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Pension Workshop in Zürich (June 2010), the Vienna Graduate School of Economics macro breakfast
seminar (October 2010), the macroeconomics seminar at the Leibniz Universität Hannover (Novem-
ber 2010), seminars at the University of Aarhus (June 2010), Newcastle University (March 2011), the
Australian Treasury (May 2011) and the University of Melbourne (May 2011), and the EEA-ESEM
conference in Oslo (August 2011). We thank participants for useful comments. Ward E. Romp pro-
vided us with detailed comments and assisted us with the proofs of the two propositions. A previous
version of this paper formed part of the second author’s bachelor thesis which was awarded the 2011
Netspar Bachelor Thesis Award. It was also joint winner of the 2011 Grote Financiën Scriptieprijs, a
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1 Introduction

Economic theory suggests that life annuities are very attractive insurance instruments in the

presence of longevity risk. This result was first articulated in the seminal paper by Yaari

(1965) and was recently recast in a much more general setting by Davidoff, Brown, and

Diamond (2005). The intuition behind this result is not very difficult: annuities insure against

the risk of outliving one’s assets.

Empirical evidence, however, suggests that in reality very few individuals purchase life

annuities despite their theoretical attractiveness. Friedman and Warshawsky (1990, pp. 136-

7) give the following potential explanations for the low participation in private annuity mar-

kets. First, individuals may want to leave bequests to their offspring. Second, individuals

may hold other types of annuities, e.g. in the form of social security and private pensions (so-

cial annuities). Third, private annuities may be priced unattractively because of transaction

costs and taxes, excessive monopoly profits earned by annuity firms, and adverse selection.1

A fourth explanation is that family risk sharing may act an as incomplete annuity market, a

result first proposed by Kotlikoff and Spivak (1981).

The objective of our paper is to study the growth and welfare implications of adverse

selection in the annuity market.2 Intuitively, adverse selection arises because individuals

who believe themselves to be healthier than average are more likely to buy annuities, i.e.

the high-risk types are overrepresented in the clientele of annuity firms and annuity pricing

cannot be based on average population mortality.

Our core model is built on the following assumptions. First, whereas much of the litera-

ture is framed in a partial equilibrium setting, we instead postulate a simple general equilib-

rium model of a closed economy featuring endogenous growth. We choose a dynamic gen-

eral equilibrium framework because annuity purchases are intimately intertwined with the

savings decisions of individuals which in the aggregate give rise to macroeconomic capital

accumulation and growth. Second, we assume that the economy is populated by overlap-

ping generations of heterogeneous finitely-lived agents. Individual agents know their own

1Following the initial research by Friedman and Warshawsky (1988, 1990), a large subsequent literature has

emerged. See for example Mitchell et al. (1999), Finkelstein and Poterba (2002, 2004), and Finkelstein et al. (2009).
2Heijdra and Mierau (2012), study the general equilibrium implications of imperfect annuities under the

excess monopoly profit interpretation.

1



death probability profile, but annuity firms cannot observe an agent’s health type. The mor-

tality process is modeled realistically and closely tracks existing demographic data. We dis-

tinguish two types of agents, namely healthy and unhealthy, and we restrict their respective

population shares to be constant. Third, we assume perfectly competitive annuity markets.

Our informational assumptions are consistent with firms offering linear annuity contracts,

cf. Pauly (1974) and Abel (1986). Under such contracts the insurer can only choose the price

of the annuity and cannot achieve complete market separation by offering non-linear price-

quantity contracts.3

The main findings of our analysis are as follows. First, if health status were observable by

insurers then each health type would get actuarially fair insurance against longevity risk. We

consider the case of a patient economy in which all types would be net savers during life. In

this first-best situation, however, healthy individuals have a huge incentive to misrepresent

their health status (“by cheating” and claiming to be a low-risk type) thus destroying market

separation. The perfect information equilibrium is therefore a hypothetical case acting as a

benchmark.

Second, with asymmetric information regarding health types and annuity purchases,

perfect competition in the annuity market will result in a pooling equilibrium. The equi-

librium pooling rate is an asset-weighted average of individual mortality rates, a result de-

rived in a partial equilibrium context by Sheshinski (2008). In the pooling equilibrium, the

unhealthy (low-risk types) get a less than actuarially fair rate (as stressed in the literature),

but the healthy (high-risk types) get a better than actuarially fair rate. This result shows that

Friedman and Warshawsky (1990, pp. 147-152) only consider one side of the coin by restrict-

ing attention to individuals facing less than actuarially fair annuity returns (see their Tables

V and VI).

Third, in the pooling equilibrium the unhealthy encounter a “self-imposed borrowing

constraint” if they live long enough. Intuitively, as the unhealthy get close to their maximum

attainable age, the pooling rate prompts such individuals to become net borrowers. But

borrowing would reveal their health status, so the best the unhealthy can do is to impose a

3Alternative equilibrium concepts that can be used to deal with adverse selection are the ones suggested

by Rothschild and Stiglitz (1976) and Wilson (1977). See Eichenbaum and Peled (1987) for an application of

the Rothschild-Stiglitz concept. See Walliser (2000, pp. 376-7) and below for a defense of the linear pricing

assumption.
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borrowing constraint on themselves during their autumn years. It must be stressed that this

asset depletion result is not exogenously imposed (as in the partial equilibrium studies of

Friedman and Warshawsky (1990, p. 147) and Walliser (2000, pp. 378-9)) but follows from

the internal logic of the model. Hence, our model yields a consistent explanation why not

everybody participates in annuity markets in a general equilibrium model with risk pooling.

It must be stressed that our model cannot explain the annuity puzzle in the sense of agents

rationally holding all or part of their wealth in a non-annuitized form.

Fourth, for a plausibly calibrated version of the core model we find that the first-best is

only slightly better in growth and welfare terms than the pooling equilibrium. Hence, the

underlying information asymmetry and the resulting adverse selection effects in the annuity

market do not seem to cause quantitatively large growth and welfare effects in a general

equilibrium setting. We also show that the bulk of the effects on the allocation and welfare is

explained by the general equilibrium channel. The macroeconomic adjustments bring about

a magnification of the partial equilibrium outcomes.

Fifth, all of these findings are robust to (a) alternative assumptions regarding labour mar-

ket participation and retirement and (b) to a different specification of the economic growth

process.

The structure of our paper is as follows. Section 2 presents the model. Section 3 states

the key informational assumptions and studies the balanced growth path for the (hypothet-

ical) perfect information equilibrium and the asymmetric information equilibrium with risk

pooling. This section also presents a plausible calibration and visualization of the differ-

ent equilibria as well as their welfare properties. Section 4 reports some robustness checks.

In particular it examines the role of endogenous versus exogenous growth and it incorpo-

rates a pay-as-you-go pension system and labour force retirement. Finally, section 5 restates

the main results and presents some possible extensions. The paper also contains two brief

mathematical appendices.
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2 Model

2.1 Consumers

2.1.1 Individual behaviour

Individuals differ according to their health status acquired at birth. This status cannot be

changed by the agent and can therefore be interpreted as his or her general ’constitution’.

From the perspective of birth, the expected remaining lifetime utility function of a health

type j individual is given by:

Λj (v, v) =
∫ v+D̄j

v

c̄j(v, τ)1−1/σ − 1

1 − 1/σ
e−ρ(τ−v)−Mj(τ−v)dτ, (1)

where v is the date of birth, D̄j is the maximum attainable age for this type of agent, c̄j (v, τ) is

consumption, σ is the intertemporal substitution elasticity (σ > 0), ρ is the pure rate of time

preference, and e−Mj(τ−v) is the probability that the agent is still alive at some future time τ

(≥ v).4 Here, Mj(τ − v) ≡
∫ τ−v

0 µj(s)ds denotes the cumulative mortality rate and µj (s) is

the instantaneous mortality rate of an agent of age s, where 0 ≤ s ≤ D̄j. This rate is strictly

increasing and convex in age, µ′
j (s) > 0 and µ′′

j (s) > 0, and features lims→D̄j
µj (s) = +∞.

The agent’s budget identity is given by:

˙̄aj (v, τ) =
[

r + pj (τ − v)
]

āj (v, τ) + w (τ)− c̄j (v, τ) , (2)

where āj (v, τ) is real financial wealth, r is the interest rate (a constant, see below), and w (τ)

is the wage rate. In the spirit of Yaari (1965), we assume that agents can purchase contin-

uous annuities to insure against longevity risk. Annuity contracts are recontracted at each

moment in time. Without a bequest motive, financial wealth is fully annuitized so āj (v, τ)

is also the agent’s demand for annuities. Below we assume that an agent’s age at time τ is

directly observable to the insurer so that the net return on annuities, pj (τ − v), depends on

it. Labour supply is exogenous and each agent supplies a single unit of labour throughout

life, i.e. in the main part of the paper we abstract from retirement.5

4For a detailed derivation of the lifetime utility function in the presence of mortality risk, see d’Albis (2007)

and Heijdra and Romp (2008, pp. 91–92). The assumption of a maximum attainable age is made for computa-

tional convenience only.
5In section 4.1, however, we introduce a simple pension system and mandatory retirement. Heijdra and Rei-
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At time v, the agent chooses paths for consumption and financial assets in order to max-

imize lifetime utility (1) subject to the flow budget identity (2) and a solvency condition,

taking as given the initial level of financial assets, āj(v, v) = 0. In the absence of borrowing

constraints, the agent’s optimal plans for v ≤ t ≤ v + D̄j are fully characterized by:

˙̄cj(v, t)

c̄j(v, t)
= σ

[

r + pj (t − v)− µj (t − v)− ρ
]

, (3)

c̄j(v, v) =

∫ v+D̄j

v w (τ) e−r(τ−v)−Pj(τ−v)dτ
∫ v+D̄j

v
e−(1−σ)[r(τ−v)+Pj(τ−v)]−σ[ρ(τ−v)+Mj(τ−v)]dτ

, (4)

āj (v, t) e−r(t−v)−Pj(t−v) =
∫ t

v
w (τ) e−r(τ−v)−Pj(τ−v)dτ

−c̄j(v, v)
∫ t

v
e−(1−σ)[r(τ−v)+Pj(τ−v)]−σ[ρ(τ−v)+Mj(τ−v)]dτ, (5)

where Pj(τ − v) ≡
∫ τ−v

0 pj(s)ds is the cumulative net annuity return factor. Equation (3)

is the ‘consumption Euler equation’, relating the optimal time profile of consumption to

the difference between the annuity rate of interest (r + pj (τ − v)) and the total rate of felic-

ity discounting due to impatience and mortality (ρ + µj (τ − v)). Equation (4) shows that

consumption at birth is proportional to human wealth (the numerator), consisting of the an-

nuitized value of wages. Finally, the planned path of financial wealth is defined in (5). It is

easy to see that financial assets are zero at birth and at the date of certain death, D̄j.

Below we encounter equilibria in which type j agents experience a binding borrowing

constraint from age S̄j onward. In that case equations (3) and (5) are valid only for 0 ≤

t − v ≤ S̄j, āj (v, t) = 0 and c̄j (v, t) = w (t) for S̄j ≤ t − v ≤ D̄j, and S̄j replaces D̄j in (4).

2.1.2 Demography

We allow for a non-zero rate of population growth but impose that the relative population

proportion of people of different health types is constant over time. Since health groups are

distinguished by their mortality process, this requirement furnishes the following condition:

βj

∫ D̄j

0
e−ns−Mj(s)ds = 1, (6)

jnders (2012) study the interaction between mandatory social annuitization and the degree of adverse selection

in private annuity markets. They use a discrete-time overlapping generations model featuring a continuum of

heterogeneous agents that are distinguished by health status.
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where βj is the crude birth rate of type j cohorts, and n is the growth rate of the population.

For a given value of n and a given mortality process Mj (s), equation (6) gives the birth rate

which is consistent with a constant population share. The newborn cohort of type j at time

v is given by Lj (v, v) = π jβjL (v) where L (v) is the total population at time v and π j is the

fraction of type j people in the population (∑j π j = 1). Finally, the relative cohort size of type

j agents of age t − v evolves according to:

lj (v, t) ≡
Lj (v, t)

L (t)
=







βjπ je
−n(t−v)−Mj(t−v) for 0 ≤ t − v ≤ D̄j

0 for t − v > D̄j

(7)

Intuitively, the relative size of the type j cohort declines with age because the aggregate pop-

ulation grows over time (first cause) and cohort members die (second cause).

2.1.3 Aggregate household behaviour

Armed with equation (7), it is possible to compute per capita values for consumption and as-

sets. We restrict attention to the balanced growth path along which wages grow at a constant

exponential rate, g (see section 3 below). It follows that:

w (t) = w (v) eg(t−v). (8)

Allowing for a borrowing constraint at age S̄j and using (8) we find that per capita consump-

tion of type j agents, cj (t) ≡
∫ t

t−D̄j
lj (v, t) c̄j (v, t) dv, can be written as:

cj (t)

w (t)
= βjπ j

[

c̄j(v, v)

w (v)

∫ S̄j

0
e−(n+g)s−(σ+1)Mj(s)+σ(r−ρ)s+σPj(s)ds +

∫ D̄j

S̄j

e−ns−Mj(s)ds

]

, (9)

where c̄j(v, v)/w (v) is independent of the generations index v. By aggregating over all

health types, per capita consumption is obtained, i.e. c (t) ≡ ∑j cj (t).

In a similar fashion we find that per capita asset holdings of type j agents, aj (t) ≡
∫ t

t−D̄j
lj (v, t) āj (v, t) dv, evolves over time according to:

ȧj (t) = (r − n) aj (t)+π jw (t)− cj (t)+
∫ t

t−D̄j

[

pj (t − v)− µj (t − v)
]

lj (v, t) āj (v, t) dv. (10)

It follows that per capita assets, a (t) ≡ ∑j aj (t), satisfy the following differential equation:

ȧ (t) = (r − n) a (t) + w (t)− c (t) + Ξ (t) , (11)

where Ξ (t) is defined as:

Ξ (t) ≡ ∑
j

∫ t

t−D̄j

lj (v, t)
[

pj (t − v)− µj (t − v)
]

āj (v, t) dv. (12)
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2.2 Firms

In the spirit of Romer (1989), we assume that there exist strong external effects between

private firms in the economy. The economy features a large and fixed number, say N0, of

identical, perfectly competitive firms. The technology available to firm i is given by:

Yi (t) = Ω (t)Ki (t)
ε Li (t)

1−ε , 0 < ε < 1, (13)

where Yi (t) is output, Ki (t) is the capital input, Li (t) is the labour input, and Ω (t) repre-

sents the general level of factor productivity which is taken as given by individual firms.

The competitive firm hires factors of production according to the following marginal pro-

ductivity conditions:

w (t) = (1 − ε)Ω (t) ki (t)
ε , (14)

r (t) + δ = εΩ (t) ki (t)
ε−1 , (15)

where ki (t) ≡ Ki (t) /Li (t) is the capital intensity. The rental rate on each factor is the

same for all firms, i.e. they all choose the same capital intensity such that ki (t) = k (t)

for i = 1, . . . , N0. This feature enables us to aggregate the microeconomic relations to the

macroeconomic level.

Generalizing the insights of Saint-Paul (1992, p. 1247) and Romer (1989) to a non-constant

population, we assume that the inter-firm externality takes the following form:

Ω (t) = Ω0k (t)1−ε , (16)

where Ω0 is a positive constant, k (t) ≡ K (t) /L (t) is the economy-wide capital intensity,

K (t) ≡ ∑i Ki (t) is the aggregate capital stock, and L (t) ≡ ∑i Li (t) is aggregate employ-

ment. According to (16), total factor productivity depends positively on the economy-wide

capital intensity. Hence if an individual firm i raises its capital intensity, then all firms in the

economy benefit somewhat as a result because the general productivity indicator rises for

all of them. Using (16), equations (13)–(15) can now be rewritten in aggregate terms:

Y (t) = Ω0K (t) , (17)

w (t) L (t) = (1 − ε)Y (t) , (18)

r (t) = r = εΩ0 − δ, (19)
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where Y (t) ≡ ∑i Yi (t) is aggregate output and we assume that capital is sufficiently pro-

ductive, i.e. εΩ0 > n + δ. The macroeconomic technology is linear in the capital stock and

the interest rate is constant and exceeds the rate of population growth.

3 Balanced growth path

In this section we study the steady-state features of the general equilibrium growth model.

We adopt the following set of assumptions regarding the market for annuities.

Assumption (A1) The annuity market is perfectly competitive. A large number of firms

offer annuity contracts to individuals. Firm entry and exit is unrestricted.

Assumption (A2) Annuity firms do not use up any real resources.

Assumption (A3) The annuitant’s health status is private information and cannot be ob-

served by the annuity companies. Annuity firms know all the features of the mortality

process of each health group.

Assumption (A4) The annuitant’s age is public information and can thus be observed by

the annuity companies.

Assumption (A5) Annuitants can buy multiple annuities for different amounts and from

different annuity firms. Individual annuity firms cannot monitor an annuitant’s hold-

ings with their competitors.

These assumptions are consistent with the emergence of a pooling equilibrium. Of criti-

cal importance is the joint validity of (A3) and (A5). Together they imply that annuity firms

cannot distinguish their customers’ health type. Even though healthy annuitants are richer

than unhealthy annuitants (both in reality and in our model), and thus feature a higher total

demand for annuities, they can nevertheless hide this fact by buying small amounts from

several companies. Consequently, annuity firms are forced to apply linear pricing: they can

only control the rate of return on annuities and cannot set prices and quantities simultane-

ously in order to induce full information revelation. Intuitively, the annuity market differs

from regular insurance markets in that the death of an annuitant ends the insurer’s liability

instead of creating it. This rules out a system of withholding payments and investigating
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contract compliance that is often used in markets for fire- or car insurance (Walliser, 2000,

pp. 376-7). Note that if (A5) did not hold it might be possible to exploit the information con-

tained in quantities demanded to distinguish between health types and attain a separating

equilibrium.

By assumption (A4), annuity firms can observe each annuitant’s age so in the pooling

equilibrium there is a single pooling rate, p̄ (u), for healthy and unhealthy annuitants of

age u. There is market segmentation in the sense that the annuity market consists of sep-

arate submarkets for each age group or cohort. By assumption (A1), the expected profit in

each submarket is zero. With large cohorts, probabilities and frequencies coincide so that

actual profit in each submarket is also zero. Finally, assumption (A2) ensures that there is no

loading factor on annuities.

Before turning to a detailed study of the pooling equilibrium in subsection 3.2, we first

discuss the benchmark case for which assumption (A3) is violated and annuity firms can

observe each annuitant’s health type. This is the perfect information equilibrium studied in

subsection 3.1.

Although the model has been constructed to allow for an arbitrary number of health

types, we simplify the discussion from here on by distinguishing only two health groups,

namely healthy agents (j = H) and unhealthy agents (j = U). We furthermore adopt the

mortality process of Boucekkine et al. (2002) which takes the following form:

e−Mj(s) ≡
η0 − eη1js

η0 − 1
, 0 ≤ s ≤ D̄j ≡

1

η1j

ln η0, (20)

where η0 > 1 and η1j > 0. The implied instantaneous mortality rate is given by:

µj (s) ≡ M′
j (s) =

η1je
η1js

η0 − eη1js
. (21)

This mortality process satisfies the assumption made in the text below equation (1). To cap-

ture the relative health status of the two groups we set η1U = λη1H with λ > 1. This pa-

rameterization implies that the maximum attainable age for the healthy exceeds the one for

the unhealthy, i.e. D̄H = λD̄U. Furthermore, the instantaneous mortality rate is uniformly

higher for the unhealthy, i.e. µU (u) > µH (u) for 0 ≤ u ≤ D̄U. See Figure 1 below for a

visualization of these results. In that figure and throughout the paper an “economic age” of

u = 0 corresponds to a biological age of 18 years, i.e. we assume that independent economic

decision making starts at the age of maturity.
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Figure 1: Demographics

3.1 Perfect information

If annuity firms are able to observe an annuitant’s health type, then they will set the net

return on annuities equal to the relevant mortality rate, pj (τ − v) = µj (τ − v) and thus also

Pj(τ − v) = Mj (τ − v). It follows from (3), (5), and (8) that:

˙̄cj(v, v + u)

c̄j(v, v + u)
= σ [r − ρ] , (22)

āj (v, v + u)

w (v)
e−ru−Mj(u) =

∫ u

0
e−(r−g)s−Mj(s)ds −

c̄j (v, v)

w (v)

∫ u

0
e−(1−σ)rs−σρs−Mj(s)ds, (23)

where u ≡ t− v is the agent’s age at time t. The instantaneous mortality rate does not feature

in (22) because households fully insure against the unpleasant effects of lifetime uncertainty

(Yaari, 1965). It is easy to see from (23) that financial assets are positive throughout the

agent’s life.

Proposition 1. Consider the first-best situation in which annuity firms can observe the health type

of annuitants. Provided σr − g > ρ, agents of all health types are net savers throughout life, i.e.

āj(v, v) = āj(v, v + D̄j) = 0 and āj(v, v + u) > 0 for 0 < u < D̄j.

Proof. See Appendix A.
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Table 1: Balanced growth with perfect informationa

(a) Microeconomic relationships:

c̄j (v, v)

w (v)
=

∫ D̄j

0 e−(r−g)s−Mj(s)ds
∫ D̄j

0 e−(1−σ)rs−σρs−Mj(s)ds
, j ∈ {H, U} (T1.1)

(b) Macroeconomic relationships:

c (t)

w (t)
= ∑

j∈{H,U}

βjπ j

c̄j (v, v)

w (v)

∫ D̄j

0
e−(n+g)s−Mj(s)+σ(r−ρ)sds (T1.2)

g ≡
k̇ (t)

k (t)
= r − n +

[

1 −
c (t)

w (t)

]

w (t)

k (t)
(T1.3)

w (t)

k (t)
= (1 − ε)Ω0 (T1.4)

Note. aEndogenous are scaled newborn consumption by type j , c̄j(v, v)/w(v), the steady-state

growth rate, g, the wage-capital ratio, w(t)/k(t), and the consumption-wage ratio, c(t)/w(t). There

are two types of agents, healthy (subscript H) and unhealthy (subscript U). Mj(s), D̄j, βj, and π j

stand for, respectively, the cumulative mortality rate at age s, the maximum attainable age, the crude

birth rate, and the population fraction of type j agents. n is the population growth rate, ρ is the rate

of time preference, ε is the capital coefficient in the technology, σ is the intertemporal substitution

elasticity, and Ω0 is the scale factor in the technology. The interest rate is r ≡ εΩ0 − δ, where δ is the

depreciation rate of capital.

The key equations of the general equilibrium model under perfect information are col-

lected in Table 1. The expressions in (T1.1) follow in a straightforward fashion from (4)

and (8) above. Equation (T1.2) is obtained by setting S̄j = D̄j in (9) and noting the def-

inition of c (t). The growth expression, equation (T1.3), follows readily from (11) by not-

ing two features of the model. First, since claims on the capital stock are the only finan-

cial assets available, capital market equilibrium ensures that a (t) = k (t). Second, since

pj (t − v) = µj (t − v) it follows from (12) that Ξ (t) = 0 for all t. There is no redistribu-

tion between health groups because each group receives the net return befitting its mortality

profile. Finally, equation (T1.4) is obtained by combining equations (17)–(18).

The model features a two-way interaction between the microeconomic decisions and the
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macroeconomic outcomes. On the one hand, for a given macroeconomic growth rate g,

(T1.1) determines scaled consumption at birth for the two health types. On the other hand,

for given values of scaled consumption at birth, (T1.2)–(T1.4) yield general equilibrium so-

lutions for c (t) /w (t), g, and w (t) /k (t).

In order to visualize the properties of the model and to quantify the effects of informa-

tional asymmetries and adverse selection on the general equilibrium allocation, we calibrate

the model in a plausible fashion. We assume that the rate of population growth is one per-

cent per annum (n = 0.01). We use data from biological age 18 onward for the cohort born

in the Netherlands in 1960 and estimate the following model:

SURVi = dH (ui)
βHπH

βHπH + βU (1 − πH)

η0 − eη1Hui

η0 − 1

+ dU (ui)
βU (1 − πH)

βHπH + βU (1 − πH)

η0 − eη1Uui

η0 − 1
+ εi, (24)

where SURVi is the actual population fraction surviving up to age ui, εi is the stochastic

error term, and dj (ui) is a dummy variable such that dj (ui) = 1 for 0 ≤ ui ≤ (1/η1j) ln η0

and dj (ui) = 0 otherwise. Equation (24) is estimated with nonlinear least squares under the

restrictions that η1U = λη1H and that the βj parameters satisfy (6). This gives the following

estimates (with robust t-statistic in brackets): η̂0 = 187.865 (16.18) and η̂1H = 0.06961 (79.63),

π̂H = 0.50767 (15.54), and λ̂ = 1.14793 (177.63). It follows that η̂1U = 0.0799 (66.14), β̂H =

0.0221 (244.30), β̂U = 0.0244 (274.55), ˆ̄DH = 75.215 (194.68), and ˆ̄DU = 65.522 (176.04). There

is a substantial difference between the maximum attainable age for the two health types of

about 9.69 years. Similarly, whereas (economic) life expectancy at birth6 is 61.25 years for the

healthy, it is only 53.36 years for the unhealthy types. Figure 1 shows the key features of the

mortality processes of the two health types.

The interest rate and capital depreciation rate are set at, respectively, five and seven per-

cent per annum (r = 0.05 and δ = 0.07). The efficiency parameter of capital is fixed at

ε = 0.3 so that the constant in the production function is equal to Ω0 = (r + δ) /ε = 0.4

and the capital-output ratio attains the plausible value of K/Y = 2.5. We postulate that in

the perfect information benchmark the economy features a steady-state growth rate of two

percent per annum (g = 0.02). For the intertemporal substitution elasticity we use σ = 0.7, a

value often reported in empirical studies – see, e.g., Skinner (1985) and Attanasio and Weber

6Life expectancy at birth for type j individuals is equal to
∫ D̄j

0 e−Mj(s)ds.
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(1995). Using the pure rate of time preference as a calibration parameter we find that it is

a shade over half a percent per annum (ρ = 5.31610−3). For a summary, see column (a) of

Table 2.

Figure 2 visualizes a number of life-cycle features of the perfect information equilibrium.

Panel (a) depicts the age profiles for scaled consumption. The paths for the two health types

are virtually on top of each other. As is clear from (22), consumption grows exponentially

with age at a rate equal to σ [r − ρ]. Panel (b) of Figure 2 shows the life-cycle pattern of

scaled cohort assets (individual assets display a rather similar pattern). As is to be expected,

the healthy cohort is also the wealthiest of the two health types. The difference is more pro-

nounced from middle age onward because the instantaneous mortality rates start to deviate

strongly (see Figure 1(b)).

3.2 Asymmetric information

If we reinstate assumption (A3) so that annuity firms are not able to observe an annuitant’s

health type, then the best such a firm can do is to set the net return on annuities equal to a

common, age-dependent, pooling rate p̄ (u). This pooling rate takes the following form:

p̄ (u) =











µH (u) aH (v, v + u) + µU (u) aU (v, v + u)

aH (v, v + u) + aU (v, v + u)
for 0 < u ≤ D̄U

µH (u) for D̄U < u ≤ D̄H

(25)

Annuity firms know that the unhealthy cannot live beyond age D̄U so for D̄U < u ≤ D̄H

no risk pooling is possible and p̄ (u) coincides with the instantaneous mortality rate of the

healthy individuals. For 0 < u ≤ D̄U, however, both health types are alive and (potentially)

active on the annuity market. The zero-profit condition for annuity firms furnishes the ex-

pression for the pooling rate in that case. It is the cohort-asset weighted sum of instantaneous

mortality rates – see Sheshinski (2008, p. 71).

Using (3), (5), and (8) and ignoring borrowing constraints for the time being, we obtain the

age profiles for consumption and assets for the two health types:

˙̄cj(v, v + u)

c̄j(v, v + u)
= σ

[

r + p̄ (u)− µj (u)− ρ
]

, (26)

āj (v, v + u)

w (v)
e−ru−P̄(u) =

∫ u

0
e−(r−g)s−P̄(s)ds−

c̄j (v, v)

w (v)

∫ u

0
e−(1−σ)[rs+P̄(s)]−σ[ρs+Mj(s)]ds, (27)
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Table 2: Endogenous growth: quantitative effectsa

(a) PI (b) AI (c) PI (d) AI

No retirementb With retirementc

c̄H (v, v)

w (v)
0.7668 0.7396 0.8267 0.8147

c̄U (v, v)

w (v)
0.7858 0.7775 0.8492 0.8476

S̄H (years) D̄H D̄H D̄H D̄H

S̄U (years) D̄U 61.63 D̄U 63.93

c (t)

w (t)
1.0714 1.0753 0.8966 0.8979

g (%year) 2.00 1.89 2.00 1.96

w (t)

k (t)
0.2800 0.2800 0.3346 0.3346

ΛH(v0, v0) 27.4619 26.4639 11.9477 11.8281

ΛU(v0, v0) 21.8047 20.6189 10.3314 9.7873

Notes. aPI is the perfect information equilibrium and AI the asymmetric information (pooling) equi-

librium. S̄j is the age from which type j faces a borrowing constraint. Maximum attainable ages are

D̄H = 75.22 and D̄U = 65.52. bThe participation rate is l = 1. cIn this case R̄ = 47, ζ = 0.3952,

θ = 0.07, and l = 0.8368. See also Table 1.
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Figure 2: Perfect information equilibrium
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where P̄ (u) ≡
∫ u

0 p̄ (s) ds for 0 ≤ u ≤ D̄U and P̄ (u) ≡ P̄ (D̄U) +
∫ u

D̄U
µH (s) ds for D̄U ≤

u ≤ D̄H. Figure 2(c) provides a strong hint that this is not a complete description of the

pooling equilibrium. To construct Figures 2(c)-(d), we use the cohort asset paths for the

perfect information equilibrium to compute the “implied” pooling rate p̄ (u). Note that this

is not an equilibrium rate because it is not consistent with the assumptions under which it

has been derived. Panel (d) shows that the healthy benefit from pooling – their excess rate

peaks at about 2 percentage points per annum around biological age 78. In contrast, as panel

(c) shows, the unhealthy lose out as a result of pooling. For the unhealthy the pooling rate

becomes so low relative to their hazard of dying that they want to borrow at that rate. But in

doing so, they would reveal their health status to annuity firms who would only be willing

to lend them the funds at a punitively high rate equal to their mortality rate.7 But at that rate

they would like to be savers, as the first-best suggests. It follows that the best option for the

unhealthy is to impose a binding borrowing constraint on themselves from age S̄U < D̄U

onward. We summarize as follows.

Proposition 2. Consider the case in which annuity firms are unable to observe the health type and

total annuity purchases of annuitants. Assume that a pooling equilibrium exists and that σr− g > ρ.

Then: (i) healthy agents are net savers throughout life, i.e. āH(v, v) = āH(v, v + D̄H) = 0 and

āH(v, v + u) > 0 for 0 < u < D̄H; (ii) unhealthy agents are net savers until age S̄U < D̄U after

which they adopt a self-imposed borrowing constraint, i.e. āU(v, v) = 0, āU(v, v + u) > 0 for

0 < u < S̄U, and āU(v, v + u) = 0 and c̄U (v, v + u) = w (v + u) for S̄U ≤ u ≤ D̄U.

Proof. See Appendix B.

In the pooling equilibrium, we must redefine P̄ (u) ≡ P̄ (S̄U) +
∫ u

S̄U
µH (s) ds for S̄U ≤

u ≤ D̄H. Equations (26)–(27) are valid for the healthy throughout life (0 ≤ u ≤ D̄H), and

for the unhealthy only until they hit the self-imposed borrowing constraint (0 ≤ u < S̄U).

Beyond age S̄U the unhealthy simply consume their wage income.

The key equations of the general equilibrium model under asymmetric information are

collected in Table 3. Equations (T3.1)–(T3.2) are obtained by using (8) in (4) and noting

that the integrals only run up to age S̄U for the unhealthy. Equation (T3.3) is the smooth-

7This implies that linear pricing only applies to the positive domain and that the pricing schedule features a

kink at zero in equilibrium.
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connection condition: consumption at age S̄U must connect without discontinuity with the

level implied by the solved Euler equation under pooling.8 Equations (T3.4a)–(T3.4c) are the

cohort asset paths under pooling, taking account of the self-imposed borrowing constraint

for the unhealthy. Equation (T3.5) states the expression for the pooling rate. Equation (T3.6)

is obtained from (9) by setting S̄H = D̄H, Pj (s) = P̄ (s), and noting the definition of c (t).

The growth expression, equation (T3.7), again follows readily from (11) because a (t) = k (t)

and Ξ (t) = 0. In the pooling equilibrium, redistribution between health groups takes place,

something which affects the equilibrium allocation. However, the redistributive term Ξ (t)

nevertheless vanishes from the expression for aggregate growth because the annuity firms

break even. Hence, the growth equation is the same as in the first-best situation. Finally,

equation (T3.8) is the same as before.

Using the parameter values discussed above, we can compute the pooling equilibrium

using an iterative solution algorithm.9 The results are reported in column (b) of Table 2.

Relative to the perfect information benchmark, newborn consumption for both health types

is lower in the pooling equilibrium. Similarly, the economic growth rate is somewhat less

– 1.89 percent per annum instead of 2 percent. Interestingly, the unhealthy encounter the

borrowing constraint fairly early on in old age, namely at economic age 61.63 which is 3.89

years less than their maximum attainable age. Recall, however, that life expectancy at birth

of the unhealthy is only 53.36 years, so during youth individual agents are only moderately

worried about encountering the borrowing constraint.10

It must be stressed that this asset depletion result is not exogenously imposed (as in the

partial equilibrium studies of Friedman and Warshawsky (1990, p. 147) and Walliser (2000,

pp. 378-9)) but follows from the internal logic of the model. In our model annuitization

8Solving equation (26) for the unhealthy gives (for 0 ≤ u ≤ S̄U): c̄U(v, v + u) = c̄U(v, v)eσ[(r−ρ)u−MU(u)+P̄(u)].

For S̄U ≤ u ≤ D̄U we have: c̄U(v, v + u) = w (v) egu. For u = S̄U these two expressions must coincide. This

furnishes equation (T3.3) in Table 3.
9We drop equation (T3.3) and perform a grid search over S̄U which solves the remaining general equilibrium

system. To get the iterations started we use the pooling rate “implied by” the perfect information equilibrium.

See Figures 2(c)-(d). The iterations are stopped once the unique value for S̄U is found which solves (T3.3). In all

computations we obtain unique solutions for the pooling equilibrium.
10From the perspective of birth, the probability of reaching age S̄U = 61.63 is equal to e−MU(S̄U) = 0.2687.

The discount factor due to pure time preference is given by e−ρS̄U = 0.7206. It follows that the agent attaches a

non-trivial weight of 0.1936 to felicity at age S̄U .
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Table 3: Balanced growth with asymmetric informationa

(a) Microeconomic relationships:

c̄H (v, v)

w (v)
=

∫ D̄H

0 e−(r−g)s−P̄(s)ds
∫ D̄H

0 e−ρ∗s−(1−σ)P̄(s)−σMH(s)ds
(T3.1)

c̄U (v, v)

w (v)
=

∫ S̄U

0 e−(r−g)s−P̄(s)ds
∫ S̄U

0 e−ρ∗s−(1−σ)P̄(s)−σMU(s)ds
(T3.2)

c̄U (v, v)

w (v)
= e−(σ(r−ρ)−g)S̄U+σ[MU(S̄U)−P̄(S̄U)] (T3.3)

aH (v, v + u)

w (v)
= βHπHe(r−n)u−MH(u)+P̄(u)

[

∫ u

0
e−(r−g)s−P̄(s)ds

−
c̄H (v, v)

w (v)

∫ u

0
e−ρ∗s−(1−σ)P̄(s)−σMH(s)ds

]

, (0 ≤ u ≤ D̄H) (T3.4a)

aU (v, v + u)

w (v)
= βUπUe(r−n)u−MU(u)+P̄(u)

[

∫ u

0
e−(r−g)s−P̄(s)ds

−
c̄U (v, v)

w (v)

∫ u

0
e−ρ∗s−(1−σ)P̄(s)−σMU(s)ds

]

, (0 ≤ u < S̄U) (T3.4b)

aU (v, v + u)

w (v)
= 0, (S̄U ≤ u ≤ D̄U) (T3.4c)

p̄ (u) =
µH (u) aH (v, v + u) + µU (u) aU (v, v + u)

aH (v, v + u) + aU (v, v + u)
(T3.5)

(b) Macroeconomic relationships:

c (t)

w (t)
= βHπH

c̄H (v, v)

w (v)

∫ D̄H

0
e(r−n−g−ρ∗)s−(1+σ)MH(s)+σP̄(s)ds

+βUπU

[

c̄U(v, v)

w (v)

∫ S̄U

0
e(r−n−g−ρ∗)s−(1+σ)MU(s)+σP̄(s)ds +

∫ D̄U

S̄U

e−ns−MU(s)ds

]

(T3.6)

g ≡
k̇ (t)

k (t)
= r − n +

[

1 −
c (t)

w (t)

]

w (t)

k (t)
(T3.7)

w (t)

k (t)
= (1 − ε)Ω0 (T3.8)

Note. aEndogenous are c̄j(v, v)/w(v), aj(v, v + u)/w(v), p̄(u), S̄U , g, w(t)/k(t), and c(t)/w(t). P̄(s)

is the cumulative pooling rate at age s, u ≡ t − v, and ρ∗ ≡ (1 − σ)r + σρ. See also Table 1.
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opportunities become prohibitively unattractive for the unhealthy but remain advantageous

to the healthy. Hence, our model yields a consistent explanation why not everybody buys

positive quantities of annuities in a general equilibrium model with risk pooling. In fact, the

unhealthy would like to go short on annuities at the pooling rate (and purchase life-insured

loans), but the price they would have to pay for doing so is too high.

It is not difficult to see that our asset depletion result also holds if there are more than

two health types, provided ρ is the same for all types. Indeed, with three types (healthy,

normal, N, and unhealthy), p̄(u) is an asset-weighted average of the respective mortality

rates, µH (u), µN (u), and µU (u). In this setting the normal group will feature D̄H > S̄N >

S̄U. It may be the case that the U-types want to borrow at a slightly better rate than without

the N-types, but the N-types get a worse rate as a result of the presence of the U-types.

So they will not borrow for sure, and the U-types still cannot borrow without revealing

themselves. In general, each health type j which encounters the borrowing constraint ends

up enforcing the borrowing constraints for all types k that are unhealthier than j.

Figure 3 visualizes the key life-cycle features of the asymmetric information equilib-

rium for the two health groups. Panel (a) shows that scaled consumption for the unhealthy

reaches a local peak just before encountering the borrowing constraint at S̄U. This is because

the pooling rate is rather low (due to the predominance of the healthy in the annuity market),

and the mortality rate of the unhealthy starts to rise. In terms of (26), consumption falls for a

while because the gross annuity rate, r + p̄ (u), falls short of the “effective impatience rate”

due to time preference and mortality, ρ + µU (u), for u near S̄U. At u = S̄U , the surviving

unhealthy reach the Keynesian part of their consumption profile and simply consume their

wage income.

Comparing the asset paths for the perfect information and asymmetric information cases

in, respectively, Figures 2(b) and 3(b), we observe that the healthy save more and the un-

healthy save less in the pooling equilibrium than in the first-best. This is in part because the

relative pooling rate, p̄j (u) − µj (u), is positive for the healthy and is negative for the un-

healthy – see panels (c)–(d) in Figure 3. To an extent, the healthy benefit from the presence

of the unhealthy in the annuity market as they are able to obtain an annuity rate of interest

on their assets that is more than actuarially fair.
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(a) scaled individual consumption (b) scaled cohort assets
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Figure 3: Asymmetric information equilibrium
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3.3 Welfare analysis

In the previous subsection we have shown that the growth effects of asymmetric versus

perfect information are small even though the difference in mortality risks faced by healthy

and unhealthy individuals is rather large, especially at older ages (see Figure 1(b)). But

economic growth is not the only relevant indicator. A key question is, to what extent does it

matter to individuals whether or not there is adverse selection in the annuity market due to

informational imperfections?

To address this question, the last two rows of Table 2 report the lifetime utility scores for

newborns (of both health type) at some base year v0. We normalize the wage rate for that

generation to unity, w (v0) = 1. As panels (a)-(b) in Table 2 reveal, welfare is higher under

the perfect information than under asymmetric information, i.e. ΛPI
j (v0, v0) > ΛAI

j (v0, v0)

for j ∈ {H, U}. In order to obtain some feel for the significance of these differences, we

compute the lost growth years in the pooling equilibrium relative to the first-best as follows:

LGYj =
1

g

ΛPI
j (v0, v0)− ΛAI

j (v0, v0)
∫ D̄j

0 e−ρs−Mj(s)ds
. (28)

Intuitively, LGYj is equal to v1 − v0 such that ΛPI
j (v0, v0) = ΛAI

j (v1, v1). How far into the

future must an economic newborn arrive when there is asymmetric information in order to

be equally well off as a base-year newborn in the first-best? Since wage growth explains

why newborn lifetime utility increases over time, the macroeconomic growth rate in the

asymmetric information equilibrium features in (28).

We find that LGYH = 1.0166 years and LGYU = 1.3582 years. By all accounts the annu-

ity market imperfection due to informational asymmetries is rather small in welfare terms.

At birth, the unhealthy have an economic life expectancy of 53.36 years and for them the

lost growth years amount to about 16.3 months. For the healthy the results are 12.2 months

of lost growth on an expected economic lifetime at birth of 61.25 years. Interestingly, the

bulk of the welfare effect is accounted for by general equilibrium effects. Indeed, solving the

microeconomic household equilibrium under asymmetric information in isolation (keeping

the macroeconomic growth rate at two percent per annum) we find that partial equilibrium

welfare effects are tiny: LGYH = 0.0934 years and LGYU = 0.3898. Hence, although the qual-

itative effects are similar in partial equilibrium and general equilibrium settings, the former

approach grossly underestimates the effects of the information imperfections in a quantitative
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sense.

At first sight it might appear as though the above results imply that the pooling equilib-

rium does not exist. Both the unhealthy agents and the healthy agents as a group are better

off by truthfully signaling their health status to the annuity firms. As a perfect information

equilibrium gives them higher utility, this announcement would be credible. However, each

healthy agent as an individual has an incentive to deviate from the optimal group strategy.

Once the first-best contracts are available, posing as an unhealthy (low-risk) agent and re-

ceiving the higher annuity premium is optimal given that the other agents are honest in their

health claim. Indeed, a healthy individual who cheats during the interval (v0, v0 + T̄) would

attain a welfare level of Λcheat
H (v0, v0) = 36.5047 (for T̄ = 1) and Λcheat

H (v0, v0) = 37.9725 (for

T̄ = 2). Indeed, the longer such an individual cheats, the higher is welfare. So cheating

clearly dominates the truth-telling strategy for healthy individuals (recall that under truth

telling ΛPI
H (v0, v0) = 27.4619). In short, there exists a free-rider problem: as each healthy

agent has an incentive to cheat and they cannot coordinate their actions, the pooling equilib-

rium will be the inevitable, yet suboptimal, outcome.

4 Robustness checks

The analysis conducted thus far has yielded a number of tentative conclusions.

Conclusion (C1) Unhealthy individuals rationally drop out of the annuity market fairly

early on during old age.

Conclusion (C2) The welfare effects of the annuity market imperfection due to asymmetric

information are rather modest.

In the remainder of this section we study the robustness of conclusions (C1)–(C2) to

alternative assumptions regarding labour market participation (in subsection 4.1) and the

macroeconomic growth mechanism (in subsection 4.2).

4.1 Retirement and pensions

In the model considered up to this point, agents are assumed to supply one unit of labour

in each period until they die. Here we replace this unrealistic assumption by postulating
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Table 4: The pooling equilibrium with retirementa

(a) Microeconomic relationships:

c̄H (v, v)

w (v)
=

(1 − θ)
∫ R̄

0
e−(r−g)s−P̄(s)ds + ζ

∫ D̄H

R̄
e−(r−g)s−P̄(s)ds

∫ D̄H

0 e−ρ∗s−(1−σ)P̄(s)−σMH(s)ds
( T4.1)

c̄U (v, v)

w (v)
=

(1 − θ)
∫ R̄

0 e−(r−g)s−P̄(s)ds + ζ
∫ S̄U

R̄ e−(r−g)s−P̄(s)ds
∫ S̄U

0
e−ρ∗s−(1−σ)P̄(s)−σMU(s)ds

( T4.2)

c̄U (v, v)

w (v)
= ζe−(σ(r−ρ)−g)S̄U+σ[MU(S̄U)−P̄(S̄U)] ( T4.3)

aH (v, v + u)

w (v)
= βHπHe(r−n)u−MH(u)+P̄(u)

[

(1 − θ)
∫ u

0
e−(r−g)s−P̄(s)ds

−
c̄H (v, v)

w (v)

∫ u

0
e−ρ∗s−(1−σ)P̄(s)−σMH(s)ds

]

, (0 ≤ u < R̄) ( T4.4a)

aH (v, v + u)

w (v)
= βHπHe(r−n)u−MH(u)+P̄(u)

[

− ζ

∫ D̄H

u
e−(r−g)s−P̄(s)ds

+
c̄H (v, v)

w (v)

∫ D̄H

u
e−ρ∗s−(1−σ)P̄(s)−σMH(s)ds

]

, (R̄ ≤ u ≤ D̄H) ( T4.4b)

aU (v, v + u)

w (v)
= βUπUe(r−n)u−MU(u)+P̄(u)

[

(1 − θ)
∫ u

0
e−(r−g)s−P̄(s)ds

−
c̄U (v, v)

w (v)

∫ u

0
e−ρ∗s−(1−σ)P̄(s)−σMU(s)ds

]

, (0 ≤ u ≤ R̄) ( T4.4c)

aU (v, v + u)

w (v)
= βUπUe(r−n)u−MU(u)+P̄(u)

[

− ζ

∫ S̄U

u
e−(r−g)s−P̄(s)ds

+
c̄U (v, v)

w (v)

∫ S̄U

u
e−ρ∗s−(1−σ)P̄(s)−σMU(s)ds

]

, (R̄ ≤ u < S̄U) ( T4.4d)

aU (v, v + u)

w (v)
= 0, (S̄U ≤ u ≤ D̄U) ( T4.4e)

p̄ (u) =
µH (u) aH (v, v + u) + µU (u) aU (v, v + u)

aH (v, v + u) + aU (v, v + u)
( T4.5)
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(Table 4, continued)

(b) Macroeconomic relationships:

c (t)

w (t)
= βHπH

c̄H (v, v)

w (v)

∫ D̄H

0
e(r−n−g−ρ∗)s−(1+σ)MH(s)+σP̄(s)ds

+βUπU

[

c̄U(v, v)

w (v)

∫ S̄U

0
e(r−n−g−ρ∗)s−(1+σ)MU(s)+σP̄(s)ds + ζ

∫ D̄U

S̄U

e−ns−MU(s)ds

]

( T4.6)

g ≡
k̇ (t)

k (t)
= r − n +

[

l −
c (t)

w (t)

]

w (t)

k (t)
( T4.7)

w (t) l

k (t)
= (1 − ε)Ω0 ( T4.8)

l ≡ ∑
j

βjπ j

∫ R̄

0
e−ns−Mj(s)ds ( T4.9)

0 = θ ∑
j

βjπ j

∫ R̄

0
e−ns−Mj(s)ds − ζ ∑

j

βjπ j

∫ D̄j

R̄
e−ns−Mj(s)ds ( T4.10)

Note. aSee also Table 3. The additional endogenous variables are the labour force participation rate,

l, and the replacement rate, ζ.

an exogenously imposed mandatory retirement age, R̄, i.e. in the augmented model agents

supply one unit of labour for ages u such that 0 ≤ u < R̄ and are fully retired for R̄ ≤ u ≤ Dj.

The retirement age does not feature a type index because the policy maker, like annuity firms,

lacks information about an individual’s health status.

In addition we postulate a simple pay-as-you-go (PAYG) pension scheme which imposes

a wage-indexed tax of θw (τ) (featuring 0 < θ < 1) on workers (0 ≤ τ − v < R̄) and provides

wage-indexed benefits of ζw (τ) (with ζ > 0) to retirees (R̄ ≤ τ − v ≤ Dj). We refer to ζ as

the replacement rate. The PAYG system is run on a balanced budget basis (see below).

Table 4 states the key equations defining the asymmetric information general equilibrium

model. The model is based on the presumption – which is verified in the parameterization

adopted below – that the retirement age falls well short of the asset depletion age of the un-

healthy, i.e. R̄ < S̄U . The pension system affects the model via the following channels. First,

whilst the tax rate θ reduces the part of human wealth accumulated during the working

period, the replacement rate ζ increases human wealth accumulated during the retirement

phase. Both affect scaled consumption at birth and the asset accumulation paths – see equa-

tions (T4.1)–(T4.2) and (T4.4a)–(T4.4e). Second, the replacement rate also enters the smooth
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connection condition (T4.3). With the pension system in place, for age S̄U onward the un-

healthy consume their pension income ζw (v + u) rather than their wage income w (v + u) as

was the case in the base model without mandatory retirement. Third, the macroeconomic

labour force participation rate l falls short of unity under mandatory retirement. This rate is

defined in equation (T4.9) and also shows up in the growth equation (T4.7) and the expres-

sion for the wage-capital ratio (T4.8).

We parameterize the augmented model as follows. For the economic structural parame-

ters (r, n, ε, Ω0, δ, and σ) and the demographic parameters (η0, η1j, π j, βj and λ) we use the

values discussed above (below equation (24)). We set the mandatory retirement age at sixty-

five biological years (R̄ = 47) and assume that the tax rate equals seven percent of wage

income (θ = 0.07). It follows that the replacement rate is about forty percent (ζ = 0.3952)

and the participation rate is almost eighty-four percent (l = 0.8368). These values broadly

capture the main features of the Dutch PAYG system. We assume that the macroeconomic

growth rate is two percent per annum in the perfect information benchmark (g = 0.02) and

use the pure rate of time preference as a calibration parameter (ρ = 0.0179).11

The key features of the different equilibria are reported in columns (c)–(d) of Table 2. It

is clear from the table that conclusions (C1)–(C2) still hold under a system of mandatory

retirement and PAYG pensions. Comparing columns (b) and (d) we observe that the self-

imposed borrowing constraint occurs later on in life under the PAYG system.12 The intuition

behind this result is that with a replacement rate of less than unity, the smooth connection

point occurs later on in life. In terms of Figure 4, asset depletion occurs at the point where

the consumption Euler path (dashed line) meets the pension income path (dotted line) which

lies well below the after-tax wage income path.

4.2 Endogenous versus exogenous growth

In this section we consider the role of the economic growth process. Are conclusions (C1)–

(C2) still valid if growth is exogenous rather than endogenous? To study this issue we pos-

tulate an alternative model featuring exogenous labour-augmenting technological change

11In the interest of brevity we do not provide a summary table for the perfect information model with the

pension system incorporated. It is easily deduced from Table 4, however, by comparing Tables 2 and 3.
12Of course, the results in columns (a)–(c) in the table are strictly speaking not directly compatible to those in

columns (d)–(f) because they are based on a different value of ρ, and thus on structurally different individuals.
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Table 5: Exogenous growth: quantitative effectsa

(a) PI (b) AI (c) PI (d) AI

No retirementb With retirementc

c̄H (v, v)

w (v)
0.7668 0.7428 0.8267 0.8157

c̄U (v, v)

w (v)
0.7858 0.7803 0.8492 0.8485

S̄H (years) D̄H D̄H D̄H D̄H

S̄U (years) D̄U 61.60 D̄U 63.93

c (t)

w (t)
1.0714 1.0755 0.8966 0.8980

k (t)

Z (t)
2.5000 2.4593 2.5000 2.4827

r (%year) 5.00 5.14 5.00 5.06

w (t)

Z (t)
0.7000 0.6966 0.8365 0.8348

ΛH(v0, v0) 27.4619 27.6194 11.9477 12.1563

ΛU(v0, v0) 21.8047 21.5796 10.3314 10.0692

Notes. aSee the notes in Tables 2 and 3. bThe participation rate is l = 1. cIn this case R̄ = 47,

ζ = 0.3952, θ = 0.07, and l = 0.8368.
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Figure 4: Self-imposed borrowing constraint under PAYG pensions

yielding a long-run growth rate of g. Of course, in a closed-economy exogenous growth

model the interest rate r (t) is an endogenous variable. In the model employed here, the

representative firm faces an intensive-form production function of the form y (t) = Ω0k (t)ε

[lZ (t)]1−ε, where Ż (t) /Z (t) = g is the exogenous rate of change in labour-augmenting

technology. Instead of (18)–(19) the marginal productivity conditions are given by:

w (t)

Z (t)
= (1 − ε) Ω0

(

k (t)

lZ (t)

)ε

, r (t) + δ = εΩ0

(

k (t)

lZ (t)

)ε−1

. (29)

These expressions replace equation (T4.8) in Table 4. The remainder of the model is un-

changed except for the fact that r (t) is endogenous and g is exogenous. In the steady state,

k (t) /Z (t) and r (t) are time-invariant constants, and c (t), w (t), k (t), and y (t) all grow at

the exponential rate g.

We analyze the model both without and with a pension system. We parameterize the two

versions of the model as follows. For the economic structural parameters (n, ε, δ, σ, R̄, θ, and

ζ) and the demographic parameters (η0, η1j, π j, βj and λ) we use the values discussed above

(below equation (24)). We set g = 0.02, assume that the steady-state capital-output ratio
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equals K (t) /Y (t) = 2.5, and postulate that the interest rate equals five percent per annum

in the perfect information benchmark (r = 0.05). We use the scale parameter in production

and the pure rate of time preference as calibration parameters and find Ω0 = 0.7597 and

ρ = 5.31610−3 for the case without retirement, and Ω0 = 0.8606 and ρ = 0.0179 for the case

with retirement.

In Table 5 columns (a)–(b) and (c)–(d) present the quantitative results for, respectively,

the model without and with retirement. Apart from the changed roles played by r and g,

columns (a) and (c) in Table 5 by construction coincide with, respectively columns (a) and

(c) in Table 2.

Two main conclusions can be drawn. First, it is clear from Table 5 that conclusions (C1)–

(C2) still hold in an exogenous growth setting. Second, the comparison between Tables 2 and

5 reveals that the quantitative effects are virtually identical for the endogenous and exoge-

nous growth models. Whereas the difference between perfect and asymmetric information

results in different growth rates in Table 2, it shows up in the form of different interest rates

in Table 5. But the growth-corrected interest rates (r − g) for the two growth models are very

close for the different equilibria.

5 Conclusions

We have constructed a dynamic general equilibrium model featuring overlapping gener-

ations of heterogeneous agents distinguished by health status. Under our set of assump-

tions about the annuity market, competitive firms offer linear contracts so that a risk pooling

equilibrium emerges. In this equilibrium the healthy (high-risk) individuals benefit from

the market presence of unhealthy (low-risk) annuitants in the sense that they obtain a bet-

ter than actuarially fair return on their annuities. The model explains why not everybody

participates in annuity markets. In particular, at high ages, low-risk individuals cease to

purchase annuities and impose a “borrowing constraint” on themselves.

Interestingly, the growth and welfare effects of the annuity market imperfection due to

adverse selection are rather small. The fact that information is asymmetric in this market

may thus be quantitatively unimportant after all.

In future work we hope to pursue the following extensions. First, we wish to endogenize
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the labour supply decision in order to investigate the retirement effects of annuity market

imperfections. In that context we will also introduce social annuity schemes such as funded

and PAYG pension systems. Second, we wish to model the optimal schooling decision by

individuals in an adverse selection setting and study the effects on aggregate human capital

formation and macroeconomic growth. Finally, we want to extend the model to include

agents who differ both in health type and labour productivity. In this context we will study

the emergence of joint pooling equilibria for annuities and life-insurance.

Appendix A: Proof of Proposition 1

In a full information equilibrium we have Mj(u) = Pj(u) for all 0 ≤ u ≤ D̄U as pj(u) = µj(u)

for all 0 ≤ u ≤ D̄j. Define ρ∗ ≡ (1 − σ) r + σρ. For σr − g > ρ it follows that r − g > ρ∗ and

thus:

c̄j(v, v)

w(v)
=

∫ D̄j

0 e−(r−g)u−Mj(u) du
∫ D̄j

0 e−ρ∗u−Mj(u) du
< 1.

Let u ∈ [0, D̄j] be the age of the consumer. Then we can write:

āj(v, v + u)

w(v)
e−ru−Mj(u) = Γj(u),

where Γj : [0, D̄j] → R is defined by:

Γj(u) =
∫ u

0
e−(r−g)s−Mj(s)ds −

c̄j(v, v)

w(v)

∫ u

0
e−ρ∗s−Mj(s)ds.

As Γj is a continuous function defined on a closed and bounded interval [0, D̄j], we know

that Γj has a global maximum and a global minimum on its domain. Candidates for these

extreme points are the boundaries of the domain and the interior critical points. For the

boundary points we find Γj(0) = Γj(D̄j) = 0 as āj(v, v) = āj(v, v + D̄j) by the initial condi-

tion and the property of non-saturation.

Using Leibnitz’ rule, we find that the first order derivative of Γj is given by:

Γ′
j(u) = e−Mj(u)

[

e−(r−g)u −
c̄j(v, v)

w(v)
e−ρ∗u

]

.

The unique interior root of this equation is:

u∗ ≡ −
1

r − g − ρ∗
ln

(

c̄j(v, v)

w(v)

)

,
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where u∗ > 0 as c̄j(v, v)/w(v) < 1 and r − g > ρ∗ by assumption. We find that Γ′
j(u) > 0

for 0 ≤ u < u∗ and Γ′
j(u) < 0 for u∗ < u < D̄j. We conclude that Γj has a global maximum

at u∗ and a global minimum at 0 and D̄j. As this global minimum equals zero, we find

āj(v, v + u) > 0 for all u ∈ (0, D̄j). �

Appendix B: Proof of Proposition 2

We assume that there exists a pooling equilibrium in the annuity market. This is only pos-

sible if the asset holdings of both health groups have the same sign everywhere. Hence,

the equilibrium price must lie somewhere between the fair prices for the two types. But at

that price the healthy wish to save. It follows that the asset holdings of the healthy and un-

healthy agents will both have to be nonnegative: āH(v, v + u) ≥ 0 and āU(v, v + u) ≥ 0 for

0 ≤ u ≤ D̄U. The corresponding pooling premium is given by:

p̄(u) =















µH(u)aH(v, v + u) + µU(u)aU(v, v + u)

aH(v, v + u) + aU(v, v + u)
for 0 ≤ u ≤ D̄U

µH(u) for D̄U < u ≤ D̄H

.

Write P̄(u) ≡
∫ u

0
p̄(s) ds. It follows that:

µH(u) ≤ p̄(u) ≤ µU(u), for 0 ≤ u ≤ D̄U,

MU(u) ≥ P̄(u), for 0 ≤ u ≤ D̄U,

MH(u) ≤ P̄(u), for 0 ≤ u ≤ D̄H.

Now consider the two statements made in the proposition.

Item (i). Take a healthy agent. Define f : [0, D̄H] → R by:

f (u) = eσ[MH(u)−P̄(u)].

It follows that f is a differentiable function, that f (0) = 1 and that f (u) ≤ 1 for all u ∈

(0, D̄H]. The first-order derivative of f is given by:

f ′(u) = [µH(u)− p̄(u)] f (u) =











σ[µH(u)− p̄(u)] f (u) for 0 ≤ u ≤ D̄U

0 for D̄U < u ≤ D̄H

,
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such that f ′(u) ≤ 0 for all u ∈ [0, D̄H]. Using the function f , we can write consumption at

birth as:

c̄H(v, v)

w(v)
=

∫ D̄H

0
f (u)e−(r−g)u−(1−σ)P̄(u)−σMH(u) du

∫ D̄H

0 e−ρ∗u−(1−σ)P̄(u)−σMH(u) du
,

where ρ∗ ≡ (1 − σ) r + σρ. By the properties of f and the assumption that r − g > ρ∗ it

immediately follows that:

c̄H(v, v)

w(v)
< 1.

We now write:

āH(v, v + u)

w(v)
e−ru−P̄(u) = ΓH(u),

where ΓH : [0, D̄H] → R is defined by:

ΓH(u) =
∫ u

0
f (s)e−(r−g)s−(1−σ)P̄(s)−σMH(s) ds −

c̄H(v, v)

w(v)

∫ u

0
e−ρ∗s−(1−σ)P̄(s)−σMH(s) ds.

As ΓH is a continuous function defined on a closed and bounded interval we know that ΓH

has a global maximum and a global minimum on its domain. Candidates for these extreme

points are the boundaries of the domain and the interior critical points. For the boundary

points we find ΓH(0) = ΓH(D̄H) = 0 as āH(v, v) = āH(v, v + D̄H) = 0.

The first-order derivative of ΓH is given by:

Γ′
H(u) = e−(1−σ)P̄(u)−σMH(u)

[

f (u)e−(r−g)u −
c̄H(v, v)

w(v)
e−ρ∗u

]

.

It follows that a stationary point u∗
H of ΓH satisfies:

c̄H(v, v)

w(v)
e(r−g−ρ∗)u∗

H = f (u∗
H).

Since r − g > ρ∗, the left-hand side of this equation is increasing in u. Combined with the

fact that c̄H(v, v)/w(v) < 1, f (0) = 1 and f ′(u) ≤ 0 for all u ∈ [0, D̄H] we find that the

stationary point is unique. The second-order derivative of ΓH evaluated in u∗
H is:

Γ′′
H(u

∗
H) = −e−(r−g)u∗

H−(1−σ)P̄(u∗
H)−σMH(u

∗
H)

[

(r − g − ρ∗) f (u∗
H)− f ′(u∗

H)
]

.

As f ′(u∗
H) ≤ 0, it follows that Γ′′

H(u
∗
H) < 0. We conclude that ΓH has a global maximum at

u∗
H and a global minimum at 0 and D̄H. As this global maximum is strict and equals zero,

we find āH(v, v + u) > 0 for all u ∈ (0, D̄H).
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Item (ii). Take an unhealthy agent. Define h : [0, D̄U] → R by:

h(u) = eσ[MU(u)−P̄(u)].

It follows that h is a differentiable function, that h(0) = 1 and that h(u) ≥ 1 for all u ∈

(0, D̄U]. The first-order derivative of h is given by:

h′(u) = σ[µU(u)− p̄(u)]h(u).

Since we have shown above that āH(v, v + u) > 0 for all u ∈ (0, D̄H) and µU(u) > µH(u)

for all u ∈ [0, D̄U ] by assumption, it follows that p̄(u) < µU(u) for all u ∈ (0, D̄U ]. As

a consequence, we find that h′(u) > 0 on its domain. Using the function h, we can write

consumption at birth as:

c̄U(v, v)

w(v)
=

∫ D̄U

0
h(u)e−(r−g)u−(1−σ)P̄(u)−σMU(u) du
∫ D̄U

0 e−ρ∗u−(1−σ)P̄(u)−σMU(u) du
.

If c̄U(v, v)/w(v) > 1 then there exists ε > 0 such that āU(v, v + ε) < 0, which contradicts the

assumption that a pooling equilibrium exists. Hence:

c̄U(v, v)

w(v)
< 1.

It follows that āU(v, v + u) is positive for small values of u. Now suppose to the contrary

that there does not exist an age ū ∈ (0, D̄U) such that āU(v, v + u) = 0 for u ∈ [ū, D̄U]. Then

we would have āU(v, v + u) > 0 for u ∈ (0, D̄U). In that case we can write:

āU(v, v + u)

w(v)
e−ru−P̄(u) = ΓU(u),

where ΓU : [0, D̄U] → R is defined by:

ΓU(u) =
∫ u

0
h(s)e−(r−g)s−(1−σ)P̄(s)−σMU(s) ds −

c̄U(v, v)

w(v)

∫ u

0
e−ρ∗s−(1−σ)P̄(s)−σMU(s) ds.

As ΓU is a continuous function defined on a closed and bounded interval we know that ΓU

has a global maximum and a global minimum on its domain. Candidates for these extreme

points are the boundaries of the domain and the interior critical points. For the boundary

points we find ΓU(0) = ΓU(D̄U) = 0 as āU(v, v) = āU(v, v + D̄U) = 0.

The first-order derivative of ΓU is given by:

Γ′
U(u) = e−(1−σ)P̄(u)−σMU(u)

[

h(u)e−(r−g)u −
c̄U(v, v)

w(v)
e−ρ∗u

]

.
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It follows that a stationary point u∗
U of ΓU satisfies:

c̄U(v, v)

w(v)
e(r−g−ρ∗)u∗

U = h(u∗
U).

Both the left-hand side and the right-hand side of this equation are increasing and convex in

u, opening the possibility of multiple stationary points. Define g : [0, D̄U ] → R by:

g(u) =
c̄U(v, v)

w(v)
e(r−g−ρ∗)u.

As c̄U(v, v)/w(v) < 1 it follows that g(0) < h(0). Since both functions are strictly increasing

and limu→D̄U
h(u) > g(D̄U), it follows that if g and h cross on [0, D̄U ] then they cross exactly

twice. Hence, we conclude ΓU has two critical points on its domain.

The second-order derivative of ΓU evaluated in u∗
U is:

Γ′′
U(u

∗
U) = −e−(r−g)u∗

U−(1−σ)P̄(u∗
U)−σMU(u

∗
U)

[

(r − g − ρ∗)h(u∗
U)− h′(u∗

U)
]

= −h(u∗
U)e

−(r−g)u∗
U−(1−σ)P̄(u∗

U)−σMU(u
∗
U) [(r − g − ρ∗)− [µU(u

∗
U)− p̄(u∗

U)]] T 0.

where we have used the fact that h′(u∗
U) = [µ(u∗

U) − p̄(u∗
U)]h(u

∗
U). Since r − g > ρ∗ and

µU(u)− p̄(u) ≈ 0 for low values u, we find that the first stationary point is a maximum. As

[µU(u) − p̄(u)] → ∞ for u → D̄U, we find that the second stationary point is a minimum.

As ΓU(0) = ΓU(D̄U) = 0 and there are exactly two interior stationary points it follows

that the minimum is associated with negative asset holdings. This is a contradiction to the

assumption that āU(v, v + u) > 0 for all u ∈ (0, D̄U). Hence we conclude that there does

exist an age ū ∈ (0, D̄U) such that āU(v, v + u) > 0 for u ∈ (0, ū) and āU(v, v + u) = 0 for

u ∈ [ū, D̄U]. �
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