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Abstract
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ronmental quality and the economy in a continuous-time dynamic growth model featuring

optimizing households and firms. Environmental quality is modelled as a renewable re-

source. Consumers can invest in government bonds or firm equity. Since investors feel

partly responsible for environmental pollution when holding firm equity, they require a

premium on the return to equity. We show that socially responsible investment behav-

iour by households partially offsets the positive effects on environmental quality of public

abatement policies.
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1 Introduction

Socially responsible investment is a portfolio management style that does not only rely on fi-

nancial returns, but also on non-financial characteristics of the companies associated with the

shares in the portfolio. The notion nowadays is that many investors do not only care about

cash flows, but also about how these cash flows are generated. An investor might, for example,

abstain from investing in firms that use child labor or adopt heavily polluting technologies.

The modern investor thus distinguishes between “sin stocks” and clean investment opportu-

nities (see, e.g., Hong and Kacperczyk 2005). In this context, Fama and French (2005) have

recently acknowledged that there exists a “taste for assets”, as if the assets themselves can be

seen as consumption goods. The most common form of socially responsible investment used

in practice is straightforward screening, i.e. stocks of companies that “misbehave”–according

to some threshold measure–are simply eliminated from the portfolio. This style of invest-

ing has witnessed increasing attention and experienced large growth figures. There is ample

anecdotal evidence to support this claim. In 2005, for example, about one out of every ten

dollars under professional management in the United States was subject to some form of

socially responsible screening (Social Investment Forum, 2006). Also, the April 2008 issue of

the popular magazine Institutional Investor reports that U.S. investor groups have currently

filed 54 resolutions on climate change, up from 43 resolutions just one year before. Many

resolutions call on firms to disclose their greenhouse gas emissions.

Socially responsible investment (or “green screening”) can serve as a tool in dealing with

environmental externalities. In this paper, we analyze the macroeconomic and environmental

effects of socially responsible portfolio investment behaviour in the presence of environmental

pollution due to production. We are interested in how a traditional fiscal policy (such as

a public abatement program) interacts with socially responsible investments. In particular,

it is interesting to find out, first, whether these two types of policies are complements or

substitutes for each other, and, second, whether socially responsible investment has an effect

on the transitional effects triggered by fiscal policy. More precisely, we consider two shocks,

namely, first, a change in the level of public abatement and, second, a change in the perceived

pollution coefficient.

Our paper relates to the literature on “green consumerism” (Bansal and Gangopadhyay,

2003; Nyborg et al. (2006); Björner et al., 2004), and it is a natural choice to push the types

of arguments made in that literature in the direction of “green investing”. Indeed, one of

the main contributions of this paper is to formulate a simple and tractable way to model

socially responsible investment in a micro-founded dynamic macroeconomic model inhabited

by optimizing agents.

There exists a huge body of empirical literature on socially responsible investing that is

particularly interested in the relationship between corporate social and financial performance.

Two widely cited survey articles on this topic are Margolis and Walsh (2001) and Orlitzky

2



et al. (2003). In contrast, there are far fewer attempts to analyze the effects of socially

responsible investing in a theoretical framework. Heinkel et al. (2001) study a static model

with green screening in the portfolio selection (see also Beltratti, 2005). Their model is

similar to the asymmetric information model by Merton (1987). Dam (2006a) studies socially

responsible investment and corporate socially responsibility in a (static) general equilibrium

stock market model, using insights from Diamond (1967). In a dynamic setting, Kriström and

Lundgren (2003) present a partial equilibrium model in which profits are affected by “green

goodwill”. However, their model is not explicitly on socially responsible investment, since

their approach implies that green goodwill is channeled through the consumer goods market.

Dam (2006b) studies the role of socially responsible investment in a Diamond (1965)-type

overlapping generations model to capture the conflict between current and future generations.

The remainder of the paper is structured as follows. In Section 2 we present the model.

Households feature a “warm-glow” environmental preservation motive in the sense that they

feel partially responsible for the pollution caused by firms in which they hold shares. In order

to induce the household-investor to hold shares, these “dirty” securities must yield a higher

rate of return than “clean” government bonds. From the point of view of the representative

firm, the warm-glow motive of investors acts as an implicit output tax. Through this channel,

therefore, socially responsible investment affects the firm’s output and capital accumulation

decisions. In Section 3, we loglinearize the model and prove existence and saddle-point sta-

bility of the macroeconomic equilibrium. In Section 4 we use the loglinearized model to

conduct comparative dynamic experiments. The first shock consists of an (unanticipated and

permanent) increase in the level of public abatement. Interestingly, this shock weakens (and

partially crowds out) the warm-glow motive of socially responsible investors. In the second

experiment we study the effects of a permanent increase in the warm-glow parameter, i.e., a

strengthening of investors’ social responsibility. Finally, in Section 5 we offer some conclusions

and possible extensions.

2 The model

2.1 Households

There exists a large (and fixed) number, H, of identical, infinitely lived households. From the

perspective of the planning period, t, the representative household possesses a lifetime utility

function of the following form:

Λ (t) ≡

∫

∞

t

U [c (τ) , p (τ) , Q (τ)] eρ(t−τ)dτ, (1)

where c is consumption, p is an index of the flow of pollution caused by firms that the

household holds shares in, Q is the stock of environmental quality, and ρ is the pure rate of

time preference. Consumers do not fully internalize the environmental externality, however,
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they do experience a “warm glow” from contributing to the public good, as in Andreoni

(1990).1 In equation (1), Q represents the external effect on utility whilst p denotes the

warm-glow effect. The warm glow is channeled through socially responsible investment–see

below.

To keep the model as simple as possible, we assume that the felicity function, U [·], is

log-linear in its arguments:2

U [c, p, Q] ≡ ln c − β ln (1 + p) + ζ lnQ, β > 0, ζ > 0. (2)

This specification of preferences implies that the intertemporal substitution elasticity for

private consumption is equal to unity. Furthermore, the felicity function is separable in its

arguments, a features which simplifies the analysis considerably.

We model social responsibility by assuming that the household feels responsible for a

proportion of the “dirt” produced by the firms in which it holds shares. We assume that

there are two types of financial claims in the economy, namely “clean” government bonds and

“dirty” firm equity.3 The household feels responsible for the share-weighted relative pollution

levels (as in Dam, 2006a, 2006b):

p =
e

Ē
·
γY

Q
, γ > 0, (3)

where Y and Ē are, respectively, aggregate output and the total number of outstanding firm

shares. Furthermore, e is the number of shares the household possesses, so e/Ē is the fraction

of firms owned by the invidual household. Finally, γ is a constant parameter capturing

the notion that production generates undesirable side effects, e.g. pollution. The stock of

environmental quality, Q, features in the denominator, i.e. it is the Y/Q ratio that affects

the agent. In its decision making, the household takes as given the paths for Y and Q. By

assumption, the total number of shares of companies (Ē) is fixed, so the household can only

influence p by choosing its share holdings, e.

The household can save by investing in shares or in government bonds (to keep matters

simple, there are no corporate bonds4). In this deterministic setting, there is no risk so bonds

and shares are perfect substitutes in the household’s portfolio. The household budget identity

is thus given by:

ḃ + Peė + c = W + d + rb − z, (4)

1Nyborg et al. (2006) provide a detailed discussion of the psychological motivation for this kind of behaviour

in the context of green consumption.
2We drop the time index, where no confusion can arise.
3Households assume that the government engages in clean activities, i.e. it screens out all socially irresponsi-

ble activities. The assumption of a single dirty asset simplifies the analysis without significant loss of generality.

The model can be easily generalized by recognizing heterogeneous firms differing in their γ-parameters. In

such a setting, the dirtier firms will have a higher rate of return. See also below.
4If there were corporate bonds, we postulate that investors would treat them as dirty assets, i.e. as

equivalent to equity. Under this assumption, ignoring corporate bonds entails no loss of generality.
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where b denotes government bonds, Pe is the stock market price of company shares, W is

the wage rate, d is dividends received from firms, r is the interest rate, and z is lump-sum

taxes paid to the government. Labour supply is exogenous and equal to unity, so W also

stands for the household’s wage income. As usual, a variable with a dot is that variable’s

time rate of change, e.g. ḃ ≡ db (τ) /dτ . In the planning period, t, the household faces the

initial conditions e(t) = e0 ≡ Ē/H and b (t) = b0.
5 The dividend payout ratio, π, is defined

as follows:

π ≡
D

PeĒ
, (5)

where D stands for total dividend payments by firms. The dividend payout ratio is determined

by the firm and taken parametrically by the household, i.e. dividend receipts of the individual

investor amount to d = πPee.

The household chooses time paths for c, b, e in order to maximize (1) subject to (4),

taking into account (2)-(5), and some transversality conditions. The household optimization

program constitutes a non-standard optimal control problem which can, however, be solved

by transforming it. We demonstrate in Appendix A that the key expressions characteriz-

ing individual household behaviour in an interior optimum (with all assets held in positive

amounts) are given by:

ċ

c
= r − ρ, (6)

re − r = β ·
c

1 + p
·

γ

Q
·

Y

PeĒ
, (7)

a = b + Pee, (8)

where re ≡ Ṗe/Pe+π is the pecuniary rate of return on shares. Equation (6) is the conventional

Euler equation, equating the growth rate in consumption to the gap between the interest rate

and the pure rate of time preference. Equation (7) is the no-arbitrage equation for shares

and bonds. Intuitively, since β is positive, the individual investor demands a higher rate of

return on shares than on clean bonds (re > r), because the former give rise to undesirable side

effects in the form of pollution. Ceteris paribus, the excess return depends positively on γ

and negatively on Q and the equity value per unit of output, v ≡ PeĒ/Y .6 Finally, equation

(8) shows that total financial wealth consists of bonds plus the market value of shares.

Since agents are identical, aggregate values pertaining to the household sector are defined

in a straightforward fashion, i.e. C ≡ Hc, A ≡ Ha, B ≡ Hb, Z ≡ Hz. Each agent

5To keep the model symmetric, and thus to be able to employ the notion of a representative agent, we

assume that in the initial equilibrium each household has an endowment of shares equal to Ē/H. In the

optimum there will be no net trades in shares, i.e. e (t) = Ē/H for all t. As a result, optimal investment

behaviour will give rise to an equilibrium price of shares.
6Of course, for β = 0 the agent does not feel a warm glow effect and thus does not demand an excess return

on shares, i.e. re = r in that case.
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holds the same amount of shares, e = Ē/H, and experiences the same warm glow effect,

p = γY/ (HQ). Aggregate assets satisfy A = B + K. The household sector is summarized in

Table 1 by equations (T1.1) and (T1.5).

Table 1: Main Model Equations

Ċ

C
= r − ρ (T1.1)

K̇ = Y − C − G − δK (T1.2)

W = (1 − θ)FL [K, H] (T1.3)

r + δ = (1 − θ)FK [K, H] (T1.4)

Y = F [K, H] (T1.5)

θ =
βγC

HQ + γY
(T1.6)

zH = rB + G (T1.7)

Q̇ = µ · (−Q + φ + ξG − ηY ) (T1.8)

Notes: C is consumption, r is the interest rate, ρ is the rate of time preference, K is the cap-

ital stock, H is labour supply, G is public abatement, δ is the depreciation rate of capital, θ is

the implicit tax (warm glow), Q is environmental quality, Y is output, z is the lump-sum tax

per agent, B is the stock of government bonds. Parameters β, γ, µ, ξ, and η are all positive.

2.2 Firms

There are many, perfectly competitive firms, using a constant returns to scale technology to

produce a single homogeneous good. We argue on the basis of the representative firm. To

keep the model as simple as possible, we abstract from corporate debt (so that financing is

by retained earnings only).

Gross operating profit of the firm is denoted by Π and defined as:

Π ≡ F [K, L] − WL, (9)

where K is the physical capital stock, L is labour demand, and F [K, L] ≡ KαL1−α is a Cobb-

Douglas (constant returns to scale) production function. Corporate profit is either paid out

to household-investors in the form of dividends, D, or kept in the form of retained earnings,

RE :

Π = D + RE . (10)
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The capital accumulation identity is given by:

K̇ = I − δK, (11)

where I is gross investment, δ is the depreciation rate, and K̇ (τ) ≡ dK/dτ is net investment.

The no-arbitrage equation for household-investors, equation (7), can be written as:

r =
Ṗe

Pe
+

D − θY

PeĒ
, (12)

where θ can be seen as an “implicit tax” that the firm faces as a result of the investors’ warm

glow motive:

θ ≡
βγc

(1 + p)Q
. (13)

We assume that parameters are such that θ is positive but less than one (0 < θ < 1). In

equation (12), θY can be interpreted as a negative dividend (undesirable pollution) resulting

from the firm’s production activities.

We show in Appendix B that the objective function of the firm is given by:

V (t) =

∫

∞

t

[

[1 − θ (τ)]F [K (τ) , L (τ)] − W (τ) L (τ) − I (τ)
]

eR(t,τ)dτ, (14)

where R (t, τ) ≡ exp
[

−
∫ τ

t
r (s) ds

]

is the interest factor. The firm chooses optimal time paths

for K, I, and L in order to maximize (14), subject to the accumulation identity (11), the

path of implicit taxes, and taking as given the initial capital stock, K (t). The key first-order

necessary conditions for an interior solution can be written as follows:

W = (1 − θ) FL [K, L] , (15)

r + δ = (1 − θ) FK [K, L] , (16)

and it follows that V (t) = K (t). Equations (15)-(16) are the standard rental expressions for

labour and capital.

3 Model summary

The key expressions of the model are collected in Table 1. Equation (T1.1) is the aggregate

consumption Euler equation. Equation (T1.2) is the macroeconomic capital accumulation

expression, showing that the net change in the capital stock, K̇, equals net output, Y − δK,

minus the sum of private consumption and public abatement, C+G. Equations (T1.3)-(T1.4)

just restate the factor rental expressions (15)-(16), with labour market clearing, L = H, im-

posed. Equation (T1.5) is the aggregate production function. Equation (T1.6) expresses the

implicit tax faced by firms, θ, in terms of macro variables, C, Y , and Q. It is obtained

by rewriting the no-arbitrage equation (7) somewhat. It is easy to verify that ∂θ/∂Q < 0,
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∂θ/∂Y < 0, ∂θ/∂C > 0, and ∂θ/∂γ > 0. Equation (T1.7) is the static government budget

constraint, showing that the lump-sum tax revenue (left-hand side) equals total government

spending, consisting of interest payments on existing government debt plus abatement expen-

diture (right-hand side). Below we assume B to be fixed, and consider G to be an exogenous

policy variable under government control. Throughout the paper, the lump-sum tax is as-

sumed to balance the budget. Finally, equation (T1.8) show the dynamic expression for the

stock of environmental quality. Following John and Pecchenino (1994) and Bovenberg and

Heijdra (1998), we assume that nature features a regenerative capacity and, for given values of

Y and G, slowly settles into a steady-state quality level, Q̂ = φ+ ξG−ηŶ , where hats denote

steady-state values. We assume that Q̂ is positive. The parameter µ measures the speed of

regeneration, which we take to be finite in the general case. Occasionally, however, we shall

consider the special case of µ → ∞, in which case adjustment in environmental quality is

instantaneous, i.e. Q has the flow dimension. To summarize, the endogenous variables of the

model are C, Y , K, Q, W , r, θ, and z. The exogenous variables are H, B, and G.

In order to further investigate the model properties and to prepare for the comparative

dynamic analyses conducted in the next section, we log-linearize the model around an initial

steady state–see Table 2. The definitions of the variables and shares parameters are also

stated at the bottom of Table 2. The stability analysis depends on the speed of adjustment

of nature, µ.

Table 2: Log-linearized Model

˙̃C = ρr̃ (T2.1)

˙̃K = ŷ ·
[

Ỹ − ωCC̃ − ωGG̃ − ωIK̃
]

(T2.2)

W̃ = αK̃ −
θ̂

1 − θ̂
θ̃ (T2.3)

ρ

ρ + δ
r̃ = − (1 − α) K̃ −

θ̂

1 − θ̂
θ̃ (T2.4)

Ỹ = αK̃ (T2.5)

θ̃ = C̃ − (1 − ωQ) Ỹ − ωQQ̃ + ωQγ̃ (T2.6)

Z̃ = ωB r̃ + ωGG̃ (T2.7)

˙̃Q = µ ·
[

−Q̃ + εGG̃ − εY Ỹ
]

(T2.8)

Notes. (i) Variables are defined as follows: ˙̃x (t) ≡ dẋ (t) /x̂ and x̃ (t) ≡ dx (t) /x̂. Exception:

Z̃ ≡ Hdz/Ŷ . (ii) Steady-state shares are defined as: ωC ≡ Ĉ/Ŷ , ωG ≡ G/Ŷ , ŷ ≡ Ŷ /K̂, ωB ≡

ρB/Ŷ , ωQ ≡ HQ̂/[HQ̂ + γŶ ], εG ≡ ξG/Q̂, εY ≡ ηŶ /Q̂. (iii) Relationship between shares: ωI =

δ/ŷ = 1 − ωC − ωG, ρ + δ = α(1 − θ̂)ŷ, θ̂ = βωC(1 − ωQ), α − ωI = (ρ + δθ̂)/[(1 − θ̂)ŷ] > 0.
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Q as a flow Under the flow interpretation, we set µ → ∞ and find that the quality of

nature, Q, adjusts immediately. The dynamical system for consumption and the capital

stock can be written in a simple matrix expressions as:

[

˙̃C
˙̃K

]

= ∆ ·

[

C̃

K̃

]

+ Γ, (17)

where the Jacobian matrix, ∆, possessing typical elements δij , is defined as:

∆ ≡

[

−αŷθ̂ −αŷ
[

(1 − α) (1 − θ̂) − αθ̂ [1 − ωQ (1 + εY )]
]

−ŷωC ŷ (α − ωI)

]

, (18)

and the shock vector is given by:

Γ ≡

[

−αŷθ̂ωQ[γ̃ − εGG̃]

−ŷωGG̃

]

(19)

The stability analysis proceeds as follows. It is easy to show that the trace of ∆ is positive:

tr∆ = ŷ
[

(1 − θ̂)α − ωI

]

= ρ > 0, (20)

suggesting that there is at least one positive characteristic root. The determinant of ∆ is

equal to:

|∆| = −αŷ2
[

θ̂ (α − ωI) + ωC

(

1 − α − θ̂ + αθ̂ωQ (1 + εY )
)]

. (21)

In the absence of the warm-glow effect (θ̂ = 0), the determinant is negative and the model is

saddle-point stable, i.e. it possesses one positive (unstable) root, say λ1 > 0, and one negative

(stable) root, say −λ2 < 0. The roots satisfy the usual relationships, i.e. λ1 = ρ + λ2 and

|∆| = −λ1λ2. With an operative warm-glow effect the implicit tax is positive, and saddle-

point stability is not guaranteed for all parameter values. Since α > ωI , however, a very mild

sufficient condition for saddle-point stability is that α + θ̂ < 1, which we assume from here

on.7 To summarize, the model is saddle-point stable, with consumption and the capital stock

acting as, respectively, the non-predetermined (“jumping”) variable and the predetermined

(“sticky”) variable.

Q as a stock Under the stock interpretation, µ is finite and the quality of nature only

changes gradually over time. As a result, there are now three dynamic variables, namely C,

7Recall that α represents the capital share of national income, for which a = 1/3 is a plausible value. The

implicit tax, though positive, is likely to be quite small, easily satisfying the sufficient condition.
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K, and Q. Saddle-point stability now requires there to be two stable roots, and one unstable

root. The matrix expression for the dynamical system is given by:









˙̃C
˙̃K
˙̃Q









= ∆̄ ·







C̃

K̃

Q̃






+ Γ̄, (22)

where ∆̄ and Γ̄ are defined as follows:

∆̄ ≡









−αŷθ̂ −αŷ
[

(1 − α) (1 − θ̂) − αθ̂ (1 − ωQ)
]

αŷθ̂ωQ

−ŷωC ŷ (α − ωI) 0

0 −αµεY −µ









, (23)

Γ̄ ≡







−αŷθ̂ωQγ̃

−ŷωGG̃

µεGG̃






. (24)

We find that tr∆̄ = ρ − µ and
∣

∣∆̄
∣

∣ = −µ · |∆| > 0, where we have used the fact that |∆| < 0.

We conclude that the model is saddle-point stable and write the characteristic roots as λ̄1 > 0,

−λ̄2 < 0, and −λ̄3 < 0.8

4 Comparative Dynamics

In this section we use the loglinearized model of Table 2 to investigate the impact, transi-

tional, and long-run effects of two environmental shocks. In the first subsection we study

a tax-financed increase in the level of public abatement, whilst in the second subsection we

demonstrate what happens if there is an once-off increase in the warm-glow parameter, γ.

For both shocks, we show the effects under both the flow and the stock interpretation of

environmental quality.

4.1 Public abatement

Starting from an initial steady-state equilibrium, the economy is perturbed by an unantic-

ipated and permanent increase in the level of public abatement. The government uses the

lump-sum tax to balance its budget.

4.1.1 Flow interpretation

Under the flow interpretation of environmental quality, there are only two state variables and

a convenient graphical representation of the model is available. Indeed, by using equations

8The Routh-Hurwitz condition ensures that the alternative case, with three positive characteristic roots, is

impossible in our model.
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Figure 1: Phase Diagram

(17)-(19) and setting G̃ > 0 and γ̃ = 0 we find two equilibrium loci:

C̃ = −
δ12

δ11
K̃ + εGωQG̃, (25)

C̃ = −
δ22

δ21
K̃ −

ωG

α − ωI
G̃, (26)

where δij are the typical elements of ∆ (given in (18) above) and we recall that δ11 < 0,

δ12 < 0, δ21 < 0, δ22 > 0, α > ωI , and |∆| ≡ δ11δ22 − δ12δ21 < 0. Equation (25) depicts

combinations for C̃ and K̃, for which ˙̃C = 0. This is the consumption equilibrium line, CE0,

in Figure 1. This line is downward sloping, and points to the right (left) of the line are

consistent with a falling (rising) consumption profile, i.e. ˙̃C < 0 (> 0)–see the vertical arrows

in Figure 1.

Equation (26) gives combinations of C̃ and K̃, for which ˙̃K = 0. This is the capital stock

equilibrium line, KE0, in Figure 1. This line is upward sloping, and points above (below) the

line are consistent with a falling (rising) capital stock, i.e. ˙̃K < 0 (> 0)–see the horizontal

arrows in Figure 1. The configuration of arrows confirms saddle-point stability: the initial

equilibrium is at E0 and the saddle path is denoted by SP0.

An increase in public abatement shifts both curves in Figure 2. First, the CE curve

shifts to the right from CE0 to CE1. Intuitively, following the abatement shock consumption

equilibrium (r̂ = ρ) is attained at a higher level of the capital stock and a lower implicit
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Figure 2: Increase in Public Abatement

tax, θ̂.9 Second, the abatement shock reduces the amount of resources available for private

consumption and capital accumulation, thus shifting the KE line down, say from KE0 to KE1

in Figure 2. In the long run, the equilibrium shifts from E0 to E1, consumption decreases

and the capital stock increases. The effect on environmental quality is ambiguous, because

the capital stock (and thus output) increases the flow of pollution which may dominate the

abatement effect.

At impact, the capital stock is predetermined and consumption falls as a result of the tax

increase. This is the move from E0 to A on the new saddle path, SP1. At point A, the interest

rate exceeds the rate of time preference because the increase in public abatement decreases the

implicit warm-glow tax. This means that consumption follows an upward sloping time profile

during transition. At the same time, the reduction in consumption more than compensates

for the increase in public abatement, thus resulting in net capital accumulation. During

transition, the economy proceeds along the saddle path from point A to the new equilibrium

at E1.

9Recall that r̂ = ρ implies that ρ + δ = α (1 − θ) (H/K̂)1−α, from which the result mentioned in the text

follows readily.
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4.1.2 Stock interpretation

Under the stock interpretation, the long-run effects are exactly the same as under the flow

interpretation. There are, however, nontrivial differences in the adjustment paths toward the

new equilibrium. Appendix C contains analytical expressions for the transition paths. In

order to visualise the transition paths for the different variables, we calibrate the model using

plausible parameter values. To keep things simple, we assume that the production function

is of the Cobb-Douglas form, i.e. Y = ΩKαH1−α. We set the scaling parameter equal to

Ω = 0.808, normalize the number of households to unity, H = 1, and set the capital share

in national income at α = 0.3. The pure rate of time preference is set at 4 percent per

annum, ρ = 0.04, and annual capital depreciation is equal to δ = 0.1. The rate of natural

regeneration is equal to µ = 0.05, and the remaining parameters of the ecological equation

(T1.8) are chosen such that plausible values for the elasticitities εG and εY are obtained. We

find that φ = 12.605 and ξ = η = 6.464. Finally, we set β = 0.5, γ = 1 and assume that the

initial share of abatement equals ωG = 0.05. Using these values in Table 1, and solving for the

steady state yields: θ̂ = 0.05, Ŷ = 1, r̂ = 0.04, Ĉ = 0.746, K̂ = 2.036, and Q̂ = 6.464, where

hats denote steady-state values. At this steady state, the environmental elasticities are equal

to εG = 0.05 and εY = 1, and ωQ = 0.866. The characteristic roots are real: λ1 = 0.212,

−λ2 = −0.171, and −λ3 = −0.051.

Figure 3 illustrates the adjustment paths for consumption, the capital stock, environmen-

tal quality, and the warm-glow tax following a ten percent increase in public abatement, from

G0 = 0.05 to G1 = 0.055. All paths are monotonic and qualitatively the same as under the

flow interpretation. The warm-glow tax falls at impact because of the downward jump in

consumption. It continues to fall during transition because both output and environmental

quality increase.
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Figure 3: Transition Path for the Abatement Shock (increase in G)
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4.2 Stronger warm-glow effect

In this subsection we study the effects of a stepwise increase in the warm-glow parameter, γ.

4.2.1 Flow interpretation

Under the flow interpretation, the CE and KE lines are given by, respectively,

C̃ = −
δ12

δ11
K̃ − ωQγ̃, (27)

and:

C̃ = −
δ22

δ21
K̃. (28)

An increase in γ shifts the CE curve down, say from CE0 to CE1 in Figure 4. The KE line is

unaffected because the shock does not affect resources available for private consumption and

investment and for public abatement. At impact, the increase in γ gives rise to an upward

jump in consumption– the economy moves from E0 to point A on the new saddle path. At

point A, the interest rate exceeds the rate of time preference thus causing a downward sloping

time profile for consumption along the saddle path. Intuitively, the shock leads to an increase

in the warm-glow tax, both because γ rises (direct effect) and because consumption increases

(indirect effect). Point A lies above the KE line, which implies that capital decumulation

takes place during transition. In the long run, both consumption and the capital are reduced,

and the environmental quality is increased.

4.2.2 Stock interpretation

In Figure 5 we illustrate the adjustment paths for the key variables following a ten percent

increase in the warm-glow parameter, from γ0 = 1 to γ1 = 1.1. The paths for consumption,

the capital stock, the warm-glow tax, and environmental quality are all monotonic, as under

the flow interpretation.
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Figure 5: Transition Path for the Warm-Glow Shock (increase in γ)
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5 Concluding remarks

In this paper we explore the effects of socially responsible investment and public abatement

on environmental quality and the economy. An important question we address is whether

environmental policy is effective when consumers themselves have an incentive to (at least

partially) internalize the environmental externality due to a “warm glow” motive. We show

that socially responsible investment behaviour by households partially offsets the positive

effects on environmental quality of public abatement policies. The “warm glow” motive

results in socially responsible investment in the equity market. This in turn imposes an

implicit tax on the value of the polluting firm. Abatement policy reduces resources available

for consumption, which in turn lowers the implicit tax, leading to a larger capital stock and

higher pollution. As a consequence, the abatement policy is (partly) offset via the implicit

tax mechanism.
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Appendix A: Household problem

The household optimization program constitutes a non-standard optimal control problem

which is solved by transforming it. The assets are perfect substitutes in the household portfolio

so that we can define total assets, a, as follows:

a = b + Pee. (A.1)

By differentiating both sides of (A.1) with respect to time we obtain:

ȧ = ḃ + Peė + Ṗee. (A.2)

By adding Ṗee to both sides of (4) we obtain:

ȧ = W + d − z − c + rb + eṖe. (A.3)

By adding and deducting and rPee to the right-hand side of (A.3) and noting (5) we obtain:

ȧ = ra + W − z − c + (re − r)Pee, (A.4)

where re ≡ Ṗe/Pe + π. We now have a single aggregate state variable (a) whose dynamic

evolution must be determined.

The current-value Hamiltonian can be written as:

H ≡ ln c − β ln [1 + γ∗e] + ζ lnQ

+λ
[

ra + W − z − c + (re − r)Pee
]

+ µ [a − b − Pee] ,

where γ∗ ≡ γY/
(

ĒQ
)

. The control variables are c, e, and b, the state variable is a, the

co-state variable is λ, and the Lagrange multiplier is µ. The key first-order (Kuhn-Tucker)

conditions are:

∂H

∂c
=

1

c
− λ = 0, (A.5)

∂H

∂e
= −

β

1 + p
·

γY

ĒQ
+ λPe (re − r) − µPe ≤ 0, e ≥ 0, e

∂H

∂e
= 0, (A.6)

∂H

∂b
= −µ ≤ 0, b ≥ 0, b

∂H

∂b
= 0, (A.7)

λ̇ − ρλ = −
∂H

∂a
= −λr − µ. (A.8)

The felicity function, equation (A.2), implies that c is essential, i.e. the marginal felicity

of the first infinitesimal amount of consumption is infinite, limc→0 ∂U/∂c = +∞ so that

consumption will always be strictly positive (c > 0). If some government bonds are held by

the household (b > 0), then it follows from (A.7) that µ = 0. As a result, by combining (A.5)

and (A.8) we obtain the Euler equation (6).

If some of the shares are also held (e > 0), then it follows from (A.5)-(A.6) that:

re − r =
β

1 + p

γ

Q

c

v
, (A.9)

where V ≡ PeĒ and v ≡ V/Y . This is equation (7) in the text. �

19



Appendix B: Firm problem

By assumption, the firm finances its investment plans by retained earnings:

RE = I. (B.1)

By combining (10) and (B.1) and assuming that RE (t) > 0 we obtain the following expression

for dividends:

D = Π − I. (B.2)

The market value for outstanding shares is V = PeĒ so, by differentiating with respect to

time, we obtain:

V̇ = ṖeĒ. (B.3)

The household arbitrage equation for shares, (A.6), can be written as:

r =
Ṗe

Pe
+

D − θY

PeĒ
, (B.4)

where θ is defined as follows:

θ ≡
βγc

(1 + p)Q
. (B.5)

In its optimization plans, the firm takes the time path of θ as given. In equation (B.5), −θY

represents a negative dividend in the form of pollution that is undesirable to the household-

investors. By using (B.2)-(B.4) we obtain the fundamental differential equation for V :

V̇ = rV −
[

(1 − θ)F [K, L] − WL − I
]

. (B.6)

The key thing to note is that M-M still holds: dividends do not matter to the determination

of the value of the firm.

Clearly, since the coefficient for V on the right-hand side of (B.6) is positive, equation

(B.6) is an unstable differential equation in V . The only economically sensible (no-bubble)

solution is obtained by solving this differential equation forward in time and imposing the

following terminal condition:

lim
τ→∞

V (τ) exp

[

−

∫ τ

0
r (s) ds

]

= 0. (B.7)

This yields equation (14) in the text.

It is easy to show that V (t) = K (t), i.e. θ does not influence the value of capital. The

term in square brackets on the right-hand side of (B.6) can be written as:

[·] = (1 − θ)F [K, L] − WL − I

= (1 − θ) [FKK + FLL] − WL − K̇ − δK

= [(1 − θ) FK − δ]K + [(1 − θ) FL − W ] L − K̇

= rK − K̇, (B.8)
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where we have used (15)-(16). By using this result in (B.6) we immediately find that V (t) =

K (t). �

Appendix C: Comparative dynamics

For the most general case, the ∆̄ matrix can be written as:

∆̄ =







δ11 δ12 + αεY η13 η13

δ21 δ22 0

0 −αεY µ −µ






, (C.1)

where δij are the typical elements of the ∆ matrix, and η13 ≡ αŷθ̂ωQ. By multiplying the

third column by αεY and deducting the resulting column from the second column we obtain

for
∣

∣∆̄
∣

∣:

∣

∣∆̄
∣

∣ = −
µ

αεY
·

∣

∣

∣

∣

∣

∣

∣

δ11 δ12 αεY η13

δ21 δ22 0

0 0 αεY

∣

∣

∣

∣

∣

∣

∣

= −µ · |∆| , (C.2)

where |∆| is given in (21) in the text. The adjoint matrix is given by:

adj∆̄ =







−µδ22 µδ12 −η13δ22

µδ21 −µδ11 η13δ21

−αεY µδ21 αεY µδ11 |∆| − αεY δ21η13






, (C.3)

so that ∆̄−1 is equal to:

∆̄−1 =
1

|∆|
·







δ22 −δ12 η13δ22/µ

−δ21 δ11 −η13δ21/µ

αεY δ21 −αεY δ11 [αεY δ21η13 − |∆|] /µ






. (C.4)

For the flow interpetation we have µ → ∞, so that the third column vanishes. In view of the

definition of η13, we can write Γ̄ as:

Γ̄ ≡







−η13γ̃

−ŷωGG̃

µεGG̃






. (C.5)

The characteristic polynomial of ∆̄ is:

∣

∣Λ̄ (s)
∣

∣ ≡
∣

∣sI3 − ∆̄
∣

∣ = (s + µ) Ψ (s) − αεY δ21η13s, (C.6)

where Λ̄(s) ≡ sI3 − ∆̄, Ψ (s) is the characteristic polynomial of ∆:

Ψ (s) ≡ |sI2 − ∆| = s2 − tr∆ · s + |∆| . (C.7)
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Figure C.1: Characteristic Roots

Denote the roots of ∆ by λ1 and −λ2. Clearly, the roots of ∆̄ are not s = −µ, and the roots

of ∆ (λ1 and −λ2). The roots of ∆ are implicitly defined by:

Ψ (s) = αεY δ21η13

s

s + µ
[≡ Φ(s)] (C.8)

Figure 5 depicts the location of the characteristic roots, assuming that the speed of adjustment

of nature is lower than the speed of adjustment in the economic subsystem. It is clear from

(C.7) that Ψ (s) is a parabola, featuring Ψ (s) = |∆| < 0 and roots that alternate in sign.

These roots, λ1 and −λ2, are located at points A in B in the figure. If η13 were zero (for

example, if ωQ = 0), then there would only be one-way interaction between the economy and

nature, as in Bovenberg and Heijdra (1998). The roots would simply be −λ̄3 = −µ and the

roots of Ψ (s), i.e. λ1 and −λ2. Here however, we assume that η13 > 0 (because ωQ > 0)

so the economy affects nature and vice versa. It is clear from (C.8) that Φ (s) is downward

sloping an features two branches–one in the third quadrant and one in the first quadrant (the

horizontal and vertical asymptotes are at, respectively s = −µ and Φ (s) = αεY δ21η13 < 0.

In the figure we have drawn the case for which all roots are real: Ψ (s) intersects Φ (s) twice

in the third quadrant and once in the first. For some parameter values, the intersection in

the third quadrant vanishes and the stable roots are complex conjugate, with negative real

parts.
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Long-run effects

By using (22), (C.4), and (C.5) we find the long-run effects:







C̃ (∞)

K̃ (∞)

Q̃ (∞)






= −∆̄−1 · Γ̄ =

η13

|∆|
·







δ22

−δ21

αεY δ21






· γ̃

−
1

|∆|
·







δ12ŷωG + η13δ22εG

−δ11ŷωG − η13δ21εG

αεY δ11ŷωG + [αεY δ21η13 − |∆|] εG






· G̃ (C.9)

Recall that |∆| = −λ1λ2.

Impact effects

By taking the Laplace transform of (22) and noting that K̃(0) = Q̃ (0) = 0 we obtain:

Λ̄(s)







L{C̃, s}

L{K̃, s}

L{Q̃, s}






=







C̃(0) − η13L{γ̃, s}

−ŷωGL{G̃, s}

µεGL{G̃, s}






, (C.10)

where Λ̄(s) ≡ sI3 − ∆̄. We assume that the roots are real, i.e. λ̄1 > 0, −λ̄2 < 0, and −λ̄3 < 0.

We know that:

Λ̄(s)−1 ≡
1

(s − λ̄1)(s + λ̄2)(s + λ̄3)
adjΛ̄(s), (C.11)

where adjΛ̄(s) is the adjoint matrix of Λ̄(s). By pre-multiplying both sides of (C.10) by

Λ̄(s)−1 and rearranging we obtain the following expression in Laplace transforms:

(s + λ̄2)(s + λ̄3)







L{C̃, s}

L{K̃, s}

L{Q̃, s}






=

1

s − λ̄1
· adjΛ̄(s)







C̃(0) − η13L{γ̃, s}

−ŷωGL{G̃, s}

µεGL{G̃, s}






. (C.12)

The adjΛ̄(s) matrix is equal to:

adjΛ̄(s) ≡







(s + µ) (s − δ22) αεY η13s + δ12 (s + µ) η13 (s − δ22)

(s + µ) δ21 (s + µ) (s − δ11) η13δ21

−αεY µδ21 −αεY µ (s − δ11) Ψ (s) − αεY δ21η13






. (C.13)

The jump in C̃(0) is such that the right-hand side of (C.12) is of the 0 ÷ 0 type for the

unstable root, λ̄1. Using the second row of adjΛ̄(s), for example, we get for s = λ̄1:

0 =
(

λ̄1 + µ
)

δ21

[

C̃(0) − η13L{γ̃, λ̄1}
]

−
(

λ̄1 + µ
) (

λ̄1 − δ11

)

ŷωGL{G̃, λ̄1}

+η13δ21µεGL{G̃, λ̄1}. (C.14)
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Solving for C̃ (0) we thus find:

C̃(0) = η13L{γ̃, λ̄1} +

[

(

λ̄1 + µ
) (

λ̄1 − δ11

)

ŷωG − η13δ21µεG
(

λ̄1 + µ
)

δ21

]

L{G̃, λ̄1}. (C.15)

For stepwise shocks we have that L{γ̃, s} = γ̃/s and L{G̃, s} = G̃/s, a result we impose from

here on.

Transitional dynamics

We can write the first row of (C.12) as (s + λ̄2)(s + λ̄3)L{C̃, s} = ΓC/
(

s − λ̄1

)

, with:

ΓC ≡ (s + µ) (s − δ22)
[

C̃(0) − η13L{γ̃, s}
]

− [αεY η13s + δ12 (s + µ)] ŷωGL{G̃, s}

+η13 (s − δ22) µεGL{G̃, s}. (C.16)

We also know that C̃ (0) is such that:

0 ≡
(

λ̄1 + µ
) (

λ̄1 − δ22

)

[

C̃(0) − η13L{γ̃, λ̄1}
]

−
[

αεY η13λ̄1 + δ12

(

λ̄1 + µ
)]

ŷωGL{G̃, λ̄1}

+η13

(

λ̄1 − δ22

)

µεGL{G̃, λ̄1}. (C.17)

Lemma C.1 contains some useful results needed to simplify the expression for ΓC/
(

s − λ̄1

)

.

Lemma C.1 Define Ξ (s) ≡ s2 + ξ1s + ξ0. Then the following results can be obtained:

Ξ (s) − Ξ (x)

s − x
= s + x + ξ1, (i)

Ξ (s) /s − Ξ (x) /x

s − x
= 1 −

ξ0

sx
, (ii)

Proof: by straightforward substitutions. . �

After some straightforward manipulations we obtain:

ΓC

s − λ̄1
=

[

s + λ̄1 + µ − δ22

]

· C̃ (0) −
sλ̄1 + µδ22

sλ̄1
· η13γ̃

+
µδ12

sλ̄1
· ŷωGG̃ +

δ22

sλ̄1
· η13µεGG̃. (C.18)

By substituting (C.18) into the expression for L{C̃, s} we thus obtain:

L{C̃, s} =
s + λ̄1 + µ − δ22

(s + λ̄2)(s + λ̄3)
· C̃ (0) −

sλ̄1 + µδ22

s(s + λ̄2)(s + λ̄3)
·
η13γ̃

λ̄1

+
δ12ŷωG + δ22η13εG

s(s + λ̄2)(s + λ̄3)
·
µG̃

λ̄1
. (C.19)

To check, we use the initial-value and final-value theorems of the Laplace transform to com-

pute, respectively, the impact and long-run effects:

lim
s→∞

sL{C̃, s} = C̃ (0) lim
s→∞

s2 +
(

λ̄1 + µ − δ22

)

s

(s + λ̄2)(s + λ̄3)
= C̃ (0) , (C.20)

lim
s→0

sL{C̃, s} = −
µδ22

λ̄1λ̄2λ̄3
· η13γ̃ +

δ12ŷωG + δ22η13εG

λ̄2λ̄3
·
µG̃

λ̄1
= C̃ (∞) . (C.21)
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It is easy to see that (C.21) coincides with the expression in (C.9)– the key thing to note is

that λ̄1λ̄2λ̄3 = −µ |∆|. Note that the term in front of (C.19) can be simplified by splitting it:

s + λ̄1 + µ − δ22

(s + λ̄2)(s + λ̄3)
=

1

s + λ̄2
+

λ̄1 − λ̄3 + µ − δ22

(s + λ̄2)(s + λ̄3)

=
1

s + λ̄2
+

ρ + λ̄2 − δ22

(s + λ̄2)(s + λ̄3)
, (C.22)

where we have used the fact that λ̄1 − λ̄2 − λ̄3 = ρ − µ.

Using the same approach we find that:

L{K̃, s} =
δ21

(s + λ̄2)(s + λ̄3)
· C̃ (0) +

1

s(s + λ̄2)(s + λ̄3)
·
µδ21η13

λ̄1
γ̃

−
sλ̄1 + µδ11

s(s + λ̄2)(s + λ̄3)
·
ŷωG

λ̄1
G̃ −

δ21

s(s + λ̄2)(s + λ̄3)
·
η13µεG

λ̄1
G̃, (C.23)

L{Q̃, s} = −
αεY

s(s + λ̄2)(s + λ̄3)
·
µδ21η13

λ̄1
γ̃ +

αεY µδ11

s(s + λ̄2)(s + λ̄3)
·
ŷωG

λ̄1
G̃

+
sλ̄1 + λ1λ2 + αεY δ21η13

s(s + λ̄2)(s + λ̄3)
·
µεG

λ̄1
G̃. (C.24)

Equation (C.23) can be written in an alternative form by substituting the expression for C̃ (0),

stated in (C.15), and simplifying:

L{K̃, s} =
s + µ

s(s + λ̄2)(s + λ̄3)
·
δ21η13

λ̄1
γ̃ −

s + µ

s(s + λ̄2)(s + λ̄3)
·
δ11ŷωG

λ̄1
G̃

−
λ̄1 + s + µ

s(s + λ̄2)(s + λ̄3)
·
η13δ21µεG

λ̄1
G̃. (C.25)

Glancing at (C.19) and (C.23)-(C.25), it is clear that there are only two types of Laplace

transforms for which we need to know the inverse. These inverses are covered in Lemma’s

C.2 and C.3.

Lemma C.2 Let −λ̄2 and −λ̄3 denote stable characteristics root. For the complex case, we

write these roots as −λ̄2 ≡ −λ∗+θi and −λ̄3 ≡ −λ∗−θi, where λ∗ > 0 and i is the imaginary

unit. Define the following Laplace transform:

L{T (t) , s} ≡
1

(s + λ̄2)(s + λ̄3)
.

Then T (t) is a temporary transition term. (i) For real roots we obtain:

T (t) ≡
e−λ̄2t − e−λ̄3t

λ̄3 − λ̄2
, (for λ̄2 6= λ̄3)

≡ t · e−λ̄2t, (for λ̄2 = λ̄3)

(ii) For complex roots:

T (t) ≡
1

θ
· e−λ∗t · sin (θt) .

(iii) Properties: T (0) = 0 and limt→∞ T (t) = 0.
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Proof: Straightforward. For the complex case recall that e−λ̄2t = e−λ∗t [cos (θt) + i sin (θt)],

λ̄3 − λ̄2 = 2θi, and e−λ̄3t = e−λ∗t [cos (θt) − i sin (θt)]. �

Lemma C.3 Let −λ̄2 and −λ̄3 denote stable characteristics root. For the complex case, we

write these roots as −λ̄2 ≡ −λ∗−θi and −λ̄3 ≡ −λ∗+θi, where λ∗ > 0 and i is the imaginary

unit. Define the following Laplace transform:

L{A (t) , s} ≡
1

s(s + λ̄2)(s + λ̄3)
.

Then A (t) is an adjustment term. (i) For real roots we obtain:

A (t) ≡
1

λ̄2λ̄3
·

[

1 −
λ̄3

λ̄3 − λ̄2
e−λ̄2t +

λ̄2

λ̄3 − λ̄2
e−λ̄3t

]

, (for λ̄2 6= λ̄3)

≡
1

λ̄2λ̄3
·
[

1 − e−λ̄2t − λ̄2 · t · e
−λ̄2t

]

, (for λ̄2 = λ̄3)

(ii) For complex roots:

A (t) ≡
1

(λ∗)2 + θ2

[

1 − e−λ∗t

(

cos (θt) +
λ∗

θ
sin (θt)

)]

.

(iii) Properties: A (0) = 0 and limt→∞ A (t) = 1/
[

(λ∗)2 + θ2
]

> 0.

Proof: First we state some useful results (for distinct roots):

1

s(s + λ̄2)(s + λ̄3)
=

1

λ̄3 − λ̄2

[

1

s(s + λ̄2)
−

1

s(s + λ̄3)

]

=
1

λ̄3 − λ̄2

[

1

λ̄2

(

1

s
−

1

s + λ̄2

)

−
1

λ̄3

(

1

s
−

1

s + λ̄3

)]

.

It follows that:

L−1 {·} =
1

λ̄3 − λ̄2

[

1

λ̄2

[

1 − e−λ̄2t
]

−
1

λ̄3

[

1 − e−λ̄3t
]

]

.

For the complex case we thus get:

L−1 {·} =
1

λ̄3 − λ̄2

[

1

λ̄2

(

1 − e−λ∗t [cos (θt) + i sin (θt)]
)

−
1

λ̄3

(

1 − e−λ∗t [cos (θt) − i sin (θt)]
)

]

=
1

λ̄3 − λ̄2

[

e−λ∗t

(

−
(

λ̄3 − λ̄2

)

cos (θt) +
(

λ̄3 + λ̄2

)

i sin (θt)

λ̄2λ̄3

)

+
λ̄3 − λ̄2

λ̄2λ̄3

]

=
1

(λ∗)2 + θ2

[

1 − e−h∗t

(

cos (θt) +
λ∗

θ
sin (θt)

)]

,

where we have used λ̄3 − λ̄2 = 2θi, λ̄3 + λ̄2 = 2λ∗, λ̄2λ̄3 = (λ∗)2 + θ2 in the final step. For

repeated real roots we can just use l’Hopitals Rule. �
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