kt=k̂WE

= −
Ψz1

Ψk
< 0,

dkt+∞

dz1

∣∣∣∣
kt=k̂WE

= −
Ψz1

Ψk − Γ′ < 0, (5.22)

where limτ→∞ kt+τ = k̂TO. As the information in Table 2(a)–(b) reveals, compared to

the WE scenario, long-run output per worker falls by almost thirteen percent under the

TO case. Whereas the steady-state consumption profile is downward sloping under

the WE scenario (Co
< Cy), it is upward sloping for the TO case (Co

> Cy). This result

follows from the sharp increase in the interest rate that occurs in the TO scenario.7

Panels B and C in Table 2 and Figure 2 quantify and visualize the cases with, re-

spectively, a weak intertemporal substitution effect (Panel B featuring σ = 1
2 ) and a

strong intertemporal substitution effect (Panel C featuring σ = 3
2 ). The results are

qualitatively the same as for the case with σ = 1. Quantitatively a relatively low (high)

intertemporal substitution effect exacerbates (mitigates) the crowding-out effect on the

capital intensity.

7 The optimal consumption Euler equation is given by:

Co
t+1

C
y
t

=

[
(1 − π) (1 + rt+1)

1 + ρ

]σ

.
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Transfers to the young

A policy switch from the WE case to the TY scenario can be studied with the following

fundamental difference equation for the capital intensity:

Ψ (kt+1) =
[1 − α (1 − z2π)]Ω0k

α+η
t + z2π (1 − δ) kt

1 + n
[≡ Γ (kt, z2)] , (5.23)

where Ψ (kt+1) is defined on the left-hand side of (5.19), z2 is a perturbation parameter

(0 ≤ z2 ≤ 1) and Γ (kt, z2) features positive partial derivatives Γk > 0 and Γz2 > 0. At

time t there is a unit increase in z2 and kt = k̂WE is the initial condition. We provide the

following proposition.

Proposition 5.3. [Existence and stability of the TY model] Consider the TY model as given in

(5.23) and adopt Assumption 5.2. The following properties can be established:

(i) The model has two steady-state solutions; the trivial one features kt+1 = kt = 0, and the

economically relevant satisfies kt+1 = kt = k̂TY, where k̂TY is the solution to:

k̂TY

1 − Φ(k̂TY)
=

[1 − α (1 − π)]Ω0(k̂
TY)α+η + π (1 − δ) k̂TY

1 + n
.

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂TY.

For any positive initial value the capital intensity converges monotonically to k̂TY.

(iii) The steady-state capital intensity satisfies the following inequality:

0 < k̂WE
< k̂TY.

Proof: See Heijdra et al. (2010b, Appendix C). �

For σ = 1 we visualize the transitional dynamics of the capital intensity in Figure

2(a) whilst the quantitative long-run results are reported in Table 2(c). As Figure 2(a)

shows, the capital intensity increases over time. By giving transfers to young agents
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only, the old at the time of the policy switch (τ = 0) experience no effect at all. They

just execute the plans conceived during their youth. In contrast, the shock-time young

react to these transfers by increasing their saving above what it would have been under

the WE scenario. This explains why the capital intensity increases dramatically for

τ = 1 and beyond – see the solid line in Figure 2(a). By using (5.23) we find the impact

and long-run effects of the policy change on the capital intensity:

dkt+1

dz2

∣∣∣∣
kt=k̂WE

=
Γz2

Ψ′ > 0,
dkt+∞

dz2

∣∣∣∣
kt=k̂WE

=
Γz2

Ψ′ − Γk
> 0, (5.24)

where limτ→∞ kt+τ = k̂TY. As the information in Table 2(a) and (c) reveals, compared

to the WE scenario, long-run output per worker increases by more than five percent

under the TY case. Because the steady-state interest rate falls, the long-run consump-

tion profile becomes more downward sloping than it was in the WE scenario.8

5.3.2 Welfare analysis

In this section we study the welfare implications of the different scenarios. With

bounded externalities (0 ≤ η < 1 − α) consumption by young and old agents ulti-

mately converges to time-invariant steady-state values. As a result we can compare

the welfare effects of the separate regimes by focusing on the life-time utility of new-

borns, both along the transition path and in the steady state. The welfare effect for the

old at the time of the shock follows trivially from their budget identity (5.3b), which

can be rewritten as:

Co
t = Zo

t + (1 + rt) (1 + n) kt, (5.25)

where we have used the fact that St−1 = (1 + n) kt. For the shock-time old agents

all terms featuring in (5.25) are predetermined except the transfers to the old, Zo
t , oc-

curring exclusively in the TO scenario. Hence, Co
t will not change following a policy

change except if the switch is to the TO case.

The (indirect) lifetime utility function of current and future newborns can be writ-

8 Panels B and C in Table 2 and Figure 2 confirm that the magnitude of σ affects the quantitative but not the
qualitative conclusions.
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ten as follows (for τ = 0, 1, . . .):

EΛ
y
t+τ ≡





Φ (rt+τ+1)
−1/σ

(
H

y
t+τ

)1−1/σ
−

2 + ρ − π

1 + ρ

1 − 1/σ
for σ > 0, σ 6= 1

Ξ0 +
2 + ρ − π

1 + ρ
ln H

y
t+τ +

1 − π

1 + ρ
ln (1 + rt+τ+1) for σ = 1

(5.26)

where Ξ0 is a constant9 and human wealth at birth of agents born τ periods after the

policy change is given by:

H
y
t+τ ≡ wt+τ + Z

y
t+τ +

Zo
t+τ+1

1 + rt+τ+1
. (5.27)

The expressions in (5.25)–(5.27) are used to compute the transitions paths in Figures

2(b), (f), and (j) and the entries for ÊΛ
y

in the final row of Table 5.2. For the analyt-

ical welfare effects at impact and in the long run, however, we employ the envelope

theorem (see Heijdra et al., 2010b). We consider each scenario in turn.

Transfers to the old

First we consider the welfare effects of a switch from the steady state of the WE case

to the TO scenario. In what follows, Ĉo, Ĉy, r̂, ŵ, and k̂ denote steady-state values

associated with the WE scenario. The welfare effect of the old at time t is equal to:

dEΛ
y
t−1 (z1)

dz1
=

1 + n

1 + ρ
U′(Ĉo)π (1 + r̂) k̂ > 0. (5.28)

The shock-time old are unambiguously better off because they receive a windfall trans-

fer from the government. The welfare effect on the young at time t is more complicated

because they can still alter their consumption and savings decisions in the light of the

policy change. Although the wage rate faced by these agents is predetermined, their

revised saving plans will induce a change in the future interest rate. After some ma-

9 The definition of Ξ0 is:

Ξ0 ≡ ln

[
1 + ρ

2 + ρ − π

]
+

1 − π

1 + ρ
ln

[
1 − π

2 + ρ − π

]
.
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nipulation we find:

dEΛ
y
t (z1)

dz1
= U′(Ĉy) (1 + n) k̂

[
π

1 − π
+

1

1 + r̂

drt+1

dz1

]
> 0. (5.29)

The first term in square brackets represents the direct effect of the lump-sum transfer

received at old age. Taken in isolation, this transfer expands the choice set and thus

increases expected lifetime utility of shock-time newborns. The direct effect can be

explained with the aid of Figure 3(a). The original budget line passes through E0,

which is the initial equilibrium. The shock-time young anticipate transfers in old age

equal to Z0
t+1. This shifts up the budget line in a parallel fashion.10 Holding constant

the initially expected future interest rate, the optimal point shifts from E0 to E′. But

this is not the end of the story because it is only the partial equilibrium effect.

The second term in square brackets on the right-hand side of (5.29) represents the

general equilibrium effect of the policy switch. It follows from (5.22) that the future cap-

ital stock is lower and the interest rate is higher as a result of the switch. In terms of

Figure 3(a), the budget line pivots in a clockwise fashion around point A0 and opti-

mal consumption moves from E′ to E1. At impact the general equilibrium effect thus

brings about a further expansion of the choice set faced by the shock-time young. Not

surprisingly, therefore, the change in welfare at impact is unambiguously positive for

such agents. In terms of Figure 2(b), the dash-dotted line lies above the dashed line at

post-shock time τ = 0.

Before turning to the long-run welfare effects we first introduce the following lemma

exploiting an important property of the factor-price frontier.

Lemma 5.1. [Implications of the factor price frontier] Assume that 0 ≤ η < 1 − α (exoge-

nous growth model), the economy is initially in the steady state associated with the WE or

TY scenario, and adopt Assumption 5.1 (r̂ > n, dynamic efficiency). Let dkt+∞/dzi denote

the long-run effect on the capital intensity of a unit perturbation in zi occurring at shock-time

τ = 0 and evaluated at zi = 0. It follows that the long-run effect on weighted factor prices can

be written as:
Ĉo

(1 + r̂)2

drt+∞

dzi
+

dwt+∞

dzi
= ∆

dkt+∞

dzi
, (L1.1)

10 Remember that agents are not allowed to borrow and that, therefore, consumption bundles with C
y
t > wt

remain unattainable.
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Figure 5.3. Effect of government transfers in the exogenous growth model

(a) Transfers to the old (TO)
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where ∆ is a positive constant:

∆ ≡

[
η + α (1 − α − η)

r̂ − n

1 + r̂

]
r̂ + δ

α
> 0. (L1.2)

Proof: See Heijdra et al. (2010b, Appendix E). �

The welfare effect experienced by future steady-state generations can be written as:

dEΛ
y
t+∞ (z1)

dz1
= U′(Ĉy)

[
π (1 + n)

1 − π
k̂ + ∆

dkt+∞

dz1

]
T 0, (5.30)

where we have used Lemma 5.1 and note that limτ→∞ kt+τ = k̂TO. The first term in

brackets represents the steady-state direct effect, which is positive. The second term

comprises the general equilibrium effect, which is negative because capital is crowded

out in the long run (see (5.22) above). On the one hand the reduction in the long-

run capital intensity increases the interest rate which positively affects welfare. But

on the other hand it also reduces the wage rate, which lowers welfare. In terms of

Figure 3(a), the budget line shifts to the left because of the fall in the long-run wage

(ŵTO
< ŵWE). In addition, long-run transfers are lower than anticipated transfers at

impact (Ẑo
< Zo

t+1) so that point A∞ lies south-west from A0. The steady-state interest

rate exceeds the future rate faced by shock-time newborns (r̂TO
> rt+1), i.e. the budget

line is steeper than at impact. The steady-state equilibrium is at point E∞.

Comparing columns (a) and (b) of Table 2 reveals that the long-run welfare effect

of the policy switch is negative, i.e. the crowding out of capital induces a very strong

reduction in wages which dominates the joint effect of the transfers and the interest

rate. Ignoring agents who are alive at the time of the shock, it is thus better to let the

accidental bequests go to waste than to give them to the elderly. To better understand

the intuition behind this remarkable result, we first state the following lemma on the

key features of the steady-state first-best social optimum (FBSO).

Lemma 5.2. [Golden rules] Assume that 0 ≤ η < 1− α (exogenous growth model), and define

steady-state welfare of a young agent (L2.1), the economy-wide resource constraint (L2.2), and
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the macroeconomic production function (L2.3) as follows:

EΛy ≡ U(Cy) +
1 − π

1 + ρ
U(Co), (L2.1)

f (k)− (δ + n) k = Cy +
1 − π

1 + n
Co + g, (L2.2)

f (k) = Ω0kα+η . (L2.3)

The social planner chooses non-negative values for Cy, Co, k, and g in order to maximize EΛy

subject to the constraints (L2.2)–(L2.3). In addition to satisfying the constraints, the first-best

social optimum has the following features:

U′(C̃y)

U′(C̃o)
=

1 + n

1 + ρ
, (S1)

f ′(k̃) = n + δ, (S2)

g̃ = 0. (S3)

Proof: See Heijdra et al. (2010b, Appendix F). �

Using the terminology of Samuelson (1968), we refer to requirement (S1) of the

FBSO as the Biological-Interest-Rate Golden Rule (BGR), and to requirement (S2) as

the Production Golden Rule (PGR). Of course, requirement (S3) just states that the

social planner does not waste valuable resources.

Armed with Lemma 5.2 we can investigate the efficiency properties of the market

economy. In the decentralized equilibrium for the WE scenario the steady-state equi-

librium satisfies the resource constraint (L2.2) as well as the following conditions:

U′(Ĉy)

U′(Ĉo)
=

(1 − π) (1 + r̂)

1 + ρ
, (W1)

α

α + η
f ′(k̂) = r̂ + δ, (W2)

ĝ = π (1 + r̂) k̂. (W3)

Comparing (W1)–(W3) to (S1)–(S3) we find that the WE equilibrium features three

distortions. First, the government engages in wasteful expenditure (ĝ > g̃ = 0). Sec-

ond, the death probability affects the consumption Euler equation in the decentralized
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equilibrium i.e. π features in (W1) but not in (S1). There is a missing market in that

agents cannot insure against longevity risk. Third, if η is strictly positive the decen-

tralized economy underinvests in physical capital because the capital externality is not

internalized by individual agents.

We can rewrite the welfare effect on future steady-state generations – given in (5.30)

– as follows:
dEΛ

y
t+∞ (z1)

dz1
= U′(Ĉy)

π (1 + n) k̂

1 − π
[1 − Θ] , (5.31)

where Θ is defined as:

Θ ≡

[
η

α (1 − α − η)
+

r̂ − n

1 + r̂

]
1 + r̂

1 + n

r̂+δ
1+r̂ Φ(k̂)

1 − (1 − σ) r̂+δ
1+r̂ Φ(k̂)

≥ 0. (5.32)

In combination with Lemma 5.2, the expressions in (5.31)–(5.32) can be used to build

intuition on the long-run welfare effect of the policy switch from WE to TO. In adopting

the TO scenario wasteful government expenditure is eliminated which implies that one

distortion is removed, i.e. (S3) holds for the TO case and ĝTO = g̃ = 0. If there were

no capital externality (η = 0) and the steady-state interest rate would equal the rate of

population growth (r̂TO = n) then (S2) would also hold under the TO case, i.e. k̂TO = k̃.

The only distortion that would remain is the one resulting from the missing insurance

market, i.e. (1 − π)
(
1 + r̂TO

)
< 1 + n. For r̂ = n and η = 0 we find from (5.32)

that Θ = 0 and from (5.31) that the long-run welfare effect is strictly positive. The

switch from WE to TO benefits all generations to the same extent in this hypothetical

case because waste is eliminated, there is no transitional dynamics in the capital stock

(and thus in factor prices), and the additional resources lead to an equiproportionate

increase in youth and old-age consumption.

Matters are much more complicated if we adopt Assumption 5.1. For r̂ > n it fol-

lows from (5.32) that Θ is strictly positive and, ceteris paribus r̂ and k̂, increasing in

the externality parameter η. If η = 0 then WE and TO share two distortions, namely

the missing insurance market and the violation of the BGR. It is a straightforward ap-

plication of the theory of the second best (Lipsey and Lancaster, 1957) that the welfare

ranking between WE and TO is ambiguous in that case. In Table 3(a) we compute Θ

for several values of the intertemporal substitution elasticity. Interestingly, Θ is strictly
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larger than unity for all but the most extreme values of σ. And for a relatively small

capital externality (Table 3(b) with η = 1
10 ) the same conclusion holds for all admissible

values of σ!

In a plausibly parameterized dynamically efficient economy (r̂ > n), the switch

from WE to TO is welfare decreasing because it induces a decrease in the capital inten-

sity and an increase in the interest rate in the long run. Hence, the policy switch moves

the economy further away from the FBSO.

Transfers to the young

We consider the welfare effects of a switch from the steady state of the WE case to the

TY scenario and let Ĉo, Ĉy, r̂, ŵ, and k̂ denote the steady-state values associated with

WE. In the TY scenario the shock-time old do not receive any additional resources, i.e.

dEΛ
y
t−1 (z2) / dz2 = 0. The welfare effect on the young at the time of the policy switch

is given by:

dEΛ
y
t (z2)

dz2
= U′(Ĉy) (1 + n) k̂

[
π

1 + r̂

1 + n
+

1

1 + r̂

drt+1

dz2

]
> 0, (5.33)

where the first term in square brackets is the direct effect and the second term is the

general equilibrium effect. The direct effect is positive but the general equilibrium

effect is negative because the policy switch boosts capital accumulation which leads

to a reduction in the future interest rate. It is not difficult to show, however, that the

direct effect is dominant so that welfare rises at impact. In terms of Figure 3(b) the

initial budget line passes through point E0, the lump-sum transfer shifts the line in a

Table 5.3. Value of Θ

r̂ > n

(a) (b) (c)

η = 0 η = 1
10 η = 1

3

σ = 1
2 3.29 5.93 17.72

σ = 1 1.89 3.41 10.19

σ = 3
2 1.33 2.39 7.15

σ = σ̄ 0.85 1.41 3.07



128 Chapter 5

parallel fashion to the right, and the decrease in the future interest rate rotates it in a

counter-clockwise fashion around point A. The direct effect consists of the move from

E0 to E′ and the general equilibrium effect is the move from E′ to E1.

The change in welfare of the future steady-state generations can be written as:

dEΛ
y
t+∞ (z2)

dz2
= U′(Ĉy)

[
π (1 + r̂) k̂ + ∆

dkt+∞

dz2

]
>

dEΛ
y
t (z2)

dz2
> 0, (5.34)

where we have used Lemma 5.1 (∆ > 0) and note that limτ→∞ kt+τ = k̂TY. Both

terms in square brackets are positive so that welfare ambiguously rises in the long

run. Indeed, the general equilibrium effect ensures that future generations gain even

more than the shock-time generation. The quantitative effects in columns (c), (g), and

(k) of Table 2 confirm that, regardless of the magnitude of the intertemporal substitu-

tion elasticity, expected lifetime utility increases dramatically as a result of the policy

switch. In terms of Figure 3(b), the budget line shifts further to the right in the long run

both because the wage increases and transfers are boosted. The decreased interest rate

further rotates the budget line but this effect is not large enough to lead to a reduction

in the choice set for future generations. Figures 2(b), (f), and (j) illustrate the transition

paths of expected lifetime utility for different values of the intertemporal substitution

elasticity. Welfare rises monotonically.

In order to develop the economic intuition behind the strong steady-state welfare

gain, we rewrite (5.34) as follows:

dEΛ
y
t+∞ (z2)

dz2
= U′(Ĉy)

π (1 + n) k̂

1 − π

[
1 + Θ

1 − Φ(k̂)

Φ(k̂)

]
> 0, (5.35)

where Θ is defined in (5.32) above. The switch from WE to TY is welfare increasing

because it induces an increase in the capital intensity and a decrease in the interest rate

in the long run, i.e. the policy switch moves the economy closer to the FBSO.

5.4 Tragedy of annuitization

In this section we step away from the assumption that the government redistributes

accidental bequests or wastes them completely. Instead we analyze the introduction



The tragedy of annuitization 129

of a private annuity market. An annuity is a financial asset which pays a given return

contingent upon survival of the annuitant to the second period of life. If the annuitant

dies prematurely then his assets accrue to the annuity firm. Let rA
t+1 denote the net

rate of return on annuities. Assuming perfect competition among annuity firms, the

zero-profit condition is given by 1 + rt+1 = (1 − π)(1 + rA
t+1) which implies:

1 + rA
t+1 =

1 + rt+1

1 − π
. (5.36)

It follows that 1 + rA
t+1 > 1 + rt+1, i.e. the return on annuities exceeds the return on

regular assets. Hence, in the absence of a bequest motive, it is optimal for the agent to

fully annuitize his financial wealth. This confirms findings by inter alia Yaari (1965) and

Davidoff et al. (2005). Under full annuitization agents will no longer leave accidental

bequests. In terms of Table 1, the government budget constraint (T1.7) becomes redun-

dant. Savings St are replaced one-for-one by annuity holdings At, so that (T1.1)-(T1.3)

become:

C
y
t = Φ

(
rA

t+1

)
wt, (T1.1′)

Co
t+1

1 + rA
t+1

=
[
1 − Φ

(
rA

t+1

)]
wt, (T1.2′)

At =
[
1 − Φ

(
rA

t+1

)]
wt. (T1.3′)

Furthermore, the fundamental difference equation for the capital intensity (T1.8) is

replaced by:

(1 + n) kt+1 =
[
1 − Φ

(
rA

t+1

)]
wt. (T1.8′)

In the remainder of this section we study the allocation and welfare effects of open-

ing up a perfect annuity (PA) market at time t. We first study the case for which the

initial scenario is WE, i.e. the switch is from WE to PA and the initial capital stock

features kt = k̂WE. Next we study the case in which the switch is from the TY scenario

to perfect annuities. In this case the initial capital stock satisfies kt = k̂TY.
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5.4.1 From wasteful expenditure to perfect annuities

Using (5.36) and (T1.5)–(T1.6) in (T1.8′), the fundamental difference equation can be

rewritten as follows:

[Ψ (kt+1, z3) ≡]
kt+1

1 − Φ (kt+1, z3)
= Γ (kt) , (5.37)

where Γ (kt) is defined in (5.19) above, Φ (k, z3) is given by:

Φ (k, z3) ≡

[
1 + (1 − z3π)1−σ

(
1 − π

1 + ρ

)σ (
1 − δ + αΩ0kα+η−1

)σ−1
]−1

, (5.38)

and z3 is a perturbation parameter (0 ≤ z3 ≤ 1). The partial derivative of Ψ (kt+1, z3)

with respect to the capital intensity is positive, Ψk > 0, but the partial derivative for the

perturbation parameter depends on the magnitude of the intertemporal substitution

elasticity:

Ψz3 S 0 ⇔ σ T 1. (5.39)

We provide the following proposition.

Proposition 5.4. [Existence and stability of the PA model] Consider the PA model as given in

(5.37)–(5.38) and adopt Assumption 5.2. The following properties can be established:

(i) The model has two steady-state solutions; the trivial one features kt+1 = kt = 0, and the

economically relevant satisfies kt+1 = kt = k̂PA, where k̂PA is the solution to:

k̂PA

1 − Φ(k̂PA, 1)
=

(1 − α)Ω0(k̂
PA)α+η

1 + n
.

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂PA.

For any given positive initial value the capital intensity converges monotonically to k̂PA.

(iii) The steady-state capital intensity satisfies the following inequality:

k̂PA S k̂WE ⇔ σ S 1
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Proof: See Heijdra et al. (2010b, Appendix D). �

In the benchmark case the intertemporal substitution elasticity is equal to unity,

so that it follows from (5.39) that the opening up of annuity markets has no effect

on the fundamental difference equation (5.37). There is no transitional dynamics and

the economy with perfect annuities features the same steady-state capital intensity as

under the WE scenario, i.e. kt = k̂PA = k̂WE for all t. In terms of Figure 4(a), the initial

equilibrium is at point E0. Full annuitization rotates the budget line in a clockwise

fashion and the new equilibrium is at point E∞ which lies directly above E1 (since

σ = 1). The additional resources resulting from annuitization are thus shifted entirely

to old age.

Figure 2(d) and Table 2(d) confirm that old-age consumption is significantly higher

following the policy shock. Note also from Figure 2(d) that the switch from WE to

PA is quite different from the switch from WE to TO even though both constitute risk

sharing among old agents. In the latter case the anticipated transfers in old age lead

to reduced saving during youth which ultimately results in capital crowding out. In

contrast, in the former case the savings rate is unaffected by the policy change.

Since transfers are absent both before and after the opening up of annuity markets,

the shock-time old are unaffected by this event, i.e. dEΛ
y
t−1 (z3) /dz3 = 0. The welfare

effect on the young at the time of the policy switch is given by:

dEΛ
y
t (z3)

dz3
= U′(Ĉy) (1 + n) k̂

[
π +

1

1 + r̂

drt+1

dz3

]
> 0, (5.40)

where the first term in square brackets is the direct effect and the second term is the

general equilibrium effect. In the special case with σ = 1 and kt = k̂PA the latter effect

is absent. It is easy to show that for all admissible values of σ welfare unambiguously

rises for all post-shock generations – see also Table 2(d) and Figures 2(b), (f), and (j).

The long-run welfare effect is given by:

dEΛ
y
t+∞ (z3)

dz3
= U′(Ĉy)

[
π (1 + n) k̂ + ∆

dkt+∞

dz3

]
T 0, (5.41)

where we have used Lemma 5.1 (∆ > 0) and note that limτ→∞ kt+τ = k̂PA. The second
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term in square brackets represents the general equilibrium effect on factor prices. Of

course, for σ = 1 these effects are absent and the impact and long-run effects coincide.

Empirical evidence, however, suggests that σ falls well short of unity. It follows

readily from (5.37) and (5.39) that for σ < 1 the impact and long-run effects on the

capital intensity of the opening up of annuity markets are both negative:

dkt+1

dz3

∣∣∣∣
kt=k̂WE

= −
Ψz3

Ψk
< 0,

dkt+∞

dz3

∣∣∣∣
kt=k̂WE

= −
Ψz3

Ψk − Γ′ < 0, (5.42)

where limτ→∞ kt+τ = k̂PA. Equation (5.40) shows that welfare of the shock-time young

increases both because of the direct effect and because of the increase in the future

interest rate. In the long run, however, capital crowding out results in a reduction in

wages which shrinks the choice set and reduces welfare for future generations. Fig-

ures 2(e)–(h) depict the transition paths and Panel B of Table 2 provides quantitative

evidence for the case with σ = 1
2 . As the comparison between columns (e) and (h)

of Table 2 reveals, capital crowding out is so strong that steady-state welfare is lower

under perfect annuities than it is under the WE scenario! This is the first instance of a

phenomenon which we call “the tragedy of annuitization.” Even though it is individu-

ally advantageous to make use of annuity products if they are available, their long-run

general equilibrium effects lead to a reduction in welfare of future generations.

The intuition behind the tragedy is not hard to come by. In the PA case the decen-

tralized steady-state equilibrium is characterized by the resource constraint (L2.2) in

Lemma 5.2 as well as the following conditions:

U′(Ĉy)

U′(Ĉo)
=

(1 − π)
(
1 + r̂A

)

1 + ρ
=

1 + r̂

1 + ρ
, (P1)

α

α + η
f ′(k̂) = r̂ + δ, (P2)

ĝ = 0. (P3)

The PA equilibrium removes two of the distortions plaguing the WE equilibrium. First,

the availability of annuities eliminates the missing-market distortion, i.e. π does not

feature in (P1) whereas it does in (W1). Second, there are no wasteful government

expenditures. Indeed, in the absence of the capital externality (η = 0) and if r̂ = n



The tragedy of annuitization 133

then the PA equilibrium decentralizes the FBSO – compare (S1)–(S3) to (P1)–(P3). But

starting from a dynamically efficient economy (r̂ > n) featuring a plausible value of

the intertemporal substitution elasticity (σ = 1
2 ), the switch from WE to PA is welfare

decreasing because it induces capital crowding out and an increase in the interest rate

in the long run. Hence, the policy switch moves the economy further away from the

FBSO.

5.4.2 From transfers to the young to perfect annuities

We return to the benchmark case (with σ = 1) and assume that annuity markets are

opened up with the economy located in the steady-state equilibrium of the TY sce-

nario, i.e. kt = k̂TY initially. A policy switch from the TY case to the PA scenario now

involves two distinct changes. On the one hand, the availability of annuities boosts the

rate at which the young can save. On the other hand, full annuitization implies that

accidental bequests are absent so that the transfers to the future young are eliminated,

i.e. Z
y
t+τ = 0 for τ = 1, 2, . . .. The combined effect of these shocks can be studied with

the aid of the following fundamental difference equations:

Ψ (kt+1, z3) = Γ (kt, 1) , Ψ (kt+τ+1, z3) = Γ (kt+τ) , τ = 2, 3, . . . , (5.43)

where Γ (kt), Γ (kt, 1), and Ψ (kt+1, z3) are defined in, respectively, (5.19), (5.23) and

(5.37) above. At time t there is a permanent switch from z3 = 0 to z3 = 1. From

t + 1 onwards transfers are absent and the second expression in (5.43) describes the

dynamic law of motion. The resulting difference equations are solved using kt = k̂TY

as the initial condition.

Since σ = 1 the marginal propensity to save out of current resources is constant.

The shock-time young still receive transfers. It follows that there is no effect on saving,

i.e. kt+1 = k̂TY. Of course, the young from period t+ 1 onward no longer receive trans-

fers and these generations will reduce their saving. Over time the economy monoton-

ically converges to k̂PA which is strictly less than k̂TY (since, for σ = 1, k̂PA = k̂WE and

k̂TY
> k̂WE by Proposition 5.3(iv)). Using (5.43) we find the impact and long-run effects
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of the policy change on the capital intensity:

dkt+1

dz3

∣∣∣∣
kt=k̂TY

= −
Ψz3

Ψk
,

dkt+∞

dz3

∣∣∣∣
kt=k̂TY

= −
Ψz3 + Γz2

Ψk − Γ′ , (5.44)

where limτ→∞ kt+τ = k̂PA. Recall that Ψk > 0, Γ′
> 0, Γz2 > 0 and Ψz3 S 0 ⇔ σ T 1.

It follows that there is capital crowding out both at impact and in the long run for

realistic values of σ (i.e., σ < 1) since Ψz3 is positive in that case.

The key effects can be explained with the aid of Figure 4(b). The initial steady state

is at E0 and income during youth is equal to ŵTY + Ẑy. At impact the transfers are

predetermined, but the interest rate at which the young save increases, i.e. the budget

line rotates in a clockwise direction. The new equilibrium is at point E1 which lies

directly above point E0 (since σ = 1). In the long run, transfers are eliminated, capital

is crowded out, the interest rate rises and the wage rate falls. The long-run budget

constraint passes through E∞ which is the new steady-state equilibrium.

We visualize the transitional dynamics (for the case with σ = 1) in Panel A of

Figure 5. The quantitative effects are summarized in Table 2(d). Figure 5(a) confirms

the strong crowding-out effect on the capital intensity. Youth consumption of all but

the shock-time young falls as a result of the elimination of transfers (panel (c)) and old-

age consumption of survivors increases due to the higher return on savings (panel (d)).

Comparing columns (c) and (d) in Table 2 we find that long-run output per worker falls

by more than five percent.

Since the old do not get any transfers both before and after the opening up of an

annuity market and they no longer save, the shock-time old are unaffected by this

event, i.e. dEΛ
y
t−1 (z3) /dz3 = 0. The welfare effect on the young at the time of the

policy switch is given by:

dEΛ
y
t (z3)

dz3
= U′(Ĉy) (1 + n) k̂

[
π +

1

1 + r̂

drt+1

dz3

]
> 0. (5.45)

The shock-time young benefit for all admissible values of σ, i.e. regardless of whether

next period’s capital intensity falls (σ < 1) or rises (σ > 1). To this generation the

benefits of annuitization are clear and simple.

Matters are not so clear-cut for future generations. Indeed, the long-run welfare
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effect is equal to:

dEΛ
y
t+∞ (z3)

dz3
= U′(Ĉy)

[
− π (r̂ − n) k̂ + ∆

dkt+∞

dz3

]
S 0. (5.46)

where we have used Lemma 5.1 (∆ > 0) and note that limτ→∞ kt+τ = k̂PA. The first

term in square brackets is negative in a dynamically efficient economy but the sign of

the second term depends on the strength of the intertemporal substitution effect. For

the empirically relevant case, however, we have 0 < σ < 1, capital is crowded out in

the long run, and long-run welfare unambiguously falls.11

Figure 5(b) shows (for σ = 1) that lifetime welfare is reduced for all future gener-

ations if a private annuity market is opened up. Only the shock-time young benefit

from annuitization. Effectively, private annuities redistribute assets from deceased to

surviving elderly in an actuarially fair way whereas transferring unintended bequests

to the young constitutes an intergenerational transfer. This intergenerational transfer

induces beneficial savings effects, which, in the end, lead to higher welfare. This is the

second example of a tragedy of annuitization. Even though it is individually rational to

fully annuitize, this is not optimal from a social point of view. If all agents invest their

financial wealth in the annuity market then the resulting long-run equilibrium leaves

everyone worse off compared to the case where annuities are absent and accidental

bequests are redistributed to the young.

5.4.3 Discussion

In the previous subsections we have seen two instances of the tragedy of annuitization.

The first (from WE to PA) can be considered the strong version and the second (from

TY to PA) the weak version. The remaining question that must be answered is whether

or not the tragedy is inescapable. Does the introduction of a perfect annuity market

always make future generations worse off?

To answer this question we start by noting that in Table 2 steady-state welfare is

lowest for all scenarios considered in the case where accidental bequests are trans-

11 Indeed, the results in Table 2 confirm that the same conclusion holds for σ = 3
2 – compare columns (j) and

(l). Of course in that case the capital intensity rises somewhat so that the welfare loss from the switch from
TY to PA is smaller.
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Figure 5.4. Private annuities in the exogenous growth model
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Figure 5.5. Transition from transfers to annuities in the exogenous growth model

Panel A: from TY to PA (σ = 1)
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(Figure 5, continued)

Panel B: from TO to PA (σ = 1)

(e) capital intensity (kt+τ) (f) expected lifetime utility (EΛ
y
t+τ)
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ferred to the old (the TO scenario). If the switch from TO to PA would still give rise to

the tragedy then this would be an even stronger version than the one resulting from

the change from WE to PA. It turns out, however, that the tragedy does not arise when

annuity markets are opened under the TO scenario.

Formally, the switch from TO to PA again involves two distinct changes. First, full

annuitization implies that accidental bequests are absent so that the transfers to all but

the shock-time old are eliminated, i.e. Zo
t+τ = 0 for τ = 1, 2, . . .. Second, the avail-

ability of annuities boosts the rate at which the young can save. The combined effect

of these shocks can be studied with the aid of (5.37). At time t there is a permanent

change from z3 = 0 to z3 = 1 and (5.37) is solved using kt = k̂TO as the initial condi-

tion. Since σ = 1 in the benchmark case, the marginal propensity to save out of current

resources is constant. The elimination of old-age transfers then immediately leads to

an increase in saving by the shock-time young, i.e. kt+1 > k̂TO. Over time the economy

monotonically converges to k̂PA which exceeds k̂TO (since, for σ = 1, k̂PA = k̂WE and

k̂TO
< k̂WE by Proposition 5.2(iii)).

In the interest of brevity we restrict attention to the key features of the shock. In

Figure 4(c) the initial steady state is at E0, and non-asset income during youth and old-

age is, respectively ŵTO and Ẑo. At impact future transfers to the shock-time young

and all generations thereafter are eliminated and the rate at which the young save

increases, i.e. the budget line shifts down and becomes steeper. The new equilibrium

is at point E1. In the long run, the capital intensity increases further, the interest rate

falls and the wage rate increases. The long-run budget constraint passes through E∞

which is the steady-state equilibrium.

We visualize the transitional dynamics (for the case with σ = 1) in Panel B of Fig-

ure 5 and summarize the quantitative results in Table 2(d). Figure 5(e) confirms the

strong expansionary effect on the capital intensity. Youth consumption falls at impact

as a result of the elimination of old-age transfers (panel (g)) but rises strongly there-

after. Old-age consumption of survivors increases monotonically as a result of the

expansion in the choice set made possible by strong capital accumulation (panel (h)).

Comparing columns (b) and (d) in Table 2 we find that long-run output per worker

increases by almost fifteen percent. Figure 5(f) shows the welfare effect on shock-time

and future newborns. Interestingly, the shock-time young are worse off as a result
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of the introduction of annuity products. For these agents the increase in old-age con-

sumption is insufficiently large to offset the strong decrease in youth consumption. All

future newborns, however, are better off as a result of annuitization opportunities.

In Panels B and C of Table 2 we present some steady-state evidence for different

values of σ. We find that PA always welfare dominates TO in the long run, regardless

of whether the intertemporal substitution effect is weak (σ = 1
2 in Panel B) or strong

(σ = 3
2 in Panel C).

The findings in this subsection bear a strong resemblance to the literature on the re-

form of PAYG pensions. In a dynamically efficient economy, a PAYG system is Pareto

efficient. A pension reform in the direction of a fully funded system increases welfare

of steady-state generations but harms the shock-time old and possibly the young gen-

erations born close to the time of the reform. The scenario considered here differs from

the pension reform case because the shock is not policy induced but results from the

emergence of a new longevity insurance market.

5.5 The endogenous growth model

In this section we briefly consider the knife-edge case featuring η = 1 − α. The model

then exhibits growth which is driven endogenously by the rate of capital accumula-

tion. We can solve (5.18) for the equilibrium growth rate:

(1 + n) (1 + γ) = [1 − Φ (r̄)]

[
(1 − α)Ω0 +

Z
y
t

kt

]
−

Φ (r̄)

1 + r̄

Zo
t+1

kt
, (5.47)

where γ ≡ kt+1/kt − 1 is the (time-invariant) equilibrium growth rate and we have

used the fact that the interest rate is constant in this scenario such that rt = r̄ ≡ αΩ0 − δ

for all t. Using the expressions in (5.47) we can derive the equilibrium growth rates un-

der the three revenue recycling schemes and after the introduction of a private annuity

market.

(WE) If the government uses the proceeds from the accidental bequests for wasteful
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government expenditures the growth rate becomes:

1 + γWE =
1 − Φ (r̄)

1 + n
(1 − α)Ω0. (5.48a)

(TY) If instead the proceeds are redistributed to the young we find:

1 + γTY =
1 − Φ (r̄)

1 + n
[(1 − α)Ω0 + π (1 + r̄)] . (5.48b)

(TO) If the accidental bequests go the elderly then the growth rate is given by

1 + γTO =
1 + γWE

1 + Φ (r̄) π
1−π

. (5.48c)

(PA) Finally, if a private annuity market is introduced we have:

1 + γPA =
1 − Φ(r̄A)

1 + n
(1 − α)Ω0. (5.48d)

Straightforward inspection of the growth rates reveals that γTY
> γWE

> γTO for

all admissible values of σ. Hence, in terms of growth, it is better to give the accidental

bequests to the young than to use them for wasteful expenditures, yet it is better to let

the accidental bequests go to waste than to give them to the elderly.

Comparison with the private annuities scenario is more subtle. The introduction

of private annuities increases the rate against which individuals save. The savings

response of consumers, and thereby the growth rate in the perfect annuities scenario

relative to the various recycling schemes, depends on the value of the intertemporal

elasticity of substitution σ. For the benchmark case with σ = 1 savings are indepen-

dent of the interest rate and γTY
> γPA = γWE

> γTO. If 0 < σ < 1 the higher

interest rate will lead to less savings than in the benchmark scenario so that we get

γTY
> γWE

> γPA
> γTO. Finally, if σ > 1 the higher interest rate will lead to more

savings which results in γPA
> γWE

> γTO and, depending on the exact magnitude of

σ, γPA T γTY.

In order to compare consumer welfare across the various scenarios we must recog-

nize the fact that steady-state expected lifetime utility grows at a scenario-dependent
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rate in an endogenous growth model. To see this, note that if η = 1 − α we can write

the consumption demand equations (5.5) and (5.6) under scenario i as:

C
y,i
t+τ ≡ Φ

(
ri
)

θiwi
t+τ , Co,i

t+τ+1 ≡ (1 + ri)
[
1 − Φ

(
ri
)]

θiwi
t+τ , (5.49)

where ri = r̄ for i ∈ {WE,TY,TO} and ri = r̄A for i = PA. The value of the parameter

θi depends on the specific scenario i ∈ {WE,TY,TO,PA}.12 Wages grow over time

according to the equilibrium growth rate associated with scenario i:

wi
t+τ =

(
1 + γi

)τ
wt. (5.50)

Consider an economy that is initially in the WE scenario and features a wage rate

at time t equal to wt. Expected lifetime utility of future newborns under scenario i can

then be written as:

ÊΛ
y,i
t+τ ≡





Φ
(
ri
)−1/σ

[
θi
(
1 + γi

)τ
wt

]1−1/σ
−

2 + ρ − π

1 + ρ

1 − 1/σ
for σ > 0, σ 6= 1

Ξ0 +
2 + ρ − π

1 + ρ

[
θi
(
1 + γi

)τ
wt

]
+

1 − π

1 + ρ
ln

(
1 + ri

)
for σ = 1

(5.51)

We call this welfare metric normalized utility. Clearly, ÊΛ
y,i
t+τ depends both on post-

shock time τ and on the scenario-dependent (endogenous) value of γi. From equation

(5.51) we observe that with the introduction of a transfer regime or an annuity market

there is both a level effect (represented by a change in the θi parameter) and a growth

effect (induced by a change in γi). However, over time the growth effect will always

dominate the level effect.

In order to quantify the growth and welfare effects we adopt the following ap-

proach. For n, π, α, δ, and r we use the same values as for the exogenous growth

model (see the text below Proposition 5.1). We calibrate an annual growth rate of one

percent in the WE scenario (γWE = 0.49) and obtain Ω0 = 15.72 and ρ = 1.78 (or 2.58%

annually). The equilibrium growth rate under the various policy schemes is reported

12 For the three public policy regimes we get θWE = 1, θTY =
[
1 + π(1+r̄)

(1−α)Ω0

]
, and θTO =

[
1 + π 1+n

1−π
1+γTO

(1−α)Ω0

]
.

For private annuities ri = r̄A and θPA = 1.
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in Table 4 for different values of σ and the corresponding welfare paths are depicted in

Figure 6.

Table 5.4. Annual steady-state growth rates with endogenous growth

η = 1 − α

(a) (b) (c)

σ = 1
2 σ = 1 σ = 3

2
WE 1.00 1.00 1.00
TO 0.26 0.26 0.26
TY 1.31 1.31 1.31
PA 0.64 1.00 1.35

In line with the exogenous growth model we find that if the economy exhibits en-

dogenous growth and the intertemporal substitution elasticity is in the realistic range

(0 < σ ≤ 1) then it is better to transfer the proceeds of accidental bequests to the young

than to open up a private annuity market – see Table 4 and Figure 6. In addition we

find that for low values of σ it may even be better to waste the accidental bequests than

to have a system of private annuities. Hence, both the weak and the strong version of

the tragedy of annuitization show up in terms of economic growth rates.

Finally, we find that only if σ is unrealistically high (e.g., σ = 3
2 ) private annuities

slightly outperform transfers to the young in terms of growth – see Table 4(c). How-

ever, in terms of welfare, PA only outpaces the TY scenario after three periods (i.e. 120

years) and even then only marginally so – see Figure 6(c).

5.6 Conclusion

We construct a tractable discrete-time overlapping generations model of a closed econ-

omy featuring endogenous capital accumulation. We use this model to study gov-

ernment redistribution and private annuities in general equilibrium. Individuals face

longevity risk as there is a positive probability of passing away before the retirement

period. With an uncertain life expectancy, non-altruistic agents engage in precaution-

ary saving to avoid running out of assets in old age. While they refrain from leaving

intentional bequests to their offspring, they will generally make unintended bequests
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Figure 5.6. Welfare paths in the endogenous growth model

(a) Weak intertemporal substitution effect: σ = 1
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(b) Benchmark: σ = 1
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(c) Strong intertemporal substitution effect: σ = 3
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which we assume to flow to the government. Starting from a case in which the gov-

ernment initially wastes these resources, we investigate the effects on allocation and

welfare of various revenue recycling schemes. Interestingly, we find non-pathological

cases where it is better for long-run welfare to waste accidental bequests than to give

them to the elderly. This is because transfers received in old age cause the individual to

reduce saving which at the macroeconomic level results in a dramatic fall in the capital

intensity and in wages.

Next we study the introduction of a perfectly competitive annuity market offer-

ing actuarially fair annuitization products. We demonstrate that there exists a tragedy

of annuitization: although full annuitization of assets is privately optimal it may not

be socially beneficial due to adverse general equilibrium repercussions. For example,

if the economy is initially in the equilibrium with accidental bequests flowing to the

young, then opening up annuity markets will reduce steady-state welfare regardless of

the magnitude of the intertemporal substitution elasticity. Intuitively, private annuities

redistribute assets from deceased (unlucky) individuals to surviving (lucky) elderly in

an actuarially fair way, whereas transferring unintended bequests to the young consti-

tutes an intergenerational transfer. This intergenerational transfer induces beneficial

savings effects, which, in the end, lead to higher welfare.

The existence of the tragedy is the rule rather than the exception. We find an even

stronger version which states that revenue wasting dominates perfect annuitization,

and we show that it also turns up in an endogenous growth context.

Although the current framework is quite general, an interesting alley for future re-

search is to study how the current model can be generalized further. The most obvious

directions in this respect are a more general utility function and/ or production tech-

nology. Especially regarding the utility side of the model, a function that allows for

gains due to certainty to be included in welfare considerations would add interesting

considerations. In addition to a more general framework, an extension to allow for

a more active government is of interest. For instance, it would be interesting to con-

sider whether the government can allocate the gains from a tax in such a way that the

negative impact of annuities can be counteracted.

This chapter closes our analysis of the role of annuity markets in general equilib-

rium. In the next, and final, chapter we return to the analysis of the consequences of
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demographic change for the macroeconomy. However, in contrast to Chapter 4 we do

not focus on the moderating role of the pension system but we study how different

types of demographic shocks affect the macroeconomy.



Chapter 6

Capital accumulation and the

sources of demographic change∗

* This chapter is based on Mierau and Turnovsky (2011).
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6.1 Introduction

In this chapter we return to the analysis of demographic change initiated in Chapter

4. However, rather than studying the moderating role of the pension system, we use

this chapter to study how different types of demographic change affect the aggregate

economy. How does a change in the birth rate affect the capital stock? How does

a change in the mortality rate affect the capital stock? And what is the impact of a

combined mortality and birth rate shock?

To analyse these issues, we construct a model similar to the one in Chapter 2 but

it differs on a number of key issues. First of all, we step away from the analysis of an

endogenous growth model and focus on an exogenous growth model in which all fac-

tor prices are endogenous. This set-up allows us to study how demographic changes

affect the aggregate capital stock and gives us a basic idea of the dynamics governing

the model. Second, we focus on a model featuring perfect annuity markets instead of

imperfect annuity markets. As we saw in Chapter 2, annuity market imperfections,

although very prevalent, have a mild impact if proper account is taken of the demo-

graphic structure and the redistribution of profits made by the annuity firms. In the

same spirit as Chapter 2 we stick with the analysis of an age-dependent mortality rate.

In the first part of the analysis we study the theoretical aspects of the model. We

build on the contribution of d’Albis (2007) by highlighting the mechanisms whereby

the demographic structure impedes on the macrodynamic equilibrium. This is through

the “generational turnover term”, which refers to the reduction in aggregate consump-

tion due to the addition of newborn agents having no accumulated assets, together

with the departure of agents with accumulated lifetime assets. Different demographic

structures share the feature that they impact on the aggregate macrodynamic equilib-

rium through their effect on the aggregate consumption growth rate. Hence, differ-

ences among various demographic structures reduce to differences in the specification

of the generational turnover term. By explicitly setting out the underlying dynamic

system, we are able to establish that there are in fact two steady-state equilibria, rather

than just the one identified in d’Albis (2007) and much of the remaining literature.

The two equilibria contrast sharply in how they are influenced by the demographic

structure. In the first equilibrium (the one generally identified in the literature) demo-
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graphic factors play an important role. They impede on equilibrium per capita con-

sumption directly, through the impact of the mortality function on the discounting of

future consumption. In contrast, in the second equilibrium we identify, demographic

factors play no direct role, except insofar as they influence the overall population

growth rate. The key feature of this equilibrium is that the equilibrium growth rate

of consumption just equals the growth rate of population. As a result, the amount of

consumption given up by the dying just equals that required to sustain the consump-

tion of the growing population. Accordingly, steady-state consumption is sustainable,

independent of the time profile of the underlying mortality function. However, we

show that this latter steady-state is unsupported by any underlying dynamic path and

is sustainable only in the presence of intergenerational transfer flows, much like the

“bubble” steady-state in the Bommier-Lee (2003) model. We thus effectively dismiss

it as a relevant equilibrium for the current analysis and focus on the “demographic”

equilibrium for the remainder of the analysis.

To enhance our understanding of the dynamics of the model and to prepare for

the numerical analysis, we must add more demographic structure, and we do so by

adopting the Boucekkine, de la Croix, and Licandro (2002) (BCL) mortality function

that we previously employed in Chapters 2 through 4. Using the BCL function we

provide an explicit representation of the aggregate macrodynamic system. This turns

out to be a highly nonlinear fifth order system involving not only capital and con-

sumption, as in the standard representative agent economy, but also the dynamics of

the various elements of the intergenerational turnover term. This model embeds the

Blanchard model, the dynamics of which simplify dramatically due to the constant

mortality assumption, which carries the implication that both human wealth and the

marginal propensity to consume are independent of age. As it stands, the dynamic

system cannot be solved explicitly and we focus on the steady-states in a numerical

analysis. Naturally, the dynamics (and especially transitional dynamics) remains the

obvious next step for future research.

In the numerical simulations we study the steady-state behavior of the model in

response to both structural and demographic changes, illustrating their effects on ag-

gregate quantities, as well as on the distributions of consumption and wealth across

cohorts. Our numerical results show how the effects of a given increase in the popula-
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tion growth rate contrast sharply – both qualitatively and quantitatively – depending

upon whether it occurs through an increase in the birth rate or a decrease in mortality.

Whereas in the former case an increase in the population growth rate is associated with

a mild decline in the capital stock, in the latter case it leads to a substantial increase in

the per capita stock of capital. These differences in turn carry over to other aspects of

the aggregate economy.

This contrast echos the results of Heijdra and Lighthart (2006) who study the two

different types of demographic shocks in a perpetual youth overlapping generations

model. Although the perpetual youth model gives more space to the analytical analy-

sis of the dynamics, the magnitude of the results can be misleading due to the empha-

sis that the model puts on the elderly who are additionally endowed with too many

assets (see also section 2.4.2 and 6.5.1). The contrast between the different types of

demographic shocks is also consistent with empirical evidence obtained by Blanchet

(1988) and by Kelley and Schmidt (1995). The latter summarize the difference in terms

of children, having little accumulated wealth, being “resource users” and working

adults with their accumulated capital being “resource creators”.1 Our numerical re-

sults also confirm the empirical findings of Bloom, Canning, and Graham (2003) who

find that increases in life expectancy leads to higher savings, as well as the consump-

tion patterns obtained by Fair and Dominguez (1991), Attfield and Cannon (2003), and

Erlandsen and Nymoen (2008).

As it stands, the current chapter studies mainly theoretical and quantitative issues

pertaining to fertility and mortality in the neoclassical framework. However, just as the

model in Chapter 2 served as a stepping stone to the analysis of taxation and pensions

in Chapters 3 and 4, the current chapter will serve as a stepping stone for the analysis

of public policy issues in future research. Naturally, revisiting the topics of taxation

and pensions is a natural starting point for further analysis.

The remainder of the chapter is structured as follows. Section 2 lays out the com-

ponents of the underlying analytical framework, while section 3 describes the corre-

sponding macrodynamic equilibrium and steady state. Section 4 focuses on specific

1 It is also consistent with the related evidence from cross-country studies of fertility and growth. These
have typically found the correlations between economic growth and population growth to be negative for
less developed economies, having higher birth rates, and positive for developed economies, with their lower
mortality rates (Kelley, 1988).
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demographic structures and section 5 performs the numerical simulations. The final

section concludes and provides some suggestions for directions in which this research

might be extended.

6.2 The analytical framework

The model developed and analyzed in this chapter shares many features with the mo-

del developed in Chapter 2. Hence, in what follows we keep the explanation brief and

pay attention to the differences between the models rather than the similarities. The

most important differences being that in this chapter we focus on perfect annuity mar-

kets and that we study an exogenous growth model instead of an endogenous growth

model.

6.2.1 Individual household behavior

Discounted expected life-time utility of an individual newborn at time v is:

EΛ (v) =
∫ v+D̄

v
U (C(v, t)) · e−ρ(t−v)−M(t−v)dt, (6.1a)

where C(v, t) denotes the consumption at time t of an individual born at time v, ρ is the

pure rate of time preference, M (t − v) ≡
∫ t−v

0 µ (s) ds is the cumulative mortality rate,

µ (s) is the instantaneous probability of death and D̄ is the maximum attainable age.

The agent supplies a unit of labor inelastically and is assumed to make his consump-

tion and asset accumulation decisions to maximise his expected utility (6.1a) subject to

his budget constraint:

At(v, t) ≡
∂A (v, t)

∂t
= (r (t) + µ (t − v)) A (v, t) + w (t)− C (v, t) , (6.1b)

where A (v, t) are real assets held at time t of an individual born at time v, w (t) is

the wage rate, and r (t) is the real interest rate (see below). Individuals are born with-

out assets, have no bequest motive, and are not allowed to die indebted. Therefore,

A (v, v) = 0, and individuals fully annuitize all their assets against the rate of return
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r (t) + µ (t − v).2

Defining the present value Hamiltonian for an agent born at time v:

H ≡ e−ρ(t−v)−M(t−v) {U (C(v, t)) + λ (v, t) [(r (t) + µ (t − v)) A (v, t) + w (t)− C (v, t)]}

and optimizing with respect to C(v, t) and A (v, t), we obtain:

U′ (C(v, t)) = λ (v, t) , (6.2a)

ρ −
λt (v, t)

λ (v, t)
= r(t). (6.2b)

Equation (6.2a) equates the marginal utility of consumption to the shadow value of

financial wealth, while (6.2b) equates the rate of return on consumption, adjusted by

the mortality hazard rate, to the rate of return on financial assets. In addition, the agent

must satisfy the transversality condition: A (v, v + D) = 0.

For analytical convenience we assume an iso-elastic utility function:

U (C(v, t)) =
C(v, t)1−1/σ − 1

1 − 1/σ
,

where σ is the intertemporal elasticity of substitution. Combining (6.2a) and (6.2b)

enables us to write the Euler equation as:

Ct(v, t)

C(v, t)
= σ (r (t)− ρ) , (6.3)

which expresses how the agent’s consumption changes with age. In particular, equa-

tion (6.3) implies that consumption of all agents grows at a common rate, independent

of their age or level of wealth.

Solving (6.3) forward from time t, the agent’s consumption at an arbitrary time

τ > t is:

C(v, τ) = C(v, t)eσ(R(t,τ)−ρ(τ−t)), (6.4)

where R (t, τ) ≡
∫ τ

t r (s) ds is the cumulative interest rate over period (t, τ) . To ex-

press the agent’s consumption in terms of financial resources, we integrate the budget

2 In this chapter we focus on perfectly functioning annuity markets. See Chapters 2-4 for an analysis of
imperfect annuity markets.
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constraint (6.1b) forward from time t and impose the transversality condition. This

procedure yields the agent’s intertemporal budget constraint operative from time t:

A (v, t) + eR(v,t)+M(t−v)
∫ v+D̄

t
w (τ) e−R(v,τ)−M(τ−v)dτ

= eR(v,t)+M(t−v)
∫ v+D̄

t
C (v, τ) e−R(v,τ)−M(τ−v)dτ. (6.5)

Substituting (6.4) into (6.5) we obtain the following expression for C (v, τ) :

C(v, t) =
A (v, t) +

∫ v+D̄
t w (τ) e−R(t,τ)−(M(τ−v)−M(t−v))dτ

∫ v+D̄
t e(σ−1)R(t,τ)−σρ(τ−t)−(M(τ−v)−M(t−v))dτ

=
A (v, t) + H (v, t)

∆ (v, t)
,

(6.6a)

where:

H (v, t) ≡
∫ v+D̄

t
w (τ) e−R(t,τ)−(M(τ−v)−M(t−v))dτ, (6.6b)

is discounted future labour income (human wealth) at time t of an individual born at

time v, and:

∆ (v, t) ≡
∫ v+D̄

t
e(σ−1)R(t,τ)−σρ(τ−t)−(M(τ−v)−M(t−v))dτ, (6.6c)

is the inverse of the marginal propensity to consume out of total wealth (i.e. financial

wealth, A (v, t), plus human wealth, H (v, t)) at age t − v. Expressions (6.6b) and (6.6c)

show that an increase in the mortality rate leads to a decline in human wealth and an

increase in the marginal propensity to consume, as agents will have a shorter expected

lifespan over which to accumulate assets and to consume the income they generate.

Setting t = v yields the corresponding quantities at birth.

6.2.2 Aggregate household behavior

To obtain aggregate per capita quantities, we sum across cohorts by employing the

following generic aggregator function:

x (t) ≡
∫ t

t−D̄
p (v, t) X (v, t) dv = β

∫ t

t−D̄
e−n(t−v)−M(t−v)X (v, t) dv, (6.7)

where p (v, t) denotes the relative size of the cohort born at time v that is still alive at
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time t. Taking the time derivative of (6.7), the evolution of x (t) is given by:

ẋ(t) = βX (t, t) +
∫ t

t−D̄
p (v, t) Xt (v, t) dv − nx (t)−

∫ t

t−D̄
µ (t − v) p (v, t) X (v, t) dv,

(6.8)

where we have used the fact that (see Box 2.2 for details) that p (t, t) = β, and p (t − D, t) =

0.

Thus, aggregate consumption is:

c (t) ≡
∫ t

t−D̄
p (v, t)C (v, t) dv. (6.9)

Taking the time derivative of (6.9), the dynamics of per capita consumption is de-

scribed by:

ċ (t) =
dc (t)

dt
= (σ [r (t)− ρ]− n) c (t) + βC (t, t)−

∫ t

t−D̄
µ (t − v) p (v, t)C (v, t) dv.

(6.10)

Combining (6.10) with (6.3) we see that:

ċ (t)

c (t)
=

Ct(v, t)

C(v, t)
−

Φ(t)

c (t)
(6.11a)

where:

Φ(t) ≡
∫ t

t−D̄
µ (t − v) p (v, t)C (v, t) dv − βC (t, t) + nc(t) (6.11b)

is the “generational turnover term”. That is, the reduction in aggregate per capita

consumption (below the common consumption growth rate of each cohort) due to the

addition of newborn agents with no accumulated assets and the departure of agents

with assets. It depends upon: (i) total consumption given up by the dying relative to

the average; and (ii) the difference between the consumption of a newborn and the

overall average per capita consumption due to growth.

The expression in (6.11b) provides a very general specification that encompasses

all of the standard demographic models. With zero population growth, the textbook

infinitely-lived representative agent model is obtained by setting β = µ = 0 (implying

D → +∞). If there is (disembodied) population growth, we need to take account of

the fact that at each instant each newborn is immediately endowed with the average
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capital stock, part of which he must immediately set aside for the individuals born at

the next instant. With the intertemporal elasticity of substitution σ, this reduces the

per capita consumption growth rate by Φ (t) /c (t) = σn, so that (6.10) reduces to the

familiar aggregate Euler equation ċ (t) = σ (r (t)− ρ − n) c (t). For a more realistic de-

mographic process, one in which agents are born and eventually die, we get the more

general aggregate Euler equation described in (6.11a). In that case the exact nature of

the demographic process will determine the structure of Φ (see below).

Integrating by parts and simplifying, yields:

Φ(t) = −β
∫ t

t−D̄
e−n(t−v)−M(t−v)[nC (v, t) + Cv (v, t)]dv + nc(t)

= −β
∫ t

t−D̄
e−n(t−v)−M(t−v)Cv (v, t) dv (6.11b’)

where Cv (v, t) represents the change in consumption across cohorts at a given point in

time. Hence, using (6.12) in (6.10) the evolution of aggregate per capita consumption

can be written as:

ċ (t) = σ [r (t)− ρ] c (t)− β
∫ t

t−D̄
e−n(t−v)−M(t−v)Cv (v, t) dv. (6.12)

To determine the sign of Φ (t) we use the fact that at any instant in time, the rate of

change of consumption of agents of age t− v is Ċ (v, t) = Cv (v, t)+Ct (v, t) .3 Recalling

(6.3), and letting γ (v, t) ≡ Ċ (v, t) /C (v, t) denote the growth rate of consumption this

implies:

Cv (v, t) = [γ (v, t)− σ [r (t)− ρ]]C (v, t) .

Thus, a sufficient condition to ensure that Φ (t) > 0 is that the growth rate of con-

sumption with age exceeds the overall growth rate of consumption. In steady-state,

γ (v, t) = 0, implying that Cv (v, t) = −Ct (v, t) = −σ (r (t)− ρ) c (t) and we immedi-

ately derive Φ (t) = σ (r (t)− ρ) c (t).

Employing (6.7) again, aggregate per capita assets are:

a (t) ≡
∫ t

t−D̄
p (v, t) A (v, t) dv. (6.13)

3 Formally the rate of change of consumption of t − v year old agents is limh→0
C(v+h,t+h)−C(v,t)

h .
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Taking the time derivative of (6.13) and using (6.1b), per capita asset accumulation is

determined by:

ȧ(t) =
∫ t

t−D̄
p (v, t) [(r (t) + µ (t − v)) A (v, t) + w (t)− C (v, t)] dv

−
∫ t

t−D̄
[n + µ (t − v)] · p (v, t) A (v, t) dv

so that

ȧ(t) = (r (t)− n) a (t) + w (t)− c (t) , (6.14)

where we have used the fact that A (t, t) = 0. The per capita rate of asset accumula-

tion differs from the individual rate of asset accumulation, due to the fact that (i) the

amount µA is a transfer by insurance companies from those who die to those who re-

main alive and thus does not add to aggregate wealth; and (ii) account has to be taken

of the growing population.

6.2.3 Firms

Output is produced by a representative firm in accordance with the neoclassical pro-

duction function having constant returns to scale and adhering to the Inada-conditions:

Y (t) = F (K (t) , L (t)) , FK > 0, FL > 0, FKK < 0, FLL < 0, FLK > 0, (6.15)

lim
K→0

FK = lim
L→0

FL = ∞ and lim
K→∞

FK = lim
L→∞

FL = 0,

where Y (t) is output, K (t) is capital, and L (t) is aggregate labor supply. In per capita

terms this may be expressed as:

Y (t)

L (t)
≡ y (t) = F

(
K (t)

L (t)
, 1

)
= f (k (t)) . (6.15’)

Assuming that labor and capital are paid their marginal products, the equilibrium

wage rate and return to capital are determined by:

w (t) = f (k (t))− f ′ (k (t)) k (t) , (6.16a)

r (t) = f ′ (k (t))− δ, (6.16b)
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where δ is the depreciation rate of capital.

6.3 General Equilibrium

In equilibrium, both the capital and the labor market must clear. Labor market clear-

ance is reflected in the fact that all agents are fully employed so that the total popu-

lation equals the total labor force. Capital market equilibrium is imposed by setting

aggregate assets equal to total capital A (t) = K (t), so that in aggregate per capita

terms a (t) = k (t), implying further that ȧ (t) = k̇ (t) .

Substituting the factor pricing relations (6.16) into (6.14) and (6.12) enables us to

summarize the dynamics of the macroeconomic equilibrium in the form:

k̇(t) = f (k(t))− c(t)− (δ + n) k (t) (6.17a)

ċ (t) = σ
(

f ′ (k (t))− δ − ρ
)

c (t)− Φ(t) (6.17b)

where

Φ (t) = −β
∫ t

t−D̄
e−n(t−v)−M(t−v)Cv (v, t) dv. (6.17c)

This pair of dynamic equations in k̇ and ċ will be recognized as being a variant of

the standard textbook neoclassical growth model. Equation (6.17a) is the standard

aggregate per capita accumulation of capital relationship, where the normalization

of individual labor supply at unity implies that that aggregate labor supply is equal

to one, while (6.17b) is the aggregate Euler equation, determining the intertemporal

allocation of consumption.

The key point to emphasize with regard to expressing the macroeconomic equi-

librium in this way is that it highlights how the demographic structure impedes on

the economy through the generational turnover term, Φ (t), and its impact on the ag-

gregate Euler equation. It provides a very general representation in which various

specifications of the demographic structure can be embedded. In the case of the pio-

neering Blanchard (1985) model, and variants such as those developed by Buiter (1988)

and Weil (1989), the evolution of (6.17) is very straightforward and the full model can

be described by a three dimensional dynamic system; see e.g. Blanchard (1985, p.234)
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and below.

However, the fact that Φ depends upon how consumption at any instant of time

varies across cohorts means that for more general demographic structures its dynamic

evolution can be very complex. As we demonstrate in Section 4 below, a more realistic

demographic structure leads to a much higher dynamic system, due to the fact that

the marginal propensity to consume varies over the life-cycle. In general, in order to

characterize the aggregate dynamics and to prevent them from being totally intractable

it is necessary to impose some constraints on the demography.4

6.3.1 Steady-State

In the steady-state, consumption, asset accumulation, relative cohort size, survival and

mortality no longer depend upon calendar time but only on age (u ≡ t − v ). As a

result, with no long-run per capita growth, per capita consumption, c (t), per capita

capital stock, k (t), the wage rate, w (t), the return to capital, r (t), and the genera-

tional transfer term, Φ (t) , are all constant over time. We shall denote all steady-state

quantities by tildes.

Thus, when the aggregate economy is in steady state, consumption grows at the

steady rate σ (r̃ − ρ) with age, so that the consumption level of an individual of age is

equal to:

C̃ (u) = C̃0eσ(r̃−ρ)u (6.18)

where, setting t = v in (6.6a), consumption at birth, C̃0 can be expressed as:

C̃0 =
w̃
∫ D̄

0 e−r̃u−M(u)du
∫ D

0 e−(r̃(1−σ)+σρ)u−M(u)du
. (6.19)

In the steady-state p (v, t) = p (u) = βe−nu−M(u) implying that aggregate consumption

per capita is:

c̃ ≡
∫ D̄

0
p (u) C̃ (u) du = βC̃0

∫ D̄

0
e(σ(r̃−ρ)−n)u−M(u)du. (6.20)

4 Having obtained k (t), one can determine the time paths for the return to capital r (t) and the wage rate
w (t). Having obtained these one can then derive the dynamics of consumption, savings, and capital accu-
mulation across cohorts.
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Defining the function:5

Ξ (λ) ≡
∫ D̄

0
e−λs−M(s)ds,

we can combine (6.18)-(6.20) to express the steady-state per capita consumption, (6.20)

as:

c̃ = w̃
Ξ (r̃)

Ξ (r̃ (1 − σ) + σρ)

Ξ (n − σ (r̃ − ρ))

Ξ (n)
. (6.21)

Finally, using the demographic steady-state condition,

1

β
=

∫ D̄

0
e−nu−M(u)du = Ξ(n)

we can write:

c̃ = βw̃
Ξ (r̃) · Ξ (n − σ (r̃ − ρ))

Ξ (r̃ (1 − σ) + σρ)
(6.21’)

as in d’Albis (2007, p.416).

Substituting for the steady-state factor prices, (6.16), the steady-state equilibrium

values of per capita consumption, c̃, and capital, k̃, are jointly determined by:

c̃ = f
(
k̃
)
− (δ + n) k̃ (6.22a)

c̃ = β[ f (k̃)− k̃ f ′(k̃)]
Ξ
(

f ′(k̃ − δ)
)
· Ξ

(
n − σ

(
f ′(k̃)− δ − ρ

))

Ξ
(
[ f ′(k̃)− δ] (1 − σ) + σρ

) (6.22b)

where the demographic characteristics are embedded in the Ξ-function. Letting s
(
k̃
)
≡

k̃ f ′
(
k̃
)

/ f
(
k̃
)

denote the equilibrium share of capital, d’Albis (2007) shows that the

pair of equations (6.22a) and (6.22b) have a unique solution as long as limk̃→0 s
(
k̃
)
=

[0, 1) and s̃ < ẽ, where ẽ is the elasticity of substitution in production and σ < 1.6 Both

conditions are mild and hold for the Cobb-Douglas production function, for example.

Figure 1 illustrates this equilibrium for the calibrated model specified in Section 6.5,

where AA represents (6.22a), BB depicts (6.22b), and the two intersect at the point P.

5 Our Ξ-function is very common in the overlapping generations literature and appears in one form or the
other in d’Albis (2007), Heijdra and Romp (2008), Gan and Lau (2010) and Chapters 2-4 above.

6 These conditions have been relaxed in subsequent work by Gan and Lau (2010), who show further that
uniqueness is still obtained if σ ≥ 1.
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Figure 6.1. Steady-State Equilibrium

6.3.2 A ‘non-demographic’ steady-state

The steady-state equilibrium discussed in the previous section is the one identified

by d’Albis (2007), Lau (2009), and Gan and Lau (2010). While they argue that the

solution to (6.22a) and (6.22b) is unique, there is in fact a second steady-state equi-

librium associated with the underlying dynamic system (6.17). This can be identi-

fied by taking the following steps: (i) substitute (6.12) into (6.12), (ii) use the result

Ċ (v, t) = Cv (v, t) + Ct (v, t) , and (iii) recall (6.3), thereby enabling us to rewrite (6.12)

as

ċ (t) = [σ (r (t)− ρ)− n]

[
c (t)− β

∫ t

t−D̄
e−n(t−v)−M(t−v)C (v, t) dv

]

+β
∫ t

t−D̄
e−n(t−v)−M(t−v)Ċ (v, t) dv. (6.12’)
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Now, for notational convenience, let us define

X (t) ≡ c (t)− β
∫ t

t−D̄
e−n(t−v)−M(t−v)C (v, t) dv and, hence,

Ẋ (t) ≡ ċ (t)− β
∫ t

t−D̄
e−n(t−v)−M(t−v)Ċ (v, t) dv

permitting us to express (6.23) in more compact form

Ẋ (t) = [σ (r (t)− ρ)− n] X (t) (6.23)

Recalling (6.18), equation (6.23) is seen to yield the two steady-state conditions

(i) σ (r̃ − ρ) = n and (ii) c̃ = βC̃0

∫ D̄

0
e(σ(r̃−ρ)−n)u−M(u)du (6.23’)

Thus, in addition to (6.22a) and (6.22b), the pair of equations

f
(
k̃
)
= c̃ + (δ + n) k̃, (6.24a)

σ
(

f ′ (k)− δ − ρ
)
− n = 0, (6.24b)

define an alternative steady-state. This is illustrated in Fig. 1 for the calibrated mo-

del by the intersection of AA and the vertical line CC, corresponding to (6.24b), at the

point, Q. The key point to observe is that this steady-state is independent of the demo-

graphic structure, except insofar as this determines the overall population growth rate

through the demographic steady-state condition.

There is a sharp contrast between (6.24b) which characterizes the “non-demographic”

steady-state and (6.20) [and (6.22b)], where the demographic structure plays and im-

portant role through the impact of the mortality function on the discounting of future

consumption. Recalling (6.18) and (6.24b), the key feature of this ‘non-demographic

equilibrium’ is that the steady-state growth rate of consumption across cohorts just

equals the growth rate of the population. In that case, the amount of consumption

given up by the dying just equals that required to sustain the consumption of the

growing population.

The underlying dynamic equation (6.23) is similar in structure to equation (10)
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of Bommier and Lee (2003), with (6.22b) corresponding to their “balanced” equilib-

rium and (6.24b) corresponding to their “bubble” equilibrium.7 Since we know that

X (t) = 0, for all t, while σ (r (t)− ρ) − n = 0 holds only in the non-demographic

steady-state, where σ (r̃ − ρ) = n, equation (6.23) can help determine the relevance of

the two steady-states. Thus, suppose the system starts out with an arbitrary aggregate

capital stock, such that σ (r (t)− ρ)− n 6= 0. In this case, X (t) = Ẋ (t) = 0 for all t,

and eventually as the economy evolves we reach the demographic steady-state:

X̃ ≡ c̃ − β
∫ D̄

0
e−nu−M(u)C (u) du = 0

This occurs irrespective of the path of [σ (r (t)− ρ)− n] , making it clear that the de-

mographic steady-state is in fact the relevant one.

Now consider what happens if the initial capital stock, k̃N , yields σ (r̃ − ρ) = n and

the economy is in the non-demographic steady-state. From (6.22a), the corresponding

per capita consumption is c̃N , while the implied return to capital and wage rate are

respectively r̃N and w̃N . Given these steady-state values, the agent’s steady-state in-

tertemporal budget constraint (6.19), and the steady-state aggregation of consumption

across cohorts, (6.20) yield the following two solutions for consumption at birth, C̃0 :

C̃0 = w̃

∫ D̄
0 e−r̃u−M(u)du

∫ D̄
0 e−(r̃−n)u−M(u)du

and C̃0 =
c̃N

β
∫ D̄

0 e−M(u)du
. (6.25)

However, these two solutions are, in general, inconsistent, and consequently the “non-

demographic” steady-state is in general not viable.8

The question of viability of the bubble equilibrium is discussed by Tirole (1985) and

Bommier and Lee (2003). They suggest that certain institutions, such as intergenera-

tional transfers or money, may exist that assure imbalance in the capital market, which

in their case lead to asset bubbles. In a similar vein, it may be possible to devise a

suitable system of transfers that reconciles the two solutions for consumption at birth,

7 The “bubble” steady-state was first identified by Tirole (1985) for a Diamond-Samuelson model and gen-
eralized to the continuous case by Bommier and Lee (2003, p. 146 ff.).

8 However, the “non-demographic” steady-state does satisfy the transversality condition, so it cannot be
ruled out as being unsustainable on the grounds of intertemporal insolvency.
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C̃0 implied by (6.25).9

Although we refrain from analyzing such transfers further, it is instructive to com-

pare the two equilibria at P and Q, with the steady-state obtained in the infinitely-lived

representative agent model. Denoting the corresponding steady-state per capita capi-

tal stocks by k̃P, k̃Q and k̃R, these three quantities are determined respectively by:

σ
(

f ′
(
k̃P

)
− δ − ρ

)
=

Φ̃

c̃
(6.26a)

σ
(

f ′
(
k̃Q

)
− δ − ρ

)
= n (6.26b)

σ
(

f ′
(
k̃R

)
− δ − ρ

)
= σn (6.26c)

Recalling (6.12), (6.26) implies that if (i) the total consumption given up by the

dying exceeds the consumption of the newborn, and if (ii) the intertemporal elasticity

of substitution, σ < 1, that k̃P < k̃Q < k̃R.10 Having established the basic properties of

the “non-demographic” steady-state, for the remainder of the chapter we return to the

analysis of the more relevant “demographic” steady-state.

6.3.3 Capital maximizing birth rate

Having established the steady-state characteristics of the model we now turn to the re-

lationship between the aggregate capital stock and the underlying demographic struc-

ture. d’Albis (2007) argues that there exists a birth rate that maximizes the per capita

capital stock. He defines the measure: αx ≡
∫ D̄

0 up(u)x(u)du/
∫ D̄

0 p(u)x(u)du where

αx measures the average of the quantity x (u) across cohorts. He then shows that the

capital stock-maximizing birth rate occurs where the average age of workers equals

the average age of asset holders, i.e. αW = αA. In our case it is straightforward to

show that:

sgn(αA − αW) = sgn

(∫ D̄

0
uÃ(u)p(u)du −

∫ D̄

0
up(u)du ·

∫ D̄

0
Ã(u)p(u)du

)
(6.27)

9 In general, these transfer systems need to consist of an unproductive entity that transfers and collects
resources from the agents in such a way that on aggregate the transfered and collected resources do not
balance. The surplus or deficit of such a system may be due to capital flows to or from abroad in an open
economy or, in a closed economy, an unbalanced pay-as-you-go pension system (see Bommier and Lee,
2003, p.150).
10 In the sense that case all steady states are dynamically efficient, in that the capital stocks would be less
than at the golden rule.
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Using the fact that p (u) may be interpreted as a probability density function we con-

clude that for αW = αA the covariance between Ã (u) and u must be zero.11 For this to

be so, assets either have to be constant over the life-cycle or their time profile has to be

linearly independent of the age profile.

To see that assets are actually hump-shaped over the life cycle, rather than constant,

note that in the steady state, agents accumulate assets according to:

˙̃A (u) = (r̃ + µ (u)) Ã (u) + w̃ − C̃(u), (6.28a)

so that starting with a zero initial capital endowment, Ã (0) = 0, the agent’s wealth at

age u is:

Ã (u) =
∫ u

0

[
w̃ − C̃(u)

]
e−r̃u−M(u)du, (6.28b)

with the transversality condition implying:

∫ D̄

0

[
w̃ − C̃(u)

]
e−r̃u−M(u)du = 0. (6.28c)

Under weak conditions, d’Albis shows that in this steady-state r̃ > ρ, so that agents’

consumption grows uniformly over their lifetimes.

Using this fact, in conjunction with (6.18), (6.19), and (6.28a), one can show that

because Ã (0) = Ã (D̄) = 0, ˙̃A (0) > 0, ˙̃A (D̄) < 0, and that the agent’s assets reach a

maximum at an age û:

Ã(û) =
C̃(û)− w̃

r̃ + µ(û)
.

Thus, the time profile of the agent’s wealth over the life-cycle is hump shaped as illus-

trated in Panel (iii) of Figures 3-5.

As the asset profile is hump shaped over the life-cycle it may be that there exists

a unique value of the birth rate such that the asset profile and the age profile are not

linearly dependent. In that case the average age of asset holders equals the average age

of the workers. But as savings are primarily used to finance consumption later in life,

it is fair to suppose that the average age of the capital owner is higher than the average

age of the worker. Indeed, in our simulations we show that for a realistic mortality

11 The key result that is being employed is that E (xy) = E (x) E (y) + cov (x, y) .
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function αA = 52.65, αW = 43.08. Thus, we find that an increase in the population

growth rate associated with an increase in the birth rate leads to a reduction in the

per capita stock of capital. In contrast, our simulations also show that if the increase

in the population growth rate is the result of a reduction in mortality it will result in

an increase in the per capita capita capital stock; see Table 2 and Section 5.12 This

contrast in the two ways of increasing the growth rate of population is consistent with

the empirical evidence on this issue obtained by, inter alia, Kelley and Schmidt (1995),

Bloom, Canning and Graham (2003) and Erlandsen and Nymoen (2008).

6.4 Specific Demographic Models

Thus far, we have not imposed any restrictions on the exact form of the survival func-

tion. To proceed further, we focus on the functional form proposed by Boucekkine,

de la Croix, and Licandro (2002) labeled BCL, which was used extensively in Chapter

2-4. As we saw there, it is very tractable, amenable to numerical simulations and fits

the data well (for details see Box 2.2). For comparative purposes, and to show how it

fits into our analytical framework, we also discuss the familiar demographic structure

proposed by Blanchard (1985), Buiter (1988) and Weil (1989) labeled BBW.13

6.4.1 BCL demographic structure

While the general macrodynamic equilibrium is summarized by the system (6.17), the

evolution of Φ (t) may in fact be complex, requiring one to consider the dynamics of

its components. To this end it is practical to begin with the alternative definition of

Φ (t), given in (20b), which for the BCL function becomes:

Φ (t) =
βη1

η0 − 1

∫ t

t−D̄
e(η1−n)(t−v) · C (v, t) dv − βC (t, t) + nc(t).

12 In an early contribution Sinha (1986) finds the same results in a numerical simulation of the Diamond-
Samuelson (DS) model.
13 Alternatively, Bruce and Turnovsky (2010) use the de Moivre function which has the advantage of includ-
ing both the DS and BBW specifications as special cases, but is less tractable than the BCL function.
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Using (6.4) and (6.6) we can write:

Φ (t) = Γ (t)− β
HB (t)

∆B (t)
+ nc(t), (6.29)

where:

Γ (t) =
βη1

η0 − 1

∫ t

t−D̄
C (v, t) e(η1−n)(t−v)dv (6.30a)

HB (t)

∆B (t)
= C (t, t) (6.30b)

and

HB (t) ≡ H (t, t) =
∫ t+D̄

t
w (τ) e−R(t,τ)−M(τ−t)dτ, (6.30c)

∆B (t) ≡ ∆ (t, t) =
∫ t+D̄

t
e(σ−1)R(t,τ)−σρ(τ−t)−M(τ−t)dτ. (6.30d)

That is, HB (t) and ∆B (t) are, respectively, the amounts of human wealth and the in-

verse marginal propensity to consume at birth.

Differentiating (6.30a)-(6.30d), imposing the factor prices (6.16a), (6.16b), and recall-

ing the dynamics of consumption and capital (6.17a), (6.17b), the full dynamic system

can then be expressed as:14

ċ (t) =
(
σ
(

f ′ (k (t))− δ − ρ
)
− n

)
c (t)−

βη1

η0 − 1
Γ (t) + β

HB (t)

∆B (t)
(6.31a)

k̇ (t) = f (k (t))− (δ + n) k (t)− c (t) (6.31b)

Γ̇ (t) =
HB (t)

∆B (t)
−

HB (t−D̄)

∆B (t−D̄)
eσR(t−D̄,t)+(η1−n−σρ)D̄

+
(
σ
(

f ′ (k (t))− δ − ρ
)
+ µ1 − n

)
Γ (t) (6.31c)

∆̇B (t) = −1 −
(
(σ − 1)

(
f ′ (k (t))− δ

)
− σρ + µ1

)
∆B (t)

+
η1η0

η0 − 1

∫ t+D̄

t
e(σ−1)R(t,τ)−σρ(τ−t)dτ (6.31d)

ḢB (t) = − f (k (t)) + f ′ (k (t)) k (t) +
(

f ′ (k (t))− δ − µ1

)
HB (t)

+
η1η0

η0 − 1

∫ t+D̄

t
w (τ) e−R(t,τ)dτ (6.31e)

14 In determining (40d), (40e) we have used eµ1(τ−t) = µ0 − e−M(τ−t) (µ0 − 1) .
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This comprises a fifth-order system in: (i) per capita consumption, (ii) per capita cap-

ital stock, (iii) the consumption given up by the dying, (iv) the initial human wealth

of the new born, and (v) the (inverse) of the marginal propensity to consume out of

wealth by the newborn. In principle, the dynamics can be analyzed using numerical

simulations. We should note that with HB and ∆B being evaluated both at time t and at

time t − D̄ this involves the analysis of mixed differential-difference equations, which

presents a computational challenge that is beyond the scope of the present chapter.15

Indeed, as d’Albis and Augeraud-Véron (2009) emphasize, the characterization of the

dynamics in terms of a mixed differential-difference equation is essentially generic in

continuous-time overlapping generations models, one of the few exceptions being the

BBW model.16

Steady state

Defining ϕ (x, D̄) ≡
(

1 − e−xD̄
)

/x, the steady state can be summarized by the follow-

ing system17

A. Demographic Variables

1

β
=

1

η0 − 1
[η0 ϕ(n, D̄)− ϕ(n − η1, D̄)] (6.32a)

D̄ =
ln η0

η1

(6.32b)

B. Economic Variables

C̃0 =
w̃ [η0 ϕ(r̃, D̄)− ϕ(r̃ − η1, D̄)]

[η0 ϕ(σρ + (1 − σ)r̃, D̄)− ϕ(σρ + (1 − σ)r̃ − η1, D̄)]
(6.32c)

c̃ =
βC̃0

σ(r̃ − ρ)− n

{
η1

η0 − 1
ϕ (σ(ρ − r̃) + n − η1,D̄)− 1

}
(6.32d)

f (k̃) = c̃ + (δ + n)k̃ (6.32e)

15 In the special case of constant returns and a rectangular survival function it becomes possible to charac-
terize the equilibrium dynamics; see, for instance, d’Albis and Augeraud-Véron (2009) and the references
therein. As they point out, the representation of the equilibrium dynamics by a mixed differential-difference
equation introduces oscillations into the transitional path.
16 The reason that the BBW model can be represented by a system of ordinary differential equations is be-
cause all individuals have the same life-expectancy independent of age.
17 We are focusing on the ‘demographic equilibrium’ at which σ (r̃ − ρ) 6= n.
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where r̃ and w̃ are defined in (6.16a) and (6.16b). Equations (6.32a) and (6.32b) de-

fine the demographic structure, summarized by the four parameters, β, η0, η1, and n.

Given the demographic parameters and the definitions of r̃ and w̃ , equations (6.32c)-

(6.32e) determine the economic variables, C̃0, c̃ and k̃. By combining (6.32c) and (6.32d)

this can be reduced to a pair of equations in c̃ and k̃, which is analogous to (6.22a) and

(6.22b). Having determined the aggregates, the steady-state age profiles of consump-

tion and asset accumulations can be obtained by substituting (6.32c) into (6.18) and

(6.28).

The system (6.32) provides the basis for our numerical simulations in Section 5. We

use this system to examine the effects of a number of economic and demographic struc-

tural changes on both the aggregate behaviour of the economy and on the patterns of

consumption and asset accumulation over the life cycle.

6.4.2 BBW demographic structure

For comparative purposes it is useful to show how the BBW model fits into this frame-

work. Blanchard (1985) assumes the birth rate to be equal to the mortality rate (β = µ),

so that the net population growth rate is zero. Buiter (1988) relaxes this assumption

and extends the model to the case where β 6= µ, effectively combining the Blanchard

model with that of Weil (1989).

The survival function is specified by:

S (t − v) ≡ e−M(t−v) = e−µ(t−v), (6.33)

from which we immediately infer that the hazard rate, µ, is constant, while the relative

cohort size is p (v, t) = βe−β(v−t). The demographic steady-state holds by definition,

life-expectancy equals 1/µ and is constant over the life cycle, while the average age of

workers is 1/β.

The key variable in the dynamics, the generational turnover term, Φ (t), now sim-

plifies drastically to:

Φ (t) =
∫ t

−∞
µ · βeβ(v−t) · C (v, t) dv − βC (t, t) + nc(t)

= (µ + n)c (t)− βC (t, t) . (6.34)
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Introducing the BBW structure into (6.6a) leads to:

C(v, t) =
A (v, t) +

∫ ∞

t w (τ) e−R(t,τ)−µ(τ−t)dτ∫ ∞

t e(σ−1)R(t,τ)−σρ(τ−t)−µ(τ−t)dτ
=

A (v, t) + H (t)

∆ (t)
. (6.35)

The crucial characteristic that renders the model so tractable is that all agents have the

same planning horizon (i.e., ∞) and mortality rate (i.e., µ). Therefore, human wealth,

H (t), (future discounted income from labour) is the same for all agents, irrespective

of their age. The same applies to ∆ (t), the (inverse of) the marginal propensity to

consume out of human wealth:

∆ (t) =
∫ ∞

t
e(σ−1)R(t,τ)−σρ(τ−t)−µ(τ−t)dτ. (6.36)

Differentiating (6.36), its dynamics are governed by:

∆̇ (t) = −1 − ((σ − 1) r (t)− σρ − µ)∆ (t) . (6.37)

Aggregate per-capita consumption is:

c (t) ≡
∫ t

−∞
p (v, t)C (v, t) dv =

∫ t

−∞
p (v, t) [∆ (t)]−1 (A (v, t) + H (t)) dv

= [∆ (t)]−1 (a (t) + H (t)) = [∆ (t)]−1 (k (t) + H (t)) . (6.38)

From (6.6a) consumption of a new born, C (t, t) , is:

C (t, t) = [∆ (t)]−1H (t) = c(t)− [∆ (t)]−1k (t) . (6.39)

Hence, using (6.34), and recalling that n = β − µ, we can write the aggregate dynamic

system as:

k̇ (t) = f (k (t))− (δ + n) k (t)− c (t) (6.40a)

ċ (t) = σ
(

f ′ (k (t))− δ − ρ
)

c (t)− β[∆ (t)]−1k (t) (6.40b)

∆̇ (t) = −1 −
(
(σ − 1)

(
f ′ (k (t))− δ

)
− σρ − µ

)
∆ (t) , (6.40c)

thus reducing it to a tractable third order system; see also Blanchard (1985, p. 234). The
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steady state follows readily by setting k̇ (t) = ċ (t) = ∆̇ (t) = 0.

6.5 Numerical Simulations

To obtain further insights, we simulate the steady-state demographic equilibrium us-

ing the BCL survival function. To do this, we first estimate its two parameters, η0 and

η1, by nonlinear least squares, using US cohort data for 2006.18 The estimation results

reported in Table 1 highlight that we obtain a tight fit with highly significant param-

eter estimates. The resulting estimated survival function is illustrated in Fig. 2. Since

we do not consider childhood and education, we normalize the function so that birth

corresponds to age 18. As can be seen in the figure it tracks the actual survival data for

the United States closely from age 18 until around 95. Beyond that age its concavity

does not match the data particularly well. However, we do not view that as serious

since only 1.5% of the US population exceeds 95 and these individuals are generally

retired and are relatively inactive in the economy.19 For comparative purposes we also

estimate and illustrate the BBW survival function in Table 1 and Fig. 2. Being convex,

rather than concave, it does does not match the data well.

Table 6.1. Estimated Survival Functions

S (u) = I (u ≤ D)
µ0−eµ1u

µ0−1 + ε where ε ∼ i.i.d.
(
0, σ2

)1

S (u) = eµu + ε where ε ∼ i.i.d.
(
0, σ2

)2

Demographic function BCL1 BBW2

η0
(st. dev.)

78.3618
(6.0193)

η1(µ)
(st. dev.)

0.0566
(0.0011)

0.0112
(0.0011)

Adj. R2 0.9961 0.6157
1Boucekkine, de la Croix and Licandro (2002): I (u ≤ D)
is an indicator function that is 1 for u ≤ D and 0 otherwise.

2Blanchard (1985)-Buiter (1988)-Weil (1989)

18 Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for De-
mographic Research, Rostock (Germany). Available at www.mortality.org or www.humanmortality.de (data
downloaded on 12/10/2010).
19 With this in mind, it might be more appropriate to refer to D̄ as the maximum attainable economic age.
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Figure 6.2. Demography

Table 2 summarizes the key structural parameters for the baseline economy, all

of which are quite standard. Output is produced by a Cobb-Douglas function, y =

Akα l̄1−α, where A is the exogenous technology index, l̄ denotes inelastically supplied

labour, with the elasticity of capital α = 0.35 and depreciation rate δ = 0.05. With

respect to preferences, we set the intertemporal elasticity of substitution to 0.5, consis-

tent with the consensus estimates reported by Guvenen (2006). We take ρ = 0.035 to

be the rate of time preference.

The baseline calibration adopts the demographic parameters estimated above. Thus,

the estimates of the BCL function imply a maximum attainable age of 95.06 and life ex-

pectancy at age 18 of 78.38. These are a little low, reflecting the fact that, as Fig. 2

illustrates, the function fails to capture the outliers beyond age 90. We take the pop-

ulation growth rate to be 1.00% which given the survival function, implies a birth

rate of 2.24%. This is a little high because the population growth rate also takes into
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Table 6.2. Baseline Parameters and Benchmark Equilibrium

Baseline Model

Structural Parameters BCL1 BBW2

Total factor productivity A 1 1
Capital share of output α 0.35 0.35
Depreciation rate δ 5% 5%
Inter-temporal substitution elasticity σ 0.35 0.35
Time preference rate ρ 3.5% 3.5%
Demographic Parameters

Youth mortality µ0 78.3618 N/A
Old age mortality µ1 0.0566 0.0112
Birth rate (implied) β 2.24% 2.12%
Life-expectation at 18 (Age) L18 78.38 89.29
Average age of workers αW 43.08 32.76
Average age of asset holders αA 52.65 61.29
Maximum attainable age (implied) D̄ 95.06 ∞

Population growth rate n 1.00% 1.00%
Implied Economic Variables

Per capita capital stock k̃ 5.6226 7.4044
Per capita output ỹ 1.8301 2.0152

Capital/ Output ratio k̃/ỹ 3.0722 3.6742
Real interest rate r̃ 6.39% 4.52%
Wage rate w̃ 1.1896 1.3099
Average per capita consumption c̃ 1.4928 1.5710

Marginal propensity to consume at birth [∆B]
−1 0.053 0.051

1Boucekkine, de la Croix and Licandro (2002)
2Blanchard (1985)-Buiter (1988)-Weil (1989)

account immigration. The implied equilibrium economic variables include an equilib-

rium capital-output ratio of 3.07 and a real net return on capital of 6.39%. The marginal

propensity to consume at birth out of wealth is approximately 0.053%, and the each

cohort’s consumption grows at 1.45% with age. The corresponding parameters and

implied equilibrium values for the BBW model are also reported in Table 2. It yields a

much higher life expectancy, due to the fact that the maximum attainable age in that

model is infinite.

From this initial baseline equilibrium we analyze the steady-state effects of two

types of structural changes: (i) an increase in productivity; (ii) changes in the demo-

graphic structure.
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6.5.1 Increase in productivity

We consider a neutral technological change, where A increases by 25% from 1 to 1.25.

As seen from Row 2 in Table 3, this leads to a proportionate increase in capital and

output, causing the capital-output ratio to remain unchanged.

Fig. 3.A illustrates the aggregate and the distributional effects for the BCL survival

function. The locus BB in panel (i) depicts the pre-shock growth in consumption with

age (eq. (6.3)). The increase in productivity raises the wage rate, while the rate of re-

turn on capital remains unchanged. This causes the BB locus to shift up to B’B’, imply-

ing a uniformly higher consumption level for all ages, but growing at the unchanged

rate. The AA locus presents the average per capita consumption, which correspond-

ingly jumps up to A’A’. Panel (ii) illustrates the long-run distributional changes across

the cohorts. Its mildly hump-shaped locus reflects the fact that the increase in con-

sumption with age is offset by the increasing mortality with age, leading to declining

cohort-weighted consumption.

Panel (iii) illustrates the distribution of assets along the life cycle. Starting with

zero assets at birth (18), agents accumulate wealth until around 70, after which they

decumulate until assets run out at the maximum attainable age. This is reflected in

the inverted-U locus EE which shifts out to E’E’ with the increase in productivity. The

figures indicate that the greatest impact on wealth of the productivity increase accrues

to individuals aged around 70. The upward shift in the distributional locus is also

reflected in the horizontal line DD which illustrates the average per capita wealth, and

which shifts up to D’D’ following the technological increase. Panel (iv) reflects assets

weighted by the size of the cohorts. Due to the decline in survival with age the greatest

share of the benefits is enjoyed by the 55 year old cohort.

Fig. 3.B illustrates the same exercise for the BBW demographic structure. It con-

trasts sharply, and is much less plausible, as a result of the convex survival function

and the fact that agents may potentially live indefinitely (albeit with an arbitrarily low

probability). For example, the perpetual upward slope of the assets accumulation lo-

cus EE in panel (iii) is unsatisfactory. However, with the dwindling cohort size the

implications for distributions across cohorts, as illustrated in Panel (iv) is closer to the

pattern implied by the more plausible BCL survival function.
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Table 6.3. Structural Changes

Demography Economic Variables

L18 n k̃ ỹ k̃/ỹ r̃ w̃ c̃ [∆B]
−1

Baseline Model 78.38 1.00% 5.623 1.830 3.072 6.39% 1.190 1.493 0.053
Increase in productivity A → 1.25 78.38 1.00% 7.926 2.580 3.072 6.39% 1.677 2.104 0.053
Demographic Shocks

Increase in the birth rate β → 2.57% 78.38 1.50% 5.540 1.821 3.042 6.50% 1.184 1.461 0.054
Decrease in youth mortality η0 → 195 93.98 1.50% 6.125 1.886 3.248 5.78% 1.226 1.488 0.049
Decrease in old age mortality η1 → 0.0443 95.15 1.50% 6.211 1.895 3.278 5.68% 1.232 1.491 0.048
Off-setting change in birth rate
and old age mortality rate

β → 2.53%
η1 → 0.00551

80.03 1.50% 5.623 1.830 3.072 6.39% 1.190 1.465 0.053
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Figure 6.3. Increase in Productivity: BCL

6.5.2 Changes in the demographic structure

We contrast the impact of an increase in the population growth rate of 0.5 percent-

age points driven by either an increase in the birth rate, a decrease in mortality, or a

combination of the two. Table 3 summarizes the various scenarios and shows how the

economic consequences differ dramatically, depending on the source of the increase in

the population growth rate.

Increase in the birth rate

In order to increase the population growth rate by 0.5 percentage point from 1.00%

to 1.50% the birth rate must increase from 2.24% to 2.57%. Table 3, line 4 reveals that
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Figure 6.4. Increase in Productivity: BBW

this leads to a 1.48% reduction in the per capita capital stock (from 5.623 to 5.540).

This is illustrated by the slight downward shift of the line DD in Fig. 5, Panel (iii).

This response is consistent with the characterization of the steady state provided in

Section 3 and the fact that the average age of wealth owners (52.65) exceeds that of

workers (43.08). It is also consistent with the view emphasized by Kelley and Schmidt

(1995) that an increase in the population growth rate resulting from a higher birth

rate will have a negative effect on the level of economic activity. This is because it

increases the relative number of young who have not accumulated any capital stock

to contribute to the productive capacity of the economy. This reduction in aggregate

assets accumulation has several consequences. It leads to a 0.5% reduction in the wage

rate (from 1.190 to 1.184) and an increase in the rate of return on capital from 6.39% to
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6.50%. It also leads to a 0.5% decline in per-capita output (from 1.830 to 1.821) and a

2.1% decline in per capita consumption (from 1.493 to 1.461), the latter being illustrated

by the downward shift in the AA line in Fig. 5(i).

The distributional consequences are also modest, as Fig. 5 illustrates. The life cy-

cle path for consumption, illustrated by BB in Panel (i), remains virtually unchanged.

The slight reduction in the wage, with the anticipation of the future higher return to

capital causes a very slight reduction in consumption at birth. However, the increase

in the rate of return on capital increases the consumption growth rate over the life-

cycle. Hence, toward the end of their life-cycle agents experience an increase in their

consumption while average per capita consumption declines. The distributional con-

sequences across cohorts are more substantial and in fact opposite to those experienced

by individuals, as illustrated by the rotation of the CC curve to CC’ in Panel (ii). Thus,

the increase in the relative size of the younger cohorts, due to the higher birth rate,

implies that they enjoy a larger share of the overall consumption, while the decline in

the relative size of older cohorts means that their share of consumption declines, even

though each surviving member’s consumption level has increased.

The hump-shaped locus EE in Panel (iii), which reflects that the accumulation of

assets over the life cycle shifts out, albeit slightly. This is a consequence of the increased

rate of return on capital. Panel (iv) illustrates how, with the increase in the relative

size of the young cohorts due to the higher birth rate, the share of wealth each existing

cohort owns increases. This also explains why, even though at each age each individual

has a slightly higher level of wealth, per capita wealth is nevertheless smaller. This is

because with a higher birth rate a relatively larger share of the agents is young and as

young agents posses relatively little capital, this leads to lower aggregate per-capita

capital (see Panel (iii) locus DD and D’D’).

6.5.3 Decrease in the mortality rate

The two alternative ways to increase the population growth rate from 1% to 1.5% are

either to decrease youth mortality, η0, to 195 or old age mortality, η1, to 0.0443. As the

economic consequences are similar, we restrict attention to the latter.

From Table 3 we see that this leads to a 10.46% increase in the per capita stock of
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Figure 6.5. Increase in Birth Rate

capital (from 5.623 to 6.211). This is illustrated by the upward shift of the line DD

in Fig. 6, Panel (iii). This response is consistent with the view emphasized by Kel-

ley and Schmidt (1995) that an increase in the population growth rate resulting from

a reduction in mortality will have a positive effect on the level of economic activity.

This is because it increases the relative number of old people who have accumulated

capital stock to contribute to the productive capacity of the economy. This increase

in aggregate asset accumulation has several consequences. It leads to a 3.5% increase

in the wage rate (from 1.190 to 1.232) and a decrease in the rate of return on capital

from 6.39% to 5.68%. It also leads to a 3.5% increase in per-capita output (from 1.830

to 1.895) and a negligible (0.02%) decline in per capita consumption with the increased

population, the latter being illustrated by the imperceptible shift in the AA line in Fig.
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6(i).

The distributional consequences are illustrated in Fig. 6 and are seen to be non-

monotonic. Panel (i) shows that the increase in the wage rate coupled with the antici-

pation of the future lower return to capital causes a slight increase in consumption at

birth. However, the decrease in the rate of return on capital decreases the consumption

growth rate over the life cycle. Hence, after a few years agents experience a decrease in

their consumption and since this is the experience of most cohorts, average per capita

consumption declines. In Panel (ii) we see that the increase in longevity and associ-

ated increase in old age cohorts, coupled with the upward shift and flattening of the

BB curve, causes the CC curve to move out to C’C’. Thus, the increase in consumption

of the very young causes their share of overall consumption to increase. However,

the decline in the growth rate of consumption for people between around 30 and 80

causes their share of consumption to decline, while the increase in longevity leads to

an increase in consumption share of the very old.

Panel (iii) reveals that the increase in longevity causes the EE locus to shift up and

to the right. In early stages the life cycle the rate of asset accumulation declines very

slightly, reflecting the decline in the rate of return on capital. As a result, the decline

in mortality causes relatively young agents’ wealth to decline slightly. However, the

increase in longevity induces them to save for a longer period and to accumulate more

assets in light of their increased longevity. Finally, Panel (iv) illustrates how the in-

crease in the relative size of old cohorts tilts the share of wealth significantly in their

direction.

These patterns are consistent with the empirical evidence. For example, the fact

that consumption declines for all but the youngest cohorts, while the wealth of older

agents increase is consistent with the empirical findings of Fair and Dominguez (1991),

Attfield and Cannon (2003), and Erlandsen and Nymoen (2008) all of whom find that

the effect of an aging population is to lead to a decline in overall per capita consump-

tion for all equivalent income levels. The pattern we obtain of asset accumulation in-

creasing with life expectancy agrees with the findings of Bloom, Canning, and Graham

(2003).
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Figure 6.6. Decrease in Old Age Mortality

6.5.4 Increase in birth rate versus decrease in mortality

Comparing Figs. 4 and 5 we see that achieving a specified increase in the population

growth rate by increasing the birth rate or decreasing the mortality rate has dramat-

ically different consequences for the economy. First, whereas only a mild increase in

the birth rate of 0.33% will raise the population growth rate by 0.5%, to achieve the

same objective by reducing mortality would require increasing longevity by around

17 years, which would seem to be a much more formidable task. Second, whereas a

0.5 percentage point increase in the population growth rate resulting from an increase

in births will have only a slight negative effect on the productive capacity of the econ-

omy (measured by its per capita capital stock), the same increase in the population
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growth rate brought about by reduced mortality will have a significant expansionary

effect. This contrast in magnitudes agrees exactly with the empirical results obtained

by Blanchet (1988), thus emphasizing the importance of the form in which population

growth occurs.

Finally, our results can be reconciled with the cross-country empirical evidence

cited by Kelley and Schmidt (1995) who found that, whereas population growth had

had a negligible effect on growth during the 1960s and 1970s, it had a negative effect

in the 1980s. This can be explained by comparing line 7 of Table 3 with line 4. In-

creasing the birth rate to only 2.53% and reducing old age mortality to 0.0551 causes

the economic effects to be largely offsetting so that the per capita capital stock, output,

wage rate, return to capital all remain unchanged. In summary, the changing mix be-

tween increased birth rate and decreased mortality can very naturally account for the

different empirically estimated long-run effects of population growth rates at different

stages of development.

6.6 Conclusions

This chapter has introduced a realistic age-dependent demographic structure into a

neoclassical growth model for a closed economy. In doing so, we have had two pri-

mary objectives. The first is to provide a general characterization of how the demo-

graphic structure impedes on the macrodynamic equilibrium. We show how this de-

pends on the generational turnover term, which is an integral component of the in-

tertemporal consumption allocation decision. Setting up the aggregate dynamics as

a generalization of the conventional neoclassical growth model, provides two major

insights. Not only does it enable us to view alternative demographic specifications in

a unified way, but also we are able to identify two, rather than just one, steady-state

equilibria. The first is highly sensitive to the demographic structure, whereas in the

second equilibrium demographic factors play but a minor role. However, in the ab-

sence of intergenerational transfers, the latter is not relevant, and therefore has not

been considered further.

The second objective is to analyze the effect of structural changes – most important

demographic structural changes – on both the aggregate macro equilibrium, as well
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as the distributional life-cycle implications. This is done numerically using the very

general survival function proposed by Boucekkine, de la Croix, and Licandro (2002).

The most striking result is the sharp contrast, both qualitatively and quantitatively, in

the effects of changes in the population growth rate on the macro economy. Whether an

increase in population occurs because of an increase in births or a decrease in mortality

is crucially important, and in this regard our results corroborate the empirical findings

obtained in the demographic literature.

While this chapter is mainly theoretical and quantitative, it clearly can be extended

in various directions. First, the contrast between births and mortality in influencing the

population growth rate and the resulting consequences for distribution across cohorts

and for the aggregate economy raises interesting policy issues for a country seeking to

influence its population growth rate. Second, it is straightforward to extend the frame-

work to allow for retirement and to address issues pertaining to social security and

retirement benefits, issues that are of crucial importance for the US and other coun-

tries with their ageing populations. Finally, while we have focused on the long-run

(steady-state) implications of demographic structural changes, the nature of the tran-

sition from one steady-state to another is also important.
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Conclusion
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In this thesis we have developed a series of small macroeconomic models to analyse

a variety of issues relating to the macroeconomics of ageing. In developing these mod-

els we have tried to balance the necessity of having solid microfoundations against the

ability of clearly seeing what the driving forces are in the interaction between individ-

ual decisions and aggregate outcomes. In this part we will briefly summarize the main

conclusions, discuss some of the limitations of the used models and touch upon areas

for future research.

In the second chapter we developed a continuous-time overlapping generations

model featuring single-sector endogenous growth in the spirit of Romer (1989). Us-

ing this model we took the Blanchard (1985)-Yaari (1965) assumption of the existence

of a perfectly competitive annuity market by the horns. Annuities are life-insured fi-

nancial products that pay out conditional on the survival of the individual agent. The

annuity firm pays a premium to the annuity holder, which, if the annuity is priced ac-

tuarially fair, is equal to the individual’s instantaneous probability of death. In return,

the annuity firm receives the individual’s assets upon his/ her death. We introduced

an imperfectly competitive annuity market into the model by allowing the return re-

ceived on annuities to be less than actuarially fair. The imperfection leads individual

agents to discount their future utility by their instantaneous probability of death. This

in turn lowers the incentive to save because agents anticipate that they might not live

to benefit from their savings. If all agents save less, the growth rate of the economy

decreases because capital accumulation is the driving force behind economic develop-

ment in Romer’s (1989) growth model. For the annuity firms the imperfectly priced

annuities mean that they are making pure profits, which we let the government tax

away and then redistribute equally over all agents. In terms of magnitude, we found

that the impact of annuity market imperfections on economic growth is mild if proper

account is taken of both age-dependent mortality and productivity.

In the third chapter we used the model to analyse the impact of, and difference be-

tween, consumption and labour-income taxes. In addition to introducing the taxes, we

extended the model by allowing the redistribution of tax income (which also includes

the profits of the annuity firms) to be age-dependent. We found that consumption

taxes redistribute assets from the elderly, who are strong consumers, to the young,
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who barely consume but save a lot. At the aggregate level the redistribution of assets

between non-savers and savers leads to more growth because aggregate capital accu-

mulation is spurred. The labour-income tax, on the other hand, redistributes assets

from working to retired individuals. Thus, the labour-income tax induces a redistri-

bution of assets between saving workers and non-saving retirees. Needless to say, the

growth impact of this redistribution is negative. Finally, through the same mechanism,

a regime in which taxes are redistributed with a bias toward young agents leads to a

higher growth rate than a regime in which taxes are redistributed to the elderly.

In the fourth chapter we used the model developed in the first chapter once more in

order to analyse the moderating role of public pensions during a demographic shock

that decreases the mortality rate. We simplified the model by making the labour sup-

ply decision exogenous but extended the model to allow for a public pension system.

The public pension system can be run on either a defined benefit or a defined contri-

bution basis. In addition, the government can use the retirement age as a policy vari-

able. We found that, in general, a decrease in the mortality rate increases the economic

growth rate because individuals need to accumulate more assets for their retirement

period. However, if the public pension is run on a defined benefit basis the growth

effect is smaller because the contribution rate for the pension has to adjust to accom-

modate the larger amount of pensions that have to be paid out. Surprisingly, we also

found that an increase in the retirement age decreases the economic growth rate of

the economy. This is a direct consequence of the fact that a higher retirement age im-

plies a shorter retirement period and, hence, less assets necessary to make it through

retirement.

The analysis of chapters 2-4 showed that substantial mileage can be achieved by

using small macroeconomic models. Indeed, we saw that both theoretical issues and

questions of interest to public policy can be analysed meaningfully. The proverbial

tank is, however, not empty yet. In its current form the model can easily be extended

to allow for an initial period in which individuals engage in human capital forma-

tion. Such an extension would shed more light on the role of individual productivity

over the life-cycle. Naturally, in such a model there is an important role for financial

frictions once more. After all, if individuals are born bare of assets and no loans are

available from the banking sector, how should they finance their human capital in-
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vestment? A more formidable, yet equally important, task is to study the transitional

dynamics underlying the various policy changes which we considered. Currently we

focus on a comparison between steady states while the transition between them need

not be monotonic. Although we touched up the issue of transitional dynamics in later

chapters, their lion’s share remain open.

While in chapters 2-4 we focused on the role of annuity market imperfections for

individual and aggregate outcomes, in the fourth chapter we turned to the question

of whether annuities increase aggregate as well as individual welfare. To facilitate this

analysis we stepped away from the continuous time overlapping generations model

used in chapters 2-4 and used a smaller, more stylized model. The model builds on the

canonical Diamond (1965)-Samuelson (1958) model in which agents live for two peri-

ods. One period of working (and saving) and one period of retirement (and running

down savings). In order for there to be a meaningful role for annuity markets we let

the transition between the two periods of life be uncertain. That is, individuals face a

positive probability of death at the end of the first period. In the absence of annuities,

individuals that die after the first period of life leave an accidental bequest. On the

firm side of the model we allowed for a more general production structure that allows

for both endogenous and exogenous growth.

In the initial analysis we assumed that the government taxes these bequests away.

Within this set-up we compared and contrasted various ways in which the government

can use its tax income. In order not to muddle the analysis we focused on three distinct

regimes: either the government distributes the funds to the young or to the elderly, or

the government uses them for unproductive spending. In this regard we found that

the regime in which the government redistributes the assets toward the young outper-

forms the other two systems in both welfare and growth terms. The mechanism driv-

ing these effects is that the young save a lion’s share of their additional funds so that

redistribution towards them increases the capital stock. Somewhat surprisingly, the

regime where the government wastes the bequests outperforms the system in which

the bequests are transferred to the elderly. Intuitively, if the bequests are transferred to

the elderly, the young save less because they anticipate a large transfer in old age.

Starting from any of the three redistribution scenarios we studied the impact of
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opening a perfectly competitive annuity market. That is, a market in which annuities

are priced actuarially fair. From an individual perspective the annuity market offers

a financial product with a superior return. Therefore, it is perfectly rational for the

individuals to annuitize their assets. From an aggregate perspective, however, matters

are, however, dramatically different depending on how the accidental bequests were

initially redistributed. If the bequests were initially redistributed toward the young we

find what we call “the tragedy of annuitization”. That is, although full annuitization

of assets is individually optimal it is not socially beneficial, in terms of growth and

welfare, due to adverse general equilibrium repercussions. By opening up the annuity

market, the young lose the wealth transfer, part of which they save for their retirement.

In addition, the higher return received on the savings reduces their incentive to save.

In concert these two effects assure that all generations but the initial one are worse

off. In a similar vein to the results on the redistribution, we find that the tragedy also

arises if the bequests were initially wasted by the government. In this respect it is

unsurprising that the tragedy does not arise if the bequests were initially redistributed

to the elderly.

The analysis of annuity markets in this chapter highlighted once again the insights

that can be gained from employing small macroeconomic models. By eliminating all

but the essential features of the individual life-cycle we were able to not only compare

steady-states but also the transitional dynamics between the regimes. Starting from

the bare model a very natural next step would be to allow the overlapping generations

to be interconnected through the introduction of intentional bequests. In such a set-

up there would be substantial intergenerational transfers even if annuity markets are

present. A second interesting extension would be to combine the current model with

that of the earlier chapters. Hereby we should be able to get a better feel for the mag-

nitudes involved in the growth and welfare consequences of opening op an annuity

market.

In the final chapter, we returned to the analysis of demographic shocks by focusing

on different sources of demographic change as a driving force behind the economic

consequences of an increase in the population growth rate. To analyse these issues we

developed a continuous-time overlapping generations model akin to the model used
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in chapters 2-4. Although the model used in this chapter was similar to the previously

used model, it differed in a number of key ways. Most important, we stepped away

from Romer (1989) endogenous growth model and no longer allowed the annuity mar-

ket to be imperfect. In addition, we simplified the choices faced by the individual

household by letting labour supply and productivity be constant over the life-cycle.

Naturally, we did keep the realistic mortality structure intact. These changes to the

model allowed us to provide a deeper analysis of the equilibrium structure and dy-

namics governing the model. In this regard, we found that there is in fact a second

equilibrium that is often overlooked in the literature. This equilibrium is, however,

not sustainable in the absence of international transfers in an open economy or an un-

balanced pension system in a closed economy. Thus, we focused on the more common

equilibrium in the remainder of the analysis.

In the numerical analysis we showed that, depending on the source of demo-

graphic change, an increase in the population growth rate can increase, decrease or

not affect the aggregate per-capita capital stock at all. If the population growth rate

increases due to an increase in the birth rate, the capital stock present in the economy

must be divided over more agents, which leads to a dilution of the per-capita capital

stock. On the other hand, if the increase in the population growth rate is due to a de-

crease in the mortality rate, the agents will save more, thus increasing the per-capita

capital stock. Finally, if the increase in the population growth rate is due to a combi-

nation of an increase in the birth rate and a decrease in the mortality rate, it is possible

that the two effects exactly offset each other.

In close relation to the other chapters, the final chapter emphasized once more the

usefulness of small macroeconomic models in the analysis of demographic change. In

its current form the analysis has been able to shed light on interesting issues regarding

the theoretical and quantitative structure of the model. The natural next step is to en-

rich the model with a meaningful government sector and analyse questions relating to

public policy. A more substantial, and equally interesting, extension is to make fertility

decisions or the mortality rate depend on the choices made by the individuals. In this

way, we can shed more light on the interplay between the economic and demographic

structure of an economy. Naturally, such an extension opens up alleys for public policy

research that we have neither been able to address yet in this chapter nor the others.
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This completes this section and, thereby, this thesis. The aim of this thesis was clear

from the start: to contribute to the challenge of developing macroeconomic models

that, on the one hand, are solidly founded in the microeconomic environment of the

individual agent and, on the other hand, are able to show the analyst which main

mechanisms are at play. It is up to the reader to decide whether a contribution to this

challenge has been delivered.
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Samenvatting (Dutch Summary)∗
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In deze dissertatie ontwikkelen we verscheidene kleine macro-economische mod-

ellen waarmee we een aantal thema’s bestuderen, gericht op de economische gevol-

gen van de vergrijzing. Bij het ontwikkelen van deze modellen hebben we telkens

de noodzaak van solide micro-funderingen afgezet tegen de mogelijkheid om een

duidelijk zicht te krijgen op de drijvende krachten bij de interactie tussen individu-

ele besluiten en geaggregeerde uitkomsten.

Na het inleidende hoofdstuk hebben we in het tweede hoofdstuk een continue-tijd-

overlappende-generatiesmodel ontwikkeld met endogene groei in de zin van Romer

(1989). Met dit model hebben we de Blanchard (1985)-Yaari (1965) aanname van het

bestaan van perfect competitieve markten voor annuı̈teiten bij de horens gevat. Deze

annuı̈teiten zijn financiële producten die uitbetalen conditioneel op het overleven van

de individuele agent. De levensverzekeraar betaalt een premie die, als de annuı̈teit

actuarieel eerlijk geprijsd is, gelijk is aan de sterftekans van de levensverzekeringsne-

mer. In ruil daarvoor krijgt de levensverzekeraar de bezittingen van de levensverzek-

eringsnemer als deze sterft.

Wij modelleren annuı̈teitenmarktimperfecties door aan te nemen dat de premie die

ontvangen wordt voor de annuı̈teiten niet actuarieel eerlijk is. Deze imperfectie leidt

ertoe dat agenten hun toekomstig nut verdisconteren met hun sterftekans. Dit zorgt

ervoor dat de prikkel om te sparen afneemt, omdat agenten erop anticiperen dat ze

wellicht de dag niet zullen zien waarop zij van hun gespaarde vermogen kunnen ge-

nieten. Aangezien alle agenten minder sparen, zal de groeivoet van de economie dalen

omdat kapitaalaccumulatie de drijvende kracht is achter economische ontwikkelingen

in het model van Romer (1989). Voor de levensverzekeraars betekenen de imperfect

geprijsde annuı̈teiten dat zij winst maken. Wij nemen aan dat deze winst door de over-

heid wordt wegbelast en herverdeeld over alle agenten. In termen van omvang con-

cluderen wij dat de economische gevolgen van imperfect geprijsde annuı̈teiten klein

zijn, als voldoende rekening gehouden wordt met zowel leeftijdsafhankelijke overlev-

ingskansen als arbeidsproductiviteit.

In het derde hoofdstuk gebruiken we het model om de gevolgen van en verschillen

in consumptie- en loonbelastingen te analyseren. Behalve met de introductie van be-

lastingen breiden wij het model uit door de herverdeling van belastingen (inclusief

de winsten van de levensverzekeraars) leeftijdsafhankelijk te maken. In dit hoofdstuk
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concluderen wij dat consumptiebelastingen vermogen herverdelen van ouderen die

veel consumeren, naar jongeren die weinig consumeren maar veel sparen. Op geag-

gregeerd niveau leidt deze herverdeling van niet-spaarders naar spaarders tot meer

groei omdat de kapitaalaccumulatie wordt bespoedigd. De loonbelasting daarente-

gen herverdeelt vermogen van werkende naar niet-werkende individuen. Als gevolg

daarvan herverdeelt de loonbelasting vermogen van spaarders naar niet-spaarders.

Uiteraard zijn de gevolgen van deze herverdeling negatief voor de economische groei.

Onze laatste bevinding is dat, door hetzelfde mechanisme als voorheen, een scenario

waarin belastingen relatief meer naar jongeren herverdeeld worden, beter is in termen

van economische groei dan een scenario waarin belastingen relatief meer naar ouderen

worden herverdeeld.

In het vierde hoofdstuk gebruiken wij het model uit het tweede hoofdstuk om te

analyseren hoe het sociale zekerheidsstelsel de gevolgen van demografische veran-

deringen beı̈nvloedt. We breiden het model uit door een sociale-zekerheidsstelsel op te

nemen maar simplificeren het model enigszins door de beslissing over het arbeidsaan-

bod exogeen te maken. Het sociale- zekerheidsstelsel kan of op basis van beschikbare

uitkeringen of op basis van een systeem van beschikbare premies uitgevoerd wor-

den. Daarnaast kan de overheid de pensioengerechtigde leeftijd als beleidsinstrument

gebruiken. Onze bevindingen zijn dat een afname van de sterftekans leidt tot een

toename van de economische groei omdat individuen meer vermogen moeten accu-

muleren voor hun pensioen. Echter als het sociale-zekerheidsstelsel wordt uitgevoerd

op basis van beschikbare uitkeringen, is het groei-effect kleiner omdat de premies voor

de pensioenen moeten worden aangepast vanwege het grotere aantal pensioenen dat

nu uitbetaald moet worden. Tot onze eigen verbazing concluderen wij dat een ver-

hoging van de pensioengerechtigde leeftijd leidt tot een daling van de economische

groei. Dit is een direct gevolg van het feit dat een hogere pensioengerechtigde leeftijd

een kortere pensioenperiode impliceert waardoor minder vermogen nodig is voor het

pensioen.

Terwijl wij ons in hoofdstukken 2-4 hebben beziggehouden met imperfecties op de

annuı̈teitenmarkt gaan we in het vijfde hoofdstuk in op de vraag of annuı̈teiten zowel

de individuele als de algemene welvaart verhogen. Om deze analyse te faciliteren

stappen wij af van het continue-tijd-overlappende-generatiesmodel en gebruiken een
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kleiner, meer gestileerd, model. Het model bouwt voort op het twee-periodenmodel

van Diamond (1965) en Samuelson (1958). Dit model kent een periode voor werken

(en sparen) en een periode voor pensioen (en het afbouwen van besparingen). Aan

de bedrijvenkant van het model veronderstellen wij een algemenere productiestruc-

tuur die zowel endogene als exogene groei bevat. De annuı̈teitenmarkt krijgt een

betekenisvolle rol doordat de transitie tussen de beide perioden onzeker is. Dit houdt

in dat individuen worden geconfronteerd met een positieve overlijdenskans na de

eerste periode. Indien individuen overlijden, en er geen annuı̈teiten aanwezig zijn,

wordt ongewild een erfenis achtergelaten.

In de initiële analyse nemen wij aan dat erfenissen worden wegbelast door de over-

heid. Binnen dit raamwerk vergelijken wij verschillende manieren waarop de over-

heid haar belastinginkomsten kan gebruiken. Om de analyse overzichtelijk te houden

richten wij ons op drie duidelijk verschillende regimes: de overheid geeft haar inkom-

sten geheel aan de jongeren, geheel aan de ouderen of gebruikt ze volledig voor im-

productieve bestedingen. Wij concluderen dat het regime waarbij de overheid haar

inkomsten aan de jongeren geeft, de andere twee regimes overtreft in zowel groei- als

welvaartstermen. Het mechanisme achter deze effecten is dat de jongeren een groot

deel van hun additionele fondsen sparen. Met enige verbazing constateren wij dat

het regime waarin de overheid haar inkomsten improductief besteedt, beter is dan het

regime waarin de overheid haar inkomsten aan de ouderen geeft. De intuı̈tie hier-

achter is dat jongeren minder sparen als zij in de toekomst een overdracht verwachten

en dat daardoor de kapitaalgoederenvoorraad afneemt als de overheid haar inkomsten

aan de ouderen geeft.

Met de drie herverdelingsregimes als uitgangspunt bestuderen wij de gevolgen

van het openen van een perfect competitieve annuı̈teitenmarkt. Ten opzichte van

reguliere besparingen biedt de annuı̈teitenmarkt een superieur financieel product en

daarom is het vanuit welvaartsoogpunt voor individuen rationeel om al hun bezittin-

gen te annuitiseren. De zaken zijn echter heel anders vanuit een algemeen perspectief

afhankelijk van hoe in de uitgangssituatie de erfenissen werden herverdeeld. Als de

erfenissen eerst aan de jongeren werden gegeven, constateren wij wat wij de ”tragedie

van annuitiseren” noemen. Dat wil zeggen, terwijl annuitiseren individueel optimaal

is, is het in sociaal opzicht niet optimaal vanwege negatieve algemene evenwichtsef-
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fecten. Door het openen van de annuı̈teitenmarkt verliezen de jongeren de overdracht

waarvan ze een groot deel spaarden voor hun pensioen. Bovendien vermindert de

hogere rente op annuı̈teiten de prikkel om te sparen. Deze twee effecten zorgen er

samen voor dat, op de eerste generatie na, alle generaties op een lager welvaartsniveau

zitten. Het is met het oog op de resultaten over de verschillende herverdelingsregimes

niet opmerkelijk dat de tragedie eveneens optreedt als de erfenissen eerst voor impro-

ductieve bestedingen werden gebruikt. Met dezelfde redenering kan eveneens worden

geconcludeerd dat de tragedie niet optreedt als de erfenissen eerst naar de ouderen

gingen.

In het laatste hoofdstuk keren we terug naar de analyse van demografische schokken

door te kijken naar de wijze waarop verschillende oorzaken van demografische ve-

randeringen de economische gevolgen van een verandering in de bevolkingsgroei

beı̈nvloeden. Om deze zaken te analyseren hebben we een continue-tijd-overlappende-

generaties model ontwikkeld dat lijkt op het model dat we in de hoofdstukken 2-4

hebben gebruikt. Terwijl dit model lijkt op het eerder gebruikte model, wijkt het er

op een aantal belangrijke punten van af. Als belangrijkste verschil zijn we afgestapt

van het endogene groeimodel van Romer (1989) en laten we niet langer toe dat de

annuı̈teitenmarkt imperfect kan zijn. Bovendien hebben we de keuzes van de huis-

houdens gesimplificeerd door arbeidsaanbod en productiviteit van de huishoudens

constant te houden gedurende de levensloop. Deze veranderingen zorgen ervoor dat

we het evenwicht en de dynamiek van het model beter kunnen analyseren. Met be-

trekking hiertoe hebben we gevonden dat er een tweede evenwicht bestaat dat veelal

over het hoofd wordt gezien in de literatuur. Echter, dit evenwicht is niet houdbaar

als er geen internationale overdrachten of een ongedekt pensioensysteem aanwezig is.

Daarom richten we ons op het bekendere evenwicht in de rest van de analyse.

In de numerieke analyse laten we zien dat, afhankelijk van de oorzaak van de-

mografische veranderingen, de per-capita kapitaalgoederenvoorraad kan toenemen,

afnemen of niet veranderen als gevolg van een toename van de bevolkingsgroei. Als

de bevolkingsgroei toeneemt wegens een toename in het geboortecijfer, moet de kap-

itaalgoederenvoorraad over meer mensen verdeeld worden waardoor de per-capita

kapitaalgoederenvoorraad afneemt. Als echter de bevolkingsgroei toeneemt vanwege

een afname in het sterftecijfer, zullen individuen meer sparen waardoor de per-capita
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kapitaalgoederenvoorraad toeneemt. Ten slotte, als de bevolkingsgroei verandert door

een combinatie van het geboorte- en het sterftecijfer, kan de per-capita kapitaalgoed-

erenvoorraad ook exact gelijk blijven.
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