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1 Introduction

In a seminal paper, Yaari (1965) argues that in the face of life span uncertainty non-altruistic

individuals will fully annuitize their financial wealth. That is, they will invest all their sav-

ings in the annuity market, thereby insuring themselves against the risk of outliving their

assets. However, empirical evidence has revealed that, despite the theoretical attractiveness

of annuities, in practice people tend not to invest much in private annuity markets.

Several explanations for the low participation in annuity markets have been given in the

literature. First of all, individuals may have a bequest motive, in that they wish to leave an

inheritance to those they leave behind. If so, they will want to keep part of their financial

assets outside the annuity market. Secondly, psychological factors may play a role. Accord-

ing to Cannon and Tonks (2008), people might feel uncomfortable to “bet on a long life”.

Investing in annuities only seems attractive if you expect to live long enough, as most of

us would hate to die before having received at least our initial outlay back in periodic pay-

ments. Third, private annuity demand may be crowded out by a system of social security

benefits.

A fourth explanation is that in reality annuities may not be actuarially fair, in the sense

that individuals are insufficiently compensated for their risk of dying. This may be due

to administrative costs and taxes or monopoly profits as a result of imperfect competition

among annuity firms. The implications for macroeconomic growth and welfare of a loading

factor on annuities proportional to the mortality rate are investigated in Heijdra and Mierau

(2012). Another reason for annuity market imperfection is adverse selection. The healthier

someone believes herself to be, the more likely she is to buy an annuity. As a consequence,

low-mortality (and thus high-risk) individuals are overrepresented in the annuity market.

Annuity firms will have to take this selection effect into account when pricing their products,

as they will incur a loss if they offer a rate based on average survival probabilities in the

population. The resulting higher prices (or lower return) will induce high-mortality (low-

risk) individuals to invest less in the annuity market.

In this paper we abstract from bequest motives, administrative costs, and imperfect com-

petition and focus on the adverse selection channel and the role of social annuities. Our work

mainly builds on the foundations laid out by Heijdra and Reijnders (2009). They consider a

continuous-time endogenous growth model with two types of agents differing in their health
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status acquired at birth, which is assumed to be private information. The equilibrium in the

annuity market is then characterized by risk pooling among health types which induces the

unhealthy agents to drop out of the market in the last stages of their lives. This pooling

equilibrium is slightly dominated in welfare terms by a hypothetical full-information equi-

librium (in which each health type receives its actuarially fair rate of return).

We augment the work by Heijdra and Reijnders (2009) in several directions. First, rather

than distinguishing only two types of agents, we model a continuum of health types. Sec-

ond, instead of a employing a continuous-time model with endogenous growth we work

with a discrete-time framework in which long-run growth is exogenously determined. This

allows us to easily study what happens during the transition from one steady state to an-

other.

Our main findings are as follows. First, we note that in the absence of private and social

annuities there exist accidental bequests that must be redistributed somehow. When such

bequests flow to the young, private saving is boosted as this constitutes an intergenerational

transfer from dissavers to savers. In this so-called TY equilibrium the unhealthiest agents

typically experience a binding borrowing constraint. Second, we demonstrate that when a

private annuity market is opened up and information is perfect (the FI case), then all agents

will purchase positive amounts of annuities. Third, in the more realistic case with asym-

metric information (the AI scenario), the equilibrium in the market for annuities will be a

pooling equilibrium in which the unhealthiest individuals face a self-imposed borrowing

constraint and the other agents receive a common yield on their annuities. Fourth, both in

the FI and AI cases the opening up of a private annuity market causes a ‘tragedy of annu-

itization’, as described in Heijdra et al. (2010). Intuitively, whilst it is individually optimal

for agents to invest in annuities, it is not socially optimal. Agents of all health types are in

the long run worse off compared to the benchmark case in which annuities are absent and

accidental bequests are redistributed to the newly arrived young (TY). Fifth, the introduc-

tion of a mandatory social annuity system, while providing a ‘fairer’ rate of return than the

private annuity market, reduces steady-state welfare even more. It aggravates the degree of

adverse selection in the private annuity market and reduces the overall level of savings in

the economy.

Other papers closely related to ours are Abel (1986), Walliser (2000), and Palmon and Spi-
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vak (2007). All three find that the introduction of social annuities accentuates the problem

of adverse selection in the private annuity market. In Abel (1986) a two-period exogenous

growth model is developed in which agents have privately known heterogenous mortal-

ity profiles and a bequest motive. Due to adverse selection, the rate of return on private

annuities is less than actuarially fair. In this context, the introduction of a mandatory (de-

mographically fair1) social security system further decreases the return on annuities in the

steady state. Walliser (2000) builds on the work of Abel (1986), but calibrates his model with

75 instead of only 2 periods. The paper investigates the effects of pay-as-you-go social se-

curity benefits on private annuity demand and shows that privatization (i.e. elimination)

of social security lowers the loading factor on annuities resulting from adverse selection.

Finally, Palmon and Spivak (2007) argue that a modest social security system may reduce

welfare in an adverse selection economy. The positive effect of providing agents with social

annuities at an demographically fair pooling rate is outweighed by the negative impact of

increased adverse selection in the private annuity market.

In contrast to our work, however, both Walliser (2000) and Palmon and Spivak (2007)

focus on the features of private annuity markets in isolation and do not take general equi-

librium effects into account. Moreover, the latter fail to specify what happens to accidental

bequests in the absence of annuities and therefore incorrectly conclude that private annu-

ities are always welfare improving. Abel (1986) on the other hand does model a production

sector with potentially endogenous factor prices and provides signs for the responses of key

economic variables following a change in the rate of contribution to the social security sys-

tem. Yet he does not give any insight in the magnitude of the effect on consumer welfare,

nor how it may differ among risk types. Our contribution lies in providing a consistent gen-

eral equilibrium framework for studying the main aspects related to life annuitization and

social security. We are able to both analytically characterize the underlying mechanisms and

to quantify their relative importance through a simulation with realistic parameter values.

The remainder of this paper is structured as follows. Section 2 describes the key features

of the model in terms of the decisions made by households, firms, and the government sec-

1In order to avoid confusion we distinguish between individual and groupwise fairness of annuities. Follow-

ing Abel (1986, pp. 1082, 1085) we deem annuities to be actually fair in an individual sense if its expected rate of

return equals the rate on regular assets. We call an annuity demographically fair if its expected return based on

a population average survival probability equals the return on regular assets.
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tor. In Section 3 we introduce private annuity markets, while Section 4 shows the effects on

general equilibrium and welfare when mandatory social annuities are added to the model.

Section 5 concludes.

2 Model

2.1 Consumers

The population consists of overlapping generations of finitely-lived agents who are identical

in every respect except for their health type. Agents live for a maximum of two periods,

termed ‘youth’ (superscript y) and ‘old age’ (o). At birth each agent learns her health status

as proxied by the survival probability, µ. This is where the difference between health types

comes in: unhealthy agents have a higher risk of dying, and therefore a shorter expected life

span (which equals 1 + µ periods). We assume that cohorts are sufficiently large such that

there is no aggregate uncertainty and probabilities and frequencies coincide. For example,

the fraction of young agents of type µ who die after the first period equals exactly 1 − µ.

Note that from the perspective of an individual agent, lifetime uncertainty is resolved at the

start of the second period. When still alive, the agent will live for exactly one additional

period.

Labour supply is exogenous. During youth the agent is fully employed while during old

age labour supply is only a fraction λ of the unit time endowment as a result of mandatory

retirement (0 < λ < 1). The expected lifetime utility of a representative agent of health type

µ who is born in period t is given by:

EΛt (µ) ≡ U(C
y
t (µ)) + µβU(Co

t+1 (µ)), (1)

where C
y
t (µ) and Co

t+1 (µ) are consumption during youth and old age, respectively, β is a

parameter capturing pure time preference (0 < β < 1), and U (·) is the felicity function:

U (x) ≡
x1−1/σ − 1

1 − 1/σ
, σ > 0. (2)

This functional form is chosen for analytical convenience and it implies a constant intertem-

poral substitution elasticity, σ. We assume that the agent does not have a bequest motive

such that she does not derive any utility from wealth that remains after her death.
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The agent’s periodic budget identities are given by:

C
y
t (µ) + St (µ) = wt + Zt, (3)

Co
t+1 (µ) = λwt+1 + (1 + rt+1)St (µ) , (4)

where wt is the wage rate, rt+1 is the rental rate of capital, St (µ) is the amount saved, and Zt

denotes a lump-sum income transfer received from the government during youth. Since the

government cannot observe an individual’s health type, the transfer is the same for every-

body. All workers are equally productive so the wage rate is common to all agents.

If annuity markets do not exist, agents cannot insure themselves against life span un-

certainty. Their only option is to invest their savings in the capital market at a net rate of

return rt+1. Since there is a risk of dying after youth the agent may pass away before being

able to consume her savings, thereby leaving an unintended bequest. It is not possible to

borrow in the capital market, as the agent is not allowed to die indebted. Hence we impose

the borrowing constraint St (µ) ≥ 0. Individuals who face a binding borrowing constraint

have no better option than to consume their current and future endowments.

For unconstrained agents we can combine the two budget identities to obtain the consol-

idated budget constraint:

C
y
t (µ) +

Co
t+1 (µ)

1 + rt+1
= wt + Zt +

λwt+1

1 + rt+1
. (5)

That is, the present value of total consumption (left-hand side) should equal lifetime income

or human wealth at birth (right-hand side). The representative agent maximizes life-time

utility (1) subject to the budget constraint (5). The agent’s optimal plans are fully character-

ized by:

C
y
t (µ) = Φ (µ, 1 + rt+1)

[

wt + Zt +
λwt+1

1 + rt+1

]

, (6)

St (µ) = [1 − Φ (µ, 1 + rt+1)] [wt + Zt]− Φ (µ, 1 + rt+1)
λwt+1

1 + rt+1
, (7)

Co
t+1 (µ)

1 + rt+1
= [1 − Φ (µ, 1 + rt+1)]

[

wt + Zt +
λwt+1

1 + rt+1

]

, (8)

where Φ (µ, x) is the marginal propensity to consume out of lifetime wealth during youth:

Φ (µ, x) ≡
1

1 + (µβ)σ xσ−1
, (0 < Φ (µ, x) < 1). (9)

5



Figure 1: Choices of a µ-type individual in the absence of annuities
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We find that consumption during youth and the present value of consumption during old

age are proportional to human wealth at birth. The level of savings depends positively on

the total income received during youth and negatively on the discounted value of future

wage income.

The optimal consumption choices can be illustrated with the aid of Figure 1. The line

labeled HBC is the household budget constraint as given in (5). It passes through the income

endowment point A which is the same for all individuals. Agents wish to consume such that

the marginal rate of substitution between current and future consumption is equated to the

survival-adjusted gross interest rate:

U′(C
y
t (µ))

βU′(Co
t+1 (µ))

= µ (1 + rt+1) . (10)

For the felicity function employed in this paper, the Euler equation is a straight line from

the origin with a slope that depends positively on the agents survival probability, µ. In the

diagram, EE(µh) and EE(µl) denote the Euler equations for, respectively, the healthiest and

unhealthiest types of agents. The former types consume at point B which is attained by

saving during youth. The latter types, however, would like to consume at point C but this

point is unattainable because it violates the borrowing constraint. The best such an agent
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can do is to consume at the income endowment point A.2

With a continuum of health types, it thus follows that in general not all agents are net

savers in the absence of annuities. In the case drawn in Figure 1, there exists a marginal

health type µbc,t such that EE(µbc,t) passes through the income endowment point A. Agents

of this type optimally choose not to save anything during youth. Hence, all relatively healthy

agents (µbc,t ≤ µ ≤ µh) are unconstrained whereas all relatively unhealthy agents (µl ≤ µ <

µbc,t) are borrowing constrained and are “bunching” at the income endowment point A.

2.2 Demography

Let h (µ) denote the probability density function of health types in a given cohort upon its

arrival. Then the distribution of agents in the cohort born at time t can be written as:

Lt (µ) ≡ h (µ) Lt, (11)

where Lt is the total size of the cohort. By definition,
∫ µh

µl
h (µ) dµ =

∫ µh
µl

dH (µ) = 1 where

H (µ) is the cumulative density function. The density of µ-type agents alive at time t is

given by Pt (µ) ≡ µLt−1 (µ) + Lt (µ). Assuming that newborn cohorts evolve according to

Lt = (1 + n) Lt−1 (with n > −1) we thus find that:

Pt (µ) =
1 + µ + n

1 + n
Lt (µ) . (12)

The total population alive in period t is obtained by aggregating over health types:

Pt ≡
∫ µh

µl

Pt (µ) dµ =
1 + µ̄ + n

1 + n
Lt, (13)

where µ̄ ≡
∫ µh

µl
µh (µ) dµ is the average survival rate in the population as a whole.

2.3 Government

In the absence of annuity markets we have to make an assumption about how the accidental

bequests left by the dead are redistributed among the agents who are still alive. We therefore

2We have drawn Figure 1 such that there are some borrowing-constrained individuals in equilibrium. This

case is consistent with the calibrated example used in this paper. See column (a) in Table 2.
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introduce a government sector which collects the bequests and uses them to finance lump-

sum income transfers Zt to the young.3 The government budget constraint is given by:

(1 + rt)
∫ µh

µbc,t

(1 − µ) Lt−1 (µ) St−1 (µ) dµ = LtZt. (14)

That is, the total amount of accidental bequests (left-hand side) equals the sum of income

transfers (right-hand side).

2.4 Production

The production side of this closed economy features a large number of perfectly competi-

tive firms who produce a homogeneous commodity. The technology is represented by the

following Cobb-Douglas production function:

Yt = Ω0Kε
t N1−ε

t , 0 < ε < 1, (15)

where Yt is total output, Ω0 > 0 is an exogenously given index of general factor productivity,

Kt is the aggregate capital stock, and Nt ≡ Lt + µ̄λLt−1 is the labour force. By defining

yt ≡ Yt/Nt and kt ≡ Kt/Nt we can write the intensive-form production function as:

yt = Ω0kε
t . (16)

Profit-maximizing behaviour of firms yields the following factor demand equations:

rt + δ = εΩ0kε−1
t , (17)

wt = (1 − ε)Ω0kε
t , (18)

where δ is the constant rate of depreciation of the capital stock (0 < δ < 1).

The general model without annuities is fully characterized by the following fundamental

difference equation:

kt+1 = φTY
1 (rt+1) [wt + Zt]− φTY

2 (rt+1)
λwt+1

1 + rt+1
, (19)

where φTY
1 (rt+1) and φTY

2 (rt+1) are given by:

φTY
1 (rt+1) ≡

1

1 + n + λµ̄

∫ µh

µbc,t

[1 − Φ (µ, 1 + rt+1)] h (µ) dµ,

φTY
2 (rt+1) ≡

1

1 + n + λµ̄

∫ µh

µbc,t

Φ (µ, 1 + rt+1) h (µ) dµ.

3This is a standard assumption in the economic literature when agents do not have a bequest motive. See for

example Pecchenino and Pollard (1997).
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Equation (19) is obtained by imposing equilibrium in the savings market and using the co-

hort size evolutions described in Section 2.2. At time t the predetermined capital intensity, kt,

pins down rt, wt, and Zt, so that (19) in combination with (17) and (18) constitutes an implicit

function determining kt+1, rt+1, and wt+1. The cut-off value µbc,t is such that St(µbc,t) = 0.

From these variables Zt+1 can be computed. In the steady state we have kt+1 = kt = k̂ such

that the level of output per worker ŷ is constant. As a consequence, the long-run rate of

economic growth over and above population growth equals zero, which is a standard result

in an exogenous growth model without technological process.

Table 1: Stuctural parameters and functions

β time preference factor 0.4128

σ intertemporal substitution elasticity 0.7000

n population growth factor 0.4889

ε capital efficiency parameter 0.2750

Ω0 scale factor production function 2.4312

δ capital depreciation factor 0.9158

λ mandatory retirement parameter 0.6250

h(µ) PDF of the survival probability uniform on [µl , µh]

µl survival rate of the unhealthiest 0.0500

µh survival rate of the unhealthiest 0.9500

Throughout this paper we visualize and quantify the properties of the model by means of

simulations with realistic parameter values. The main structural parameters are summarized

in Table 1. The calibration was done as follows. In step 1, we postulate plausible values

for the intertemporal substitution elasticity (σ = 0.7), the efficiency parameter of capital

(ε = 0.275), the annual capital depreciation rate (δa = 0.06), the annual growth rate of the

population (na = 0.01) and choose a realistic target annual steady-state interest rate (r̂a =

0.05). Taken together these parameters ensure that the annual steady-state capital-output

ratio is K̂/Ŷ = ε/ (r̂a + δa) = 2.5. In step 2, we fix the time dimension by assuming that each

period lasts for 40 years. The values for n, δ, and r̂ follow readily from this.4 We assume

that mandatory retirement takes place at age 65, which yields the value for λ in Table 1.

Furthermore, we postulate a distribution for the probability of surviving into the second

4In particular, n = (1 + na)
40 − 1, δ = 1 − (1 − δa)

40, and r̂ = (1 + ra)
40 − 1.
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period and note that life expectancy at birth of a µ-type agent is given by 40 (1 + µ) in years.

In step 3 we choose Ω0 such that ŷ = 1 in the initial steady state. This also pins down the

steady-state values for ŵ and k̂. Finally, in step 4 we solve for steady-state transfers Ẑ, the

discount factor β, and the cut-off survival level for the borrowing constraint µ̂bc (satisfying

S(µ̂bc) = 0) such that a consistent general equilibrium solution is obtained. To interpret the

resulting value for β we note that ρa = β−1/40 − 1 = 0.0237 represents the annual rate of

time preference. In view of the fact that the annual rate of interest is r̂a = 0.05 agents in this

economy are relatively patient.

The key features of the steady-state equilibrium that is attained in the absence of pri-

vate and social annuities and with accidental transfers flowing to the young (abbreviated

as TY) are reported in column (a) of Table 2. As was enforced by the calibration procedure,

output per worker is equal to unity and the steady-state interest rate is five percent on an

annual basis. Steady-state transfers to the young amount to Ẑ = 0.1146 which is almost

sixteen percent of wage income during youth. Steady-state consumption per worker by

the young and surviving old are given by, respectively ĉy ≡
[

∫ µh
µl

Lt (µ) Ĉy (µ) dµ
]

/Nt and

ĉo ≡
[

∫ µh
µl

µLt−1 (µ) Ĉo (µ) dµ
]

/Nt. Whilst the distribution over quartiles is rather even for

youth consumption, it is very skewed for old-age consumption with the healthiest quartile

accounting for half of consumption by the old. More than ten percent of the agents encounter

a binding borrowing constraint (H (µ̂bc) = 0.1029). The wealth distribution by quartiles (as

evidenced by capital ownership) is very uneven, with the unhealthiest and healthiest quar-

tiles owning, respectively, 3.62% and 43.76% of the capital stock.

In Figure 2 the steady-state health profiles for youth- and old-age consumption, saving,

and expected utility at birth are illustrated – see the dashed lines. The horizontal segments

in panels (a)–(c) are the realizations for the (borrowing-constrained) endowment consumers.

As expected from our theoretical discussion above, for unconstrained agents youth con-

sumption is falling in health whilst the opposite holds for old-age consumption which, like

saving, is increasing in health. Interestingly, expected utility is a non-monotonic function of

health.5

5The downward sloping part has been noted in the literature on health economics. It results from the fact

that, for 0 < σ < 1 and 0 < x < 1, the felicity function satisfies U (x) < 0 so that higher life expectancy translates

into lower expected lifetime utility. The upward sloping part follows from the fact that old-age consumption for

the healthiest exceeds unity so that felicity becomes positive. Of course, the location of the slope change depends
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Table 2: Allocation and welfare

(a) TY (b) FI (c) AI (d) SA (e) SA (f) SA

θ = 0.01 θ = 0.02 θ = 0.03

ŷ 1.0000 0.9638 0.9473 0.9395 0.9318 0.9247

k̂ 0.0395 0.0346 0.0325 0.0315 0.0306 0.0297

%Q1 3.62 9.10 5.86 3.25 1.23 0.11
%Q2 19.66 20.51 20.66 17.25 13.43 9.14
%Q3 32.96 30.66 32.05 28.94 25.46 21.52
%Q4 43.76 39.73 41.43 38.56 35.35 31.69
%SAS 12.00 24.53 37.54

r̂ 6.0400 6.7500 7.1079 7.2840 7.4632 7.6348

r̂a 0.0500 0.0525 0.0537 0.0543 0.0548 0.0554

ŵ 0.7250 0.6988 0.6868 0.6811 0.6756 0.6704

Ẑ 0.1146

H(µ̂bc) 0.1029 0.0000 0.0533 0.0999 0.1556 0.2217

ˆ̄µp 0.6418 0.6597 0.6802 0.7035

ĉy 0.6351 0.5261 0.5193 0.5161 0.5128 0.5098

%Q1 26.98 26.56 26.78 26.70 26.57 26.35
%Q2 25.50 25.44 25.40 25.43 25.48 25.56
%Q3 24.26 24.45 24.34 24.37 24.41 24.49
%Q4 23.26 23.56 23.47 23.49 23.54 23.60

ĉo 0.3094 0.3892 0.3824 0.3792 0.3760 0.3731

%Q1 4.05 8.80 3.88 3.98 4.21 4.66
%Q2 14.98 20.16 14.88 14.87 14.83 14.77
%Q3 30.81 30.65 30.81 30.77 30.70 30.56
%Q4 50.16 40.40 50.44 50.38 50.26 50.02

EΛ̂(µl) −0.2010 −0.3913 −0.4287 −0.4439 −0.4608 −0.4784
EΛ̂(µ1) −0.2717 −0.4107 −0.4858 −0.4931 −0.4994 −0.5042
EΛ̂(µ2) −0.2884 −0.4335 −0.4830 −0.4911 −0.4984 −0.5043
EΛ̂(µ3) −0.2789 −0.4595 −0.4555 −0.4643 −0.4726 −0.4795
EΛ̂(µh) −0.2540 −0.4884 −0.4135 −0.4231 −0.4322 −0.4401

Here %Qj denotes the share accounted for by population quartile j of the variable directly above it.

%SAS is the share owned by the social annuity system. µj is the upper bound for µ in quartile j, i.e.

H(µj) = j/4 for j ∈ {1, 2, 3, 4} and µ4 = µh. EΛ̂(µj) gives expected utility for an agent with health

type µj.
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Figure 2: Steady-state profiles

(a) Youth consumption (b) Old-age consumption
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3 Private annuity markets

Now consider the introduction of a private annuity market in this economy. A (life) annuity

is an asset which pays a stipulated return contingent upon survival of the annuitant. In

order to compete with other investment products, annuities have to provide a rate of return

which exceeds the market rate of interest to compensate for the risk of death. The annuity

firm is willing to pay this additional return on savings as it is held free of any obligation

after the annuitant has died. Conversely, an agent who sells an actuarial note gets a life-

insured loan and will have her debts acquitted when she dies prematurely. Hence, an agent

who exclusively uses the annuity market for financial transactions will never die indebted

or leave an (unintended) bequest.

It is important to note that an annuity market constitutes just another type of redistri-

bution scheme. Instead of channeling funds from the dead to the newly arrived young by

means of lump sum transfers as above, an annuity market redistributes money from the

dead to those that survive by offering a premium over and above the rental rate of capital.

Therefore, the macroeconomic and welfare effects of introducing a private annuity market

are not a priori clear.

3.1 Full Information equilibrium

We make the following assumptions about the private market for annuities:

(A1) The annuity market is perfectly competitive. There is a large number of risk neutral

firms offering annuities to individuals, and firms can freely enter or exit the market.

(A2) Annuity firms do not use up any real resources.

As a consequence of these assumptions the expected profit of each annuity firm is zero.

We start by considering the benchmark case in which health status is public information. In

the Full Information equilibrium in the annuity market (abbreviated as FI) each health type

receives its actuarially fair rate of return and achieves perfect insurance against life span

uncertainty. There is market segmentation in the sense that there is a separate market for

each type of agent.

on the scaling of the variables.
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Let A
p
t (µ) denote the private annuity holdings of an agent of health type µ. As the

net rate of return on annuities exceeds the rental rate of capital, all agents will completely

annuitize their wealth. This is the famous result found by Yaari (1965).

An annuity firm sells annuities to agents of health type µ that pay a net rate of return

r
p
t+1 (µ) contingent upon survival of the annuitant. The firm invests the proceeds in the

capital market, thus earning a rate of return rt+1. Since some of its clients will die young and

will subsequently lose their claim at an early stage, the annuity firm can redistribute their

assets among the surviving clientele. The zero-profit conditions for the annuity market are

therefore given by:

(1 + rt+1)Lt (µ) A
p
t (µ) = µ(1 + r

p
t+1 (µ))Lt (µ) A

p
t (µ) , µ ∈ [µl , µh] . (20)

That is, the gross return earned on the amount of savings collected from clients of health type

µ in period t (left-hand side) should equal the (expected) claim originating from surviving

clients of health type µ in period t + 1. It follows that:

1 + r
p
t+1 (µ) =

1 + rt+1

µ
, µ ∈ [µl , µh] . (21)

Note that r
p
t+1 (µ) is decreasing in the survival probability, i.e. unhealthy agents earn a higher

gross rate of return on their investments in the annuity market than do healthy agents.

Since 0 < µl < µh < 1 it follows that the interest rate on annuities exceeds the rate of

return on capital for all agents, i.e. r
p
t+1 (µ) > rt+1 for all µ ∈ [µl , µh]. As a result rational

agents will fully annuitize their savings (as was asserted above) so that the lifetime budget

constraint is given by:

C
y
t (µ) +

Co
t+1 (µ)

1 + r
p
t+1 (µ)

= wt +
λwt+1

1 + r
p
t+1 (µ)

. (22)

Comparing the TY and FI scenarios (as described by, respectively, (5) and (22)), we find that

for the latter case accidental bequests (and thus transfers from the government) are absent

and the relevant return is type dependent. The consumption Euler equation for the FI case

is given by:

U′(C
y
t (µ))

βU′(Co
t+1 (µ))

= µ
(

1 + r
p
t+1 (µ)

)

= 1 + rt+1. (23)

With actuarially fair annuities and full annuitization the marginal rate of substitution be-

tween current and future consumption is equated to the gross interest factor on capital. The
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mortality rate does not feature in this expression because agents are fully insured against the

unpleasant aspects of lifetime uncertainty. This celebrated result was first proposed by Yaari

(1965) in a continuous-time model.

By combining the lifetime budget constraint (22) and the Euler equation (23) we obtain

the following expressions for consumption during youth, the demand for annuities, and

old-age consumption:

C
y
t (µ) = Φ (µ, (1 + rt+1)/µ)

[

wt +
λµwt+1

1 + rt+1

]

, (24)

A
p
t (µ) = [1 − Φ (µ, (1 + rt+1)/µ)]wt − Φ (µ, (1 + rt+1)/µ)

λµwt+1

1 + rt+1
, (25)

µCo
t+1 (µ)

1 + rt+1
= [1 − Φ (µ, (1 + rt+1)/µ)]

[

wt +
λµwt+1

1 + rt+1

]

, (26)

where Φ (µ, x) is defined in (9) above. The optimal consumption choices can be illustrated

with the aid of Figure 3. The line labeled EE is the Euler equation (23) which is the same

for all health types. In contrast, there exists a continuum of HBC(µ) lines passing though

the income endowment point A. The lines labeled HBC(µl) and HBC(µh) depict the lifetime

budget constraints faced by, respectively, the unhealthiest and healthiest individuals. It fol-

lows that the unhealthiest types consume at point C whilst the healthiest choose point B.

Throughout the population consumption patterns are located along the line segment BC.

Under the maintained hypothesis that a non-trivial macroeconomic equilibrium exists,

two qualitative conclusions can already be drawn on the basis of Figure 3. First, since the

endowment point is type-independent, all individuals must be net savers during youth.

(The opposite case with all agents being net borrowers is inconsistent with a positive capital

stock in a closed-economy equilibrium.) Whereas the unhealthiest agents in the population

tend to face a binding borrowing constraint in a world without annuities (see above), these

same agents express a positive demand for annuities in the FI scenario because the rate they

receive on such instruments in case they survive into old age is quite high (i.e. HBC(µl) is

rather steep). Second, just as the savings function is in the TY case, the demand for annuities

in the FI scenario is increasing in health type.

The fundamental difference equation for the FI model is given by:

kt+1 = φFI
1 (rt+1)wt − φFI

2 (rt+1)
λwt+1

1 + rt+1
, (27)
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Figure 3: Choices of a µ-type individual with perfect annuities
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where φFI
1 (rt+1) and φFI

2 (rt+1) are defined as follows:

φFI
1 (rt+1) ≡

1

1 + n + λµ̄

∫ µh

µl

[1 − Φ (µ, (1 + rt+1)/µ)] h (µ) dµ,

φFI
2 (rt+1) ≡

1

1 + n + λµ̄

∫ µh

µl

µΦ (µ, (1 + rt+1)/µ) h (µ) dµ.

The existence of a well-defined macroeconomic equilibrium is confirmed by the results re-

ported in column (b) of Table 2. Compared to the TY case, output, the wage rate, and the

capital stock are lower and the interest rate is higher under the FI scenario. The intuition

behind these results is explained in section 3.3 below.

In Figure 2 the steady-state health profiles for youth and old-age consumption, annuity

demand, and expected utility at birth are depicted – see the solid lines. Youth consumption,

old-age consumption, and expected utility are decreasing in health whilst the opposite holds

for the demand for annuities.

3.2 Asymmetric Information equilibrium

The following assumptions are added to the ones above:

(A3) Health status is private information of the annuitant. The distribution of health types
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in the population and the corresponding survival probabilities are common knowl-

edge.

(A4) Annuitants can buy multiple annuities for different amounts and from different annu-

ity firms. Individual annuity firms cannot monitor an annuitant’s holdings with other

firms.

Under these assumptions, the Asymmetric Information (AI) equilibrium in the annuity

market is a pooling equilibrium. The existence of this pooling equilibrium depends critically

on (A3): as annuity firms cannot observe their customers’ health type, they will offer a single

rate of return which applies to all their clients. They can exploit their knowledge about the

distribution of health types in the population in setting this common annuity rate. Note that

if (A4) would not hold then annuity firms could indirectly deduce an agent’s health type

by the amount of wealth she has invested. Healthy individuals tend to save more, which

exacerbates the degree of adverse selection in the annuity market.

Our conclusion that a pooling equilibrium will prevail in the annuity market appears

opposite to that of Rothschild and Stiglitz (1976), who show that a pooling equilibrium does

not exist in an insurance market. However, their result relies heavily on the assumption

that customers can buy only one insurance contract such that the insurer sets both price

and quantity. They admit themselves that this may be an objectionable assumption in some

cases, and Walliser (2000) argues that it indeed does not apply to the annuity market. First

of all, monitoring the receipts of annuity payments from other annuity firms would be very

difficult. Secondly, in contrast to other types of insurance, the death of the annuitant ends

the liability of the annuity firm instead of creating it. Hence, withholding payments and

investigating compliance is not feasible. We therefore believe it to be justified to assume that

the annuity firm can only control the rate of return on annuities and cannot set prices and

quantities simultaneously in order to obtain full information revelation.

An implicit assumption in the model is that annuitants cannot credibly signal their health

status to the market. In the absence of cheap and credible medical tests, this is not a strong

assumption at all. When asked about her health type, each individual has a clear incentive

to claim to be unhealthy in order to get the highest possible return in a separated market.

However, firms know this and will therefore not believe the annuitant’s claim. Hence, even
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though part of their clientele tells the truth, the fact that some have an incentive to lie is

enough for the annuity firm to assume that everyone will be a fraud.

We now turn to the determination of the pooled annuity rate, denoted by r̄
p
t+1. As this

rate will apply to agents of all health types it does not depend on µ. Assume that all agents

with µ ∈ [µbc,t, µh] purchase annuities, i.e. are net savers. Then the zero-profit condition for

the annuity market is given by:

(1 + rt+1)
∫ µh

µbc,t

Lt (µ) A
p
t (µ) dµ = (1 + r̄

p
t+1)

∫ µh

µbc,t

µLt (µ) A
p
t (µ) dµ. (28)

As in the case of a full-information equilibrium the gross return earned on the amount of

savings collected from clients in period t (left-hand side) should equal the (expected) claim

originating from surviving clients in period t + 1. It follows that:

1 + r̄
p
t+1 =

1 + rt+1

µ̄
p
t

, (29)

where µ̄
p
t denotes the asset-weighted average survival rate of annuity purchasers:

µ̄
p
t ≡

∫ µh

µbc,t

µξt (µ) dµ, ξt (µ) ≡
A

p
t (µ) h (µ)

∫ µh
µbc,t

A
p
t (µ) h (µ) dµ

, µ ∈ [µbc,t, µh]. (30)

This result has also been found in a partial equilibrium context by Sheshinski (2008) and

relates to the linear equilibrium concept of Pauly (1974). As noted by Walliser (2000), it can

alternatively be interpreted as a Nash equilibrium among annuity firms in which each firm

that deviates from the zero-profit price incurs a loss.

The lifetime budget constraint for annuitants is given by:

C
y
t (µ) +

Co
t+1 (µ)

1 + r̄
p
t+1

= wt +
λwt+1

1 + r̄
p
t+1

, (31)

where r̄
p
t+1 is defined in (29) above. Utility maximization results in the following expression

for the consumption Euler equation:

U′(C
y
t (µ))

βU′(Co
t+1 (µ))

= µ
(

1 + r̄
p
t+1

)

=
µ

µ̄
p
t

(1 + rt+1) . (32)

In the AI case the marginal rate of substitution between current and future consumption is

equated to the expected gross return on pooled annuities. The mortality rate still features

in this expression because agents are imperfectly insured against the unpleasant aspects of

lifetime uncertainty.
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By combining the lifetime budget constraint (31) and the Euler equation (32) we obtain

the following expressions for consumption during youth, the demand for annuities, and

old-age consumption:

C
y
t (µ) = Φ

(

µ, (1 + rt+1)/µ̄
p
t

)

[

wt +
λµ̄

p
t wt+1

1 + rt+1

]

, (33)

A
p
t (µ) =

[

1 − Φ
(

µ, (1 + rt+1)/µ̄
p
t

)]

wt − Φ
(

µ, (1 + rt+1)/µ̄
p
t

) λµ̄
p
t wt+1

1 + rt+1
, (34)

µ̄
p
t Co

t+1 (µ)

1 + rt+1
=

[

1 − Φ
(

µ, (1 + rt+1)/µ̄
p
t

)]

[

wt +
λµ̄

p
t wt+1

1 + rt+1

]

, (35)

where Φ (µ, x) is defined in (9) above. In Figure 4 we illustrate the case (confirmed for

the calibrated model) in which not all agents purchase annuities in the AI equilibrium, i.e.

µbc,t > µl . The household budget constraint faced by all agents alike is given by HBC whilst

the endowment point is at point A. For given values of µ̄
p
t and 1 + rt+1, the Euler equation

(32) depends on the agents survival probability, with EE(µh) and EE(µl) depicting the optimal

wealth expansion paths for, respectively, the healthiest and unhealthiest agents. Optimal

consumption choices for the two types of agents are located at points B and C, respectively.

But point C is unattainable because it would involve going short on annuities, i.e. selling life-

insured loans. But the moment an agent attempts to do so she reveals her health type which

results in the borrowing rate being set at such a high level that borrowing is unattractive. It

follows that there is a binding “self-imposed” borrowing constraint, the HBC is vertical at

the endowment wage wt, and all health types such that µl ≤ µ < µbc,t are bunching at the

endowment point A.6

For all agents featuring µbc,t ≤ µ ≤ µh the demand for annuities is positive and in-

creasing in the survival probability. It thus follows from (30) that µbc,t < µ̄
p
t < µh, i.e. the

relatively healthy agents obtain a better than actuarially fair rate of return on their private

annuity holdings (because µ̄
p
t < µh) whereas the comparatively unhealthy annuitants obtain

a less than fair return (as µ̄
p
t > µbc,t). The presence of unhealthy agents in the market allows

the healthy to earn an informational rent.

Comparing the FI and AI cases we find that the informational asymmetry in the annuity

market affects individuals via two related but distinct channels. First, whereas all agents are

net purchasers of annuities (A
p
t (µ) > 0 for µ ∈ [µl , µh]) under symmetric information, the

6See Heijdra and Reijnders (2009) and Villeneuve (2003) on this point.
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unhealthiest part of the population typically experiences a binding borrowing constraint and

is thus absent from this market altogether (A
p
t (µ) = 0 for µ ∈ [µl , µbc,t)) when information

is asymmetric. Second, the pooling rate under asymmetric information is “demographically

unfair” in the sense that it is not based on the average demographic survival rate in the pop-

ulation of annuitants but on the asset-weighted survival rate µ̄
p
t . In order to demonstrate this

phenomenon, note that the demographically fair pooling rate is defined as follows:

1 + r̄
f
t+1 =

1 + rt+1

µ̄
f
t

, (36)

where the superscript f stands for ‘demographically fair’ and µ̄
f
t denotes the average sur-

vival rate of annuity purchasers among the cohort born in period t:

µ̄
f
t ≡

∫ µh
µbc,t

µh (µ) dµ
∫ µh

µbc,t
h (µ) dµ

. (37)

Clearly, the demographically fair pooling rate is not sustainable in equilibrium because an-

nuity firms would make a loss if they were to offer it to annuitants. To see why this is the

case, note that the demand for annuities is increasing in the survival probability. It follows

that µ̄
p
t > µ̄

f
t and thus 1 + r̄

p
t+1 < 1 + r̄

f
t+1 for all t.7

The fundamental difference equation for the AI case is given by:

kt+1 = φAI
1

(

rt+1, µ̄
p
t

)

wt − φAI
2

(

rt+1, µ̄
p
t

) λµ̄
p
t wt+1

1 + rt+1
, (38)

where φAI
1

(

rt+1, µ̄
p
t

)

and φAI
2

(

rt+1, µ̄
p
t

)

are defined as follows:

φAI
1

(

rt+1, µ̄
p
t

)

≡
1

1 + n + λµ̄

∫ µh

µbc,t

[

1 − Φ
(

µ, (1 + rt+1)/µ̄
p
t

)]

h (µ) dµ,

φAI
2

(

rt+1, µ̄
p
t

)

≡
1

1 + n + λµ̄

∫ µh

µbc,t

Φ
(

µ, (1 + rt+1)/µ̄
p
t

)

h (µ) dµ.

7Average annuity demand among participants in the market is given by:

Ā
p
t ≡

∫ µh
µbc,t

A
p
t (µ) h (µ) dµ

∫ µh
µbc,t

h (µ) dµ
,

and µ̄
p
t − µ̄

f
t can be written as:

µ̄
p
t − µ̄

f
t =

∫ µh
µbc,t

[

A
p
t (µ)− Ā

p
t

] [

µ − µ̄
f
t

]

h (µ) dµ

Ā
p
t

∫ µh
µbc,t

h (µ) dµ
≡

cov(A
p
t (µ) , µ)

Ā
p
t

∫ µh
µbc,t

h (µ) dµ
> 0,

where cov(A
p
t (µ) , µ) is the covariance between annuity demand and health (which is positive).
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Figure 4: Choices of a µ-type individual with imperfect annuities
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The key features of the steady-state AI equilibrium are summarized in column (c) of Table

2. As far as the macroeconomic variables (ŷ, k̂, r̂, ŵ, ĉy, and ĉo) are concerned the AI and FI

equilibria are rather similar. In contrast, the composition of old-age consumption as well as

expected lifetime utility differ dramatically for these two cases. The informational asymme-

try in annuity markets leads to a redistribution from the unhealthy to the healthy agents in

the economy. We elaborate on this point in section 4 below.

Finally, Figure 2 shows the steady-state health profiles for youth- and old-age consump-

tion, annuity demand, and expected utility at birth – see the dash-dotted lines. Youth con-

sumption is decreasing in health whilst the opposite holds for old-age consumption and the

demand for annuities. Expected utility is U-shaped as was the case for the TY scenario.

3.3 Transitional dynamics

We assume that the economy is initially in the steady state of the model without annuities.

At a given time t a private annuity market is introduced. The transition paths of the capital

intensity and the expected lifetime utility of different health types are computed by means

of an iterative procedure.

The results are given in Figures 5 and 6 for both the full information (FI) equilibrium and
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Figure 5: Capital intensity relative to TY
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the asymmetric information (AI) equilibrium in the private annuity market. The paths for

the capital intensity are scaled by the steady-state equilibrium value in the no annuities case

(TY). As such, a value in excess of unity indicates that the capital intensity increases relative

to its benchmark scenario, when it falls short of unity there is a decrease. For lifetime utility

we report the difference with the steady-state values obtained in the TY case, i.e. ∆EΛt(µj) ≡

EΛt(µj)− EΛ̂
TY(µj). Table 2 presents a numerical comparison between (unscaled) steady-

state values.

We find that the introduction of a private annuity market boosts the capital intensity

at first but gives rise to severe capital crowding out in the long run. The effects are more

pronounced for the FI equilibrium than for the AI equilibrium. Agents save a larger part of

their income in the first period and therefore consume less during youth and more in old

age. Comparing the lifetime utility profiles we find that comparatively healthy agents prefer

the AI to the FI equilibrium, and vice versa for the relatively unhealthy.

At the time the annuity market is opened up there are still accidental bequests in the

economy which have been left by the previous generation. Hence, in the first period of the

new regime young agents benefit from the higher return on their savings through full an-
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Figure 6: Expected lifetime utility relative to TY
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(c) Type µ2 (d) Type µ3
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(e) Type µh
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nuitization while also receiving the intergenerational transfer. Their expected utility level

increases relative to the benchmark. However, from period t + 1 (i.e. post-shock time 1) on-

wards the transfers are abolished and all health types have a lower utility level under either

equilibrium in the private annuity market than in the absence of annuities. This is an ex-

ample of the so-called ‘tragedy of annuitization’, as described in Heijdra et al. (2010). Even

though it is individually rational to fully annuitize (as the annuity rate of return exceeds

the return on capital), this is not optimal from a social point of view. If all agents invests

their financial wealth in the annuity market then the resulting long-run equilibrium leaves

future newborns worse off compared to the case where annuities are absent and accidental

bequests are redistributed to the young. In other words, the introduction of an annuity mar-

ket is welfare improving when considered in isolation, but not when the general equilibrium

repercussions as a result of endogenous factor prices are taken into account.

As measures of utility are purely ordinal, the nominal difference in steady-state utility

levels as presented in Table 2 cannot be easily interpreted. In order to evaluate the mag-

nitude of utility differences in a more insightful way we use the metric of consumption-

equivalent variations. That is, we determine how much additional consumption during

youth one would have to give to an agent of a given health type in the private annuity mar-

ket scenario in order to make her as well off as in the no-annuities case, keeping all prices

(i.e. the wage rate and the interest rate) and old-age consumption fixed at their initial level.

That is, we find that value of Π (µ) which satisfies the following equation:

U(Ĉy (µ) + Π (µ)) + µβU(Ĉo (µ)) = EΛ̂
TY(µ). (39)

where EΛ̂
TY(µ) is the steady-state benchmark utility level.

The results are given in column (a) of Table 3. We present both unscaled and scaled

values for the compensation measure, i.e. π(µj) ≡ Π(µj)/Ĉy(µj)
TY where Ĉy(µj)

TY is the

steady-state youth consumption level of an agent with health type µj in the TY scenario. For

example, to ensure that the unhealthiest type of agent has the same level of utility when

there is a pooled private annuity market as when there are no annuities at all one would

have to give her 0.1540 in terms of youth consumption. This corresponds to 18.35% of the

consumption level she would have had in the absence of annuities. These numbers are

quite significant, showing that the (negative) welfare effects of introducing a private annuity

market in this economy are not inconsequential.
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Table 3: Equivalent variations with private and social annuities

(a) AI (b) SA (c) SA (d) SA

θ = 0.01 θ = 0.02 θ = 0.03

Π(µl) 0.1540 0.1615 0.1700 0.1788
π(µl) 0.1835 0.1924 0.2025 0.2129

Π(µ1) 0.1335 0.1376 0.1413 0.1441
π(µ1) 0.1656 0.1707 0.1753 0.1788

Π(µ2) 0.1117 0.1160 0.1201 0.1234
π(µ2) 0.1464 0.1521 0.1573 0.1617

Π(µ3) 0.0946 0.0992 0.1034 0.1071
π(µ3) 0.1297 0.1360 0.1418 0.1468

Π(µh) 0.0804 0.0851 0.0896 0.0935
π(µh) 0.1147 0.1214 0.1277 0.1334

4 Social annuities

Following Abel (1986) we now study the consequences of introducing mandatory social an-

nuities. These can be interpreted, for example, as a fully funded pension system. Agents

contribute a fixed amount As
t during their youth and receive a benefit (1 + r̄s

t+1)As
t if they

survive into the second phase of life, where r̄s
t+1 is the (implicit) net return on social annu-

ities. All contributions are pooled and invested in the capital market. The gross return is

then divided equally among the survivors. This implies that the following resource con-

straint should be satisfied:

(1 + rt+1)Lt As
t = (1 + r̄s

t+1)As
t

∫ µh

µl

µLt (µ) dµ. (40)

Solving for the implied rate of return yields:

1 + r̄s
t+1 =

1 + rt+1

µ̄
, (41)

where µ̄ ≡
∫ µh

µl
µh (µ) dµ is the average survival rate. Intuitively, as contributions are manda-

tory and independent of health type, the social annuity system is immune to adverse selec-

tion and forces everyone to participate. This makes the introduction of social annuities ap-

pear like an attractive option for the government: it can offer agents a higher rate of return

on part of their savings than the private market can. Note that, in general, r̄s
t+1 > r̄

f
t+1, the
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demographically fair pooling rate as defined in (37), because all agents are forced to buy

social annuities whereas not all agents purchase private annuities (if µbc,t > µl it follows that

µ̄
f
t > µ̄).

We assume that the agent can invest her remaining financial wealth in a pooled private

annuity market. The lifetime budget constraint can be written as:

C
y
t (µ) +

Co
t+1 (µ)

1 + r̄
p
t+1

= wt +
λwt+1

1 + r̄
p
t+1

+
µ̄

p
t − µ̄

µ̄
As

t . (42)

Note that, ceteris paribus, the introduction of social annuities has a positive effect on the

level of total human wealth as µ̄
p
t > µ̄ for all t due to adverse selection in the private annuity

market. By using (42) in combination with the Euler equation (32) we find that the agent’s

optimal plans are fully characterized by:

C
y
t (µ) = Φ

(

µ, (1 + rt+1)/µ̄
p
t

)

[

wt +
λµ̄

p
t wt+1

1 + rt+1
+

µ̄
p
t − µ̄

µ̄
As

t

]

, (43)

A
p
t (µ) + As

t =
[

1 − Φ
(

µ, (1 + rt+1)/µ̄
p
t

)]

wt

− Φ
(

µ, (1 + rt+1)/µ̄
p
t

)

[

λµ̄
p
t wt+1

1 + rt+1
+

µ̄
p
t − µ̄

µ̄
As

t

]

, (44)

µ̄
p
t Co

t+1 (µ)

1 + rt+1
=

[

1 − Φ
(

µ, (1 + rt+1)/µ̄
p
t

)]

[

wt +
λµ̄

p
t wt+1

1 + rt+1
+

µ̄
p
t − µ̄

µ̄
As

t

]

. (45)

Compared to the model without social annuities discussed in Section 3.2 above there are a

few noteworthy differences. Consumption during youth and old age are still proportional to

human wealth, but the definition of human wealth has been augmented by a term reflecting

the relative return on social annuities. From (44) we see that private annuity demand has

been replaced by total annuity demand, the sum of private and social annuity holdings. As

such, mandatory social annuities do indeed crowd out their private counterparts. Keeping

everything else constant, this crowding out is more than one-for-one as the higher level of

total income in the second period reduces the incentive for private saving.

We assume that the compulsory contribution to the social annuity system is proportional

to wage income during youth, i.e. As
t = θwt with 0 < θ < 1. Note that for high values of

θ agents might be overannuitized, i.e. they could be forced by the social security system to

annuitize a larger portion of their financial wealth than they would voluntarily do. Since

there is a borrowing constraint in the pooled annuity market this overannuitization cannot
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be undone by going short in private annuities. Figure 4 depicts a partial equilibrium repre-

sentation of the effects of social annuities. In the presence of social annuities the endowment

point shifts to point D and the relevant lifetime budget constraint is given by HBCSA. The

thin dashed line connecting A and D is steeper than the downward sloping segments of

HBC and HBCSA because the rate on mandatory annuities is greater than the pooled private

rate (r̄s
t+1 > r̄

p
t+1). The choice set is enlarged for the healthier part of the population, but

borrowing constraints become more severe for the unhealthier (as µSA
bc,t > µbc,t).

The fundamental difference equation for the SA case is given by:

kt+1 = φAI
1

(

rt+1, µ̄
p
t

)

wt − φSA
1

(

rt+1, µ̄
p
t

)

θwt − φAI
2

(

rt+1, µ̄
p
t

) λµ̄
p
t wt+1

1 + rt+1
, (46)

where φAI
1

(

rt+1, µ̄
p
t

)

and φAI
2

(

rt+1, µ̄
p
t

)

are defined directly below (38) and φSA
1

(

rt+1, µ̄
p
t

)

is

given by:

φSA
1

(

rt+1, µ̄
p
t

)

≡
1

1 + n + λµ̄

[

µ̄
p
t − µ̄

µ̄

∫ µh

µbc,t

Φ
(

µ, (1 + rt+1)/µ̄
p
t

)

h (µ) dµ − H(µbc,t)

]

.

The key features of the steady-state SA equilibria that emerge for different values of θ are

summarized in columns (d)–(f) of Table 2. The larger is the social annuity system (as mea-

sured by the magnitude of θ), the stronger is capital crowding out and the larger is the

proportion of borrowing-constrained (overannuitized) agents in the economy. We elaborate

on this point in section 4.1 below.

Finally, in Figure 2 the steady-state health profiles for youth- and old-age consumption,

private annuity demands, and expected utility at birth are illustrated – see the dotted lines.

To avoid cluttering these figures, we restrict attention to the case of a “large” social annuity

system with θ = 0.03.8 Apart from the larger range of borrowing-constrained individuals,

these profiles are very similar to the ones obtained for the AI case.

4.1 Transitional dynamics

The transition paths of the capital intensity and lifetime utility after introducing both private

and social annuities in the economy (denoted by SA) are given in Figures 5 and 6 for the case

8Although this contribution rate does not represent a large proportion of wage income during youth, the

social annuity system is nevertheless large in terms of the private annuity demands expressed by the unhealthiest

agents in the AI equilibrium.
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that social security contributions amount to three percent of wage income (θ = 0.03). We

find that, compared to the benchmark of no annuities and transfers to the young, the capital

intensity increases slightly for one period but afterwards decreases sharply. The overall

effect on lifetime utility is negative for all health types, except for the impact period in which

the transfers have not yet been abolished.

In order to evaluate the magnitude of the relative welfare decrease in the steady state we

calculate the consumption-equivalent variations for three different values of θ, see columns

(b)–(d) in Table 3 and Section 3.3 above. Recall that column (a) (featuring θ = 0) corresponds

to the pooling equilibrium. We find that the equivalent variations increase monotonically in

θ for all health types, implying that the equilibrium becomes progressively worse in welfare

terms when the contribution to the social annuity system increases. At first view this might

seem somewhat counterintuitive, as social annuities offer agents a higher rate of return on

a fixed part of their savings than private annuities do, keeping everything else constant.

However, it is exactly this ceteris paribus condition which is misleading.

Importantly, the introduction of social annuities has two opposing effects on the rate of

return on private annuities. First of all, there is a partial equilibrium effect. The mandatory

investment in social annuities results in a decrease in the demand for private annuities. Un-

healthy agents reduce their private annuity demand disproportionally more than healthy

agents do. As a consequence, the asset share of healthy agents increases and thereby the

degree of adverse selection in the private annuity market. This leads to a decrease in the rate

of return on private annuities, in line with the findings of by Abel (1986), Walliser (2000),

and Palmon and Spivak (2007).

However, there is also a general equilibrium effect which partly offsets the decrease.

The total level of savings decreases in the steady state, leading to a rise in the rental rate

of capital relative to the scenario without social annuities. This response is not taken into

consideration when the focus is restricted to partial equilibrium analysis or when the interest

rate is assumed to be exogenously fixed.

The net effect on the private annuity rate is negative in all our simulations. Overall, we

find that in the long run the negative effects of introducing social annuities (a lower wage

rate and a lower return on private annuities) outweigh the positive effect (a demographically

fair rate of return on a part of financial wealth) as is evident from the drop in welfare of future
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generations.

5 Conclusion

In this paper we have constructed a discrete-time general equilibrium model featuring ex-

ogenous growth and overlapping generations of heterogeneous agents who are distinguished

by their health status. An agent’s health type is assumed to be private information. We show

that if a private annuity market is introduced in this economy then it will be characterized

by a pooling equilibrium. Due to adverse selection, the resulting annuity rate of return is

less than the actuarially fair pooling rate. Even though it is individually optimal to invest

in annuities, agents of all health types are in the long run worse off in welfare terms com-

pared to the case where annuities are absent and accidental bequests are redistributed to the

young.

We have also studied the welfare implications of a social security system with fixed

mandatory contributions for all health types. These social annuities are immune to adverse

selection and therefore offer a higher rate of return than private annuities do under asymmet-

ric information. However, they have a negative effect on steady-state welfare. The positive

effect of a higher rate of return on a fixed part of savings and a higher return on capital in

equilibrium is outweighed by the negative consequences of increased adverse selection in

the private annuity market and a lower wage rate.

Our results suggest that privatization of social security may be welfare improving when

annuity markets are characterized by asymmetric information. Elimination of social annu-

ities reduces the degree of adverse selection in the private annuity market, increases the level

of savings, and has a positive effect on lifetime utility for all health groups in the popula-

tion. In general, lifetime utility of newborns is highest in the complete absence of annuities

provided the redistribution scheme transfers accidental bequests to the newly arrived young

agents.
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