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A.1 Proof of Proposition 1

Proposition 1. [Golden rules] Define steady-state welfare of a young agent (P1.1), the

economy-wide resource constraint (P1.2), and the macroeconomic production function (P1.3)

as follows:

EΛy ≡ U(Cy) +
1− π

1 + ρ
U(Co), (P1.1)

f (k)− (δ + n) k = Cy +
1− π

1 + n
Co + g, (P1.2)

f (k) = Ω0k
α+η. (P1.3)

The social planner chooses non-negative values for Cy, Co, k, and g in order to maximize

EΛy subject to the constraints (P1.2)–(P1.3). In addition to satisfying the constraints the

first-best social optimum has the following features:

U ′(C̃y)

U ′(C̃o)
=

1 + n

1 + ρ
, (S1)

f ′(k̃) = n+ δ, (S2)

g̃ = 0. (S3)

Proof. The Lagrangian for the optimization problem is:

L ≡ U(Cy) +
1− π

1 + ρ
U(Co) + λ

[
f (k)− (δ + n) k − Cy −

1− π

1 + n
Co − g

]
.

The first-order conditions for the first-best social optimum are:

∂L

∂Cy
= U ′(Cy)− λ = 0,

∂L

∂Co
=

1− π

1 + ρ
U ′(Co)− λ

1− π

1 + n
= 0,

∂L

∂g
= −λ ≤ 0, g ≥ 0, g

∂L

∂g
= 0,

∂L

∂k
= λ

[
f ′ (k)− (δ + n)

]
= 0,

∂L

∂λ
= f (k)− (δ + n) k − Cy −

1− π

1 + n
Co − g = 0.

Since the marginal utility of consumption is positive everywhere (by the property of non-

satiation), it follows that λ is strictly positive. Complementary slackness then implies that

g̃ = 0. Rewriting the remaining first-order conditions yields expressions (S1)–(S3).
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A.2 Proof of Proposition 2

In this section we provide elaborate proofs for the items contained in Proposition 2 in the

paper. We study each scenario in turn. In the paper itself the perturbation parameters

identify scenarios:

• WE model: z1 = z2 = z3 = z−3 = 0

• TO model: z1 = 1, z2 = z3 = z−3 = 0

• TY model: z2 = 1, z1 = z3 = z−3 = 0

• PA model: z3 = z−3 = 1, z1 = z2 = 0

A.2.1 WE model

We write the marginal propensity to consume in terms of the capital intensity as:

Φ(k) ≡
1

1 +
(
1−π
1+ρ

)σ
(1− δ + αΩ0kα+η−1)σ−1

, k > 0, (A.1)

which corresponds to equation (21) in the text with z3 = 0 substituted and the superfluous

argument suppressed. The parameters satisfy 0 < α < 1, 0 ≤ η < 1 − α, and 0 < σ ≤ σ̄,

where σ̄ is given by:

σ̄ ≡
2− α− η

1− α− η
. (A.2)

We define:

Φ̄(σ) ≡
1

1 +
(
1−π
1+ρ

)σ
(1− δ)σ−1

, (A.3)

such that 0 < Φ̄(σ) < 1 for 0 < σ ≤ σ̄.

The following lemma states some crucial properties of Φ(k).

Lemma A.1. [Properties of the Φ(k) function] Let Φ (k) be defined as in (A.1). This function

has the following properties:

(i) limk→0Φ (k) =





1 for 0 < σ < 1

Φ̄(1) for σ = 1

0 for 1 < σ ≤ σ̄

;
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(ii) limk→∞Φ (k) = Φ̄ (σ) ;

(iii) For 0 < σ ≤ 1:

lim
k→0

1− Φ (k)

k
= +∞;

(iv) For 1 ≤ σ ≤ σ̄:

lim
k→0

Φ (k)

k
= +∞;

(v) limk→0Φ
′ (k) =





−∞ for 0 < σ < 1

0 for σ = 1

+∞ for 1 < σ ≤ σ̄

.

Proof. For future reference we provide the following two equivalent representations of Φ(k):

Φ(k) =
1

1 + φ0(φ1 + kα+η−1)σ−1
, (A.4)

=
1

1 + φ0k
(1−σ)(1−α−η)(φ1k

1−α−η + 1)σ−1
, (A.5)

where φ0 and φ1 are given by:

φ0 ≡

(
1− π

1 + ρ

)σ

(αΩ0)
σ−1 > 0, φ1 ≡

1− δ

αΩ0
> 0. (A.6)

Part (i) can be proved by using expression (A.5) and noting that:

lim
k→0

(
φ1k

1−α−η + 1
)σ−1

= 1, 0 < σ ≤ σ̄, (A.7)

lim
k→0

k(1−σ)(1−α−η) =





0 for 0 < σ < 1

1 for σ = 1

+∞ for 1 < σ ≤ σ̄

. (A.8)

Part (ii) follows directly from (A.4) as limk→∞ kα+η−1 = 0.

To prove part (iii) we write:

1− Φ (k)

k
=

φ0k
(1−σ)(1−α−η)−1

(
φ1k

1−α−η + 1
)σ−1

1 + φ0k
(1−σ)(1−α−η) (φ1k

1−α−η + 1)σ−1 . (A.9)

The result in (iii) follows by using (A.7) and the fact that limk→0 k
(1−σ)(1−α−η)−1 = +∞ (as

0 ≤ (1− σ) (1− α− η) ≤ 1 for 0 < σ ≤ 1).
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To prove part (iv) we write:

Φ (k)

k
=

1

k + φ0k
1−(σ−1)(1−α−η) (φ1k

1−α−η + 1)σ−1 . (A.10)

The result in (iv) follows by using (A.7) and the fact that limk→0 k
1−(σ−1)(1−α−η) = 0 (as

0 ≤ (σ − 1) (1− α− η) < 1 for 1 ≤ σ ≤ σ̄).

To prove part (v) we use (A.4) to find Φ′ (k):

Φ′ (k) ≡ − (1− σ) (1− α− η)
Φ (k) [1− Φ (k)]

k

1

φ1k
1−α−η + 1

. (A.11)

Using parts (iii) and (iv) establishes part (v).

If a steady-state equilibrium of the WE model satisfying kt+1 = kt = k̂ exists, then it is a

solution to the following equation:

Ψ(k̂)− Γ(k̂) = 0, (A.12)

where Ψ(k) and Γ(k) are defined as:

Ψ(k) ≡





k

1− Φ(k)
for k > 0

0 for k = 0

, (A.13)

Γ(k) ≡
(1− α)Ω0

1 + n
kα+η, k ≥ 0. (A.14)

Note that (A.14) is obtained from (20) in the paper by setting z2 = z−3 = 0 and suppressing

the superfluous arguments. The next two lemmas cover the properties of Γ (k) and Ψ (k).

Lemma A.2. [Properties of the Γ(k) function] Let Γ (k) be defined as in (A.14). This func-

tion has the following properties:

(i) Γ (0) = 0;

(ii) Γ′ (k) = (α+ η)
(1− α) Ω0

1 + n
kα+η−1 > 0 for k > 0;

(iii) Γ′′ (k) = − (1− α− η) (α+ η)
(1− α) Ω0

1 + n
kα+η−2 < 0 for k > 0;

(iv) limk→0 Γ
′ (k) = +∞, limk→∞ Γ′ (k) = 0.

Proof. Obvious by differentiation.
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Lemma A.3. [Properties of the Ψ(k) function] Let Ψ(k) be defined as in (A.13). This

function has the following properties:

(i) limk→0Ψ(k) = 0;

(ii) Ψ′ (k) > 0 for k > 0;

(iii) limk→0Ψ
′ (k) =





+∞ for 0 < σ < 1
1

1− Φ̄ (1)
for σ = 1

1 for 1 < σ ≤ σ̄

;

(iv) limk→0
Γ′ (k)

Ψ′ (k)
= +∞;

(v) limk→∞Ψ′ (k) =
1

1− Φ̄ (σ)
> 0.

Proof. Part (i) follows readily from Lemma A.1(i) for 1 < σ ≤ σ̄ and from Lemma A.1(iii)

for 0 < σ ≤ 1.

To prove part (ii) we compute:

Ψ′ (k) =
1− (1− σ) (1− α− η) Φ (k) 1

φ1k
1−α−η+1

1− Φ(k)
> 0, (A.15)

where we have used (A.11). The sign follows from the fact that 0 < α+ η < 1, 0 < Φ (k) < 1,

1/
(
φ1k

1−α−η + 1
)
< 1, and σ > 0.

Part (iii) follows from (A.15) by using Lemma A.1(i).

To prove part (iv) we use (A.15) and Lemma A.2(ii) to write:

Γ′ (k)

Ψ′ (k)
=

(1− α) (α+ η) Ω0

1 + n

[1− Φ(k)] kα+η−1

1− (1− σ) (1− α− η) Φ (k) 1
φ1k

1−α−η+1

. (A.16)

For 1 ≤ σ ≤ σ̄ the result follows immediately from Lemma A.1 and the fact that limk→0 k
α+η−1 =

+∞. For 0 < σ < 1 we write:

lim
k→0

1− Φ(k)

k
kα+η = lim

k→0

φ0k
−σ(1−α−η)

(
φ1k

1−α−η + 1
)σ−1

1 + φ0k
(1−σ)(1−α−η) (φ1k

1−α−η + 1)σ−1 = +∞, (A.17)

where we have used the results in (A.7) and (A.8) above and the fact that limk→0 k
−σ(1−α−η) =

+∞.

Part (v) follows from (A.15) and Lemma A.1(ii).
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We now proceed to the proof of Proposition 2 for the WE model.

Proposition 2. [Existence and stability of the WE model] Consider the WE model and adopt

Assumption 1. The following properties can be established:

(i) The model has two steady-state solutions; the trivial one features kt+1 = kt = 0, and

the economically relevant one satisfies kt+1 = kt = k̂WE , where k̂WE is the solution to:

k̂WE

1− Φ(k̂WE )
=

(1− α) Ω0

1 + n
(k̂WE )α+η.

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂WE .

For any positive initial value the capital intensity converges monotonically to k̂WE .

Proof. The steady-state equation (A.12) has two roots. By Lemmas A.2(i) and A.3(i) one

root is at k̂ = 0. To investigate the stability of that root we write:

dkt+1

dkt

∣∣∣∣
k̂=0

= lim
k→0

Γ′ (k)

Ψ′ (k)
= +∞, (A.18)

where we have used Lemma A.3(iv). It follows that the trivial solution is unstable and that

Γ (k) lies above Ψ (k) for positive values of k close to the origin. We know that Γ (k) is concave

and satisfies limk→∞ Γ′ (k) = 0 while Ψ (k) is strictly increasing with limk→∞Ψ′(k) > 0.

Hence there is a unique positive and finite nontrivial root, k̂WE . At k = k̂WE , Ψ (k) cuts

Γ (k) from below such that 0 < Γ′(k̂WE )/Ψ′(k̂WE ) < 1, thus proving stability of the nontrivial

equilibrium.
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A.2.2 TO model

If a steady state equilibrium of the TO model satisfying kt+1 = kt = k̂ exists, then it is a

solution to the following equation:

Ψ(k̂, 1)− Γ(k̂) = 0, (A.19)

where Γ(k) has been defined in (A.14) and Ψ(k, z1) is given by:

Ψ (k, z1) ≡





1 + z1
π

1−πΦ(k)

1− Φ(k)
k for k > 0

0 for k = 0

, (A.20)

with z1 a perturbation parameter (0 ≤ z1 ≤ 1). Note that (A.20) is obtained from (19) in the

text by setting z3 = 0 and dropping the superfluous arguments. The following lemma covers

the properties of Ψ(k, z1).

Lemma A.4. [Properties of the Ψ(k, z1) function] Let Ψ(k, z1) be defined as in (A.20). This

function has the following properties:

(i) limk→0Ψ(k, z1) = 0;

(ii) Ψz1 (k, z1) ≡ ∂Ψ(k, z1)/∂z1 > 0 and Ψk (k, z1) ≡ ∂Ψ(k, z1)/∂k > 0 for k > 0;

(iii) limk→0Ψk (k, z1) =





+∞ for 0 < σ < 1

1− π + πz1Φ̄(1)

(1− π)
[
1− Φ̄ (1)

] for σ = 1

1 for 1 < σ ≤ σ̄

;

(iv) limk→0
Γ′ (k)

Ψk (k, 1)
= +∞;

(v) limk→∞ (1− π)Ψk (k, 1) = −π +
1

1− Φ̄ (σ)
> 0.

Proof. The proof of part (i) follows from Lemma A.1(i) and (iii) for 0 < σ < 1. In case σ = 1,

Ψ (k, z1) is proportional to k and therefore tends to zero as k goes to zero. For 1 < σ ≤ σ̄ we

apply Lemma A.1(i).
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To prove part (ii) we compute:

Ψz1 (k, z1) =
π

1− π

kΦ(k)

1− Φ(k)
> 0, (A.21)

Ψk (k, z1) =
−z1π

1− π
+

1− (1− z1)π

1− π

[
1− (1− σ) (1− α− η) Φ (k) 1

φ1k
1−α−η+1

1− Φ(k)

]
> 0,

(A.22)

where we have used (A.11) to arrive at the second expression. The inequality in (A.22) follows

from the fact that the term in square brackets is greater than or equal to one for all values of

σ, as 0 < α+ η < 1, 0 < Φ (k) < 1, 1/
(
φ1k

1−α−η + 1
)
< 1, and σ > 0.

Part (iii) follows readily from (A.22) by using Lemma A.1(i).

To prove part (iv) we use (A.22) and Lemma A.2(ii) to write:

Γ′ (k)

Ψk (k, 1)
=

(1− α) (α+ η) Ω0

1 + n

(1− π) [1− Φ(k)] kα+η−1

−π [1− Φ (k)] +
[
1− (1− σ) (1− α− η) Φ (k) 1

φ1k
1−α−η+1

] .

For 1 ≤ σ ≤ σ̄ the result follows immediately from Lemma A.1 and the fact that limk→0 k
α+η−1 =

+∞, while for 0 < σ < 1 we make use of (A.17).

Part (v) follows from (A.22) and Lemma A.1(ii).

We now proceed to the proof of Proposition 2 for the TO model.

Proposition 2. [Existence and stability of the TO model] Consider the TO model and adopt

Assumption 1. The following properties can be established:

(i) The model has two steady-state solutions, the trivial one features kt+1 = kt = 0, and

the economically relevant one satisfies kt+1 = kt = k̂TO , where k̂TO is the solution to:

1 + π
1−πΦ(k̂

TO)

1− Φ(k̂TO)
k̂TO =

(1− α) Ω0

1 + n
(k̂TO)α+η.

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂TO .

For any positive initial value the capital intensity converges monotonically to k̂TO .

(iii) The steady-state capital intensity satisfies the following inequality:

0 < k̂TO < k̂WE .
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Proof. The steady-state equation (A.19) has two roots. By Lemmas A.2(i) and A.4(i) one

root is at k̂ = 0. To investigate the stability of that root we write:

dkt+1

dkt

∣∣∣∣
k̂=0

= lim
k→0

Γ′ (k)

Ψk(k, 1)
= +∞, (A.23)

where we have used Lemma A.4(iv). It follows that the trivial solution is unstable and

that Γ (k) lies above Ψ(k, 1) for positive values of k close to the origin. We know that

Γ (k) is concave and satisfies limk→∞ Γ′ (k) = 0 while Ψ(k, 1) is strictly increasing with

limk→∞Ψk(k, 1) > 0. Hence there is a unique positive and finite nontrivial root, k̂TO . At

k = k̂TO , Ψ (k, 1) cuts Γ (k) from below such that 0 < Γ′(k̂TO)/Ψk(k̂
TO , 1) < 1, thus proving

stability of the nontrivial equilibrium. Since Ψz1(k, z1) > 0 for all k > 0, increasing the

perturbation parameter z1 from 0 to 1 rotates the Ψ(k, z1) function in a counterclockwise

fashion. As a consequence k̂TO < k̂WE .

9



A.2.3 TY model

If a steady state equilibrium of the TY model satisfying kt+1 = kt = k̂ exists, then it is a

solution to the following equation:

Ψ(k̂)− Γ(k̂, 1) = 0, (A.24)

where Ψ(k) has been defined in (A.13) and Γ(k, z2) is given by:

Γ (k, z2) ≡
[1− α (1− z2π)] Ω0k

α+η + z2π (1− δ) k

1 + n
, (A.25)

with z2 a perturbation parameter (0 ≤ z2 ≤ 1). Note that (A.25) is obtained from (20) in the

text by setting z−3 = 0 and dropping the superfluous argument. The following lemma covers

the properties of Γ(k, z2).

Lemma A.5. [Properties of the Γ(k, z2) function] Let Γ (k, z2) be defined as in (A.25). This

function has the following properties:

(i) Γ (0, z2) = 0;

(ii) Γk (k, z2) ≡ ∂Γ(k, z2)/∂k = (α+ η)
[1− α (1− z2π)] Ω0

1 + n
kα+η−1 +

z2π (1− δ)

1 + n
> 0 and

Γz2 (k, z2) ≡ ∂Γ(k, z2)/∂z2 =
απΩ0k

α+η + π (1− δ) k

1 + n
> 0 for k > 0;

(iii) Γkk (k, z2) ≡ ∂2Γ(k, z2)/∂k
2 = − (1− α− η) (α+ η)

[1− α (1− z2π)] Ω0

1 + n
kα+η−2 < 0

and Γkz2 ≡ ∂2Γ(k, z2)/∂k∂z2 =
α(α+ η)πΩ0k

α+η−1 + π(1− δ)

1 + n
> 0 for k > 0;

(iv) limk→0 Γk (k, z2) = +∞, limk→∞ Γk (k, z2) = 0.

Proof. Obvious by differentiation.

We now proceed to the proof of Proposition 2 for the TY model.

Proposition 2. [Existence and stability of the TY model] Consider the TY model and adopt

Assumption 1. The following properties can be established:

(i) The model has two steady-state solutions, the trivial one features kt+1 = kt = 0, and

the economically relevant one satisfies kt+1 = kt = k̂TY , where k̂TY is the solution to:

k̂TY

1− Φ(k̂TY )
=

[1− α (1− π)] Ω0(k̂
TY )α+η + π (1− δ) k̂TY

1 + n
.

10



(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂TY .

For any positive initial value the capital intensity converges monotonically to k̂TY .

(iii) The steady-state capital intensity satisfies the following inequality:

0 < k̂WE < k̂TY .

Proof. The steady-state equation (A.24) has two roots. By Lemmas A.3(i) and A.5(i) one

root is at k̂ = 0. Since limk→0 Γk(k, 0)/Ψ
′(k) = +∞ by the proof of Proposition 1 and

Γkz2(k, z2) > 0 for all k > 0 we have:

dkt+1

dkt

∣∣∣∣
k̂=0

= lim
k→0

Γk (k, 1)

Ψ′(k)
= +∞. (A.26)

It follows that the trivial solution is unstable and that Γ(k, 1) lies above Ψ(k) for posi-

tive values of k close to the origin. We know that Γ(k, 1) satisfies limk→∞ Γk (k, 1) = 0

while Ψ(k) is strictly increasing with limk→∞Ψ′(k) > 0. Hence there is a unique positive

and finite nontrivial root, k̂TY . At k = k̂TY , Ψ (k) cuts Γ (k, 1) from below such that

0 < Γk(k̂
TY , 1)/Ψ′(k̂TY ) < 1, thus proving stability of the nontrivial equilibrium. Since

Γz2(k, z2) > 0 for all k, increasing the perturbation parameter z2 from 0 to 1 rotates the

Γ(k, z2) function in a counterclockwise fashion. As a consequence k̂TY > k̂WE .

11



A.2.4 PA model

If a steady state equilibrium of the PA model satisfying kt+1 = kt = k̂ exists, then it is a

solution to the following equation:

Ψ(k̂, 1)− Γ(k̂) = 0, (A.27)

where Γ(k) has been defined in (A.14) and Ψ(k, z3) is given by:

Ψ(k, z3) ≡





k

1− Φ(k, z3)
for k > 0

0 for k = 0

, (A.28)

Φ(k, z3) ≡
1

1 +
(
1−π
1+ρ

)σ (
1−δ+αΩkα+η−1

1−z3π

)σ−1 , k > 0 (A.29)

with z3 a perturbation parameter (0 ≤ z3 ≤ 1). Note that (A.28) and (A.29) are obtained

from, respectively, (19) and (21) in the text by setting z1 = 0 and dropping the superfluous

argument.

We define:

Φ̄(σ, z3) =
1

1 +
(
1−π
1+ρ

)σ (
1−δ

1−z3π

)σ−1 (A.30)

The following lemmas cover the properties of Φ(k, z3) and Ψ(k, z3).

Lemma A.6. [Properties of the Φ(k, z3) function] Let Φ(k, z3) be defined as in (A.29). This

function has the following properties:

(i) limk→0Φ(k, z3) =





1 for 0 < σ < 1

Φ̄(1, z3) for σ = 1

0 for 1 < σ ≤ σ̄

;

(ii) limk→∞Φ(k, z3) = Φ̄(σ, z3);

(iii) For 0 < σ ≤ 1:

lim
k→0

1− Φ(k, z3)

k
= +∞;

(iv) For 1 ≤ σ ≤ σ̄:

lim
k→0

Φ(k, z3)

k
= +∞;

12



(v) Φk(k, z3) ≡ ∂Φ(k, z3)/∂k S 0 ⇔ σ S 1 and Φz3(k, z3) ≡ ∂Φ(k, z3)/∂z3 T 0 ⇔ σ S 1 for

k > 0;

(vi) limk→0Φk(k, z3) =





−∞ for 0 < σ < 1

0 for σ = 1

+∞ for 1 < σ ≤ σ̄

.

Proof. For future reference we provide the following two equivalent representations of Φ(k, z3):

Φ(k, z3) =
1

1 + (1− z3π)
1−σ φ0 (φ1 + kα+η−1)σ−1 , (A.31)

=
1

1 + (1− z3π)1−σφ0k
(1−σ)(1−α−η)(φ1k

1−α−η + 1)σ−1
, (A.32)

where φ0 and φ1 are defined in equation (A.6) above. Part (i) can be proved by using

expression (A.32) and noting (A.7) and (A.8). Part (ii) follows directly from (A.31) as

limk→∞ kα+η−1 = 0. To prove part (iii) and (iv) we note that the term (1− z3π)
1−σ does not

affect the limiting behaviour of the Φ(k, z3) function such that Lemma A.1(iii) and A.1(iv)

apply.

To prove part (v) we compute:

Φk(k, z3) = −(1− σ)(1− α− η)
Φ(k, z3)[1− Φ(k, z3)]

k

1

φ1k
1−α−η + 1

, (A.33)

Φz3(k, z3) =
π(1− σ)Φ(k, z3)[1− Φ(k, z3)]

1− z3π
. (A.34)

The sign follows from the fact that 0 < α + η < 1, 0 < Φ(k, z3) < 1, 1/(φ1k
1−α−η + 1), and

(1− σ) ≥ 0 for 0 < σ < 1, (1− σ) = 0 for σ = 1, and (1− σ) < 0 for σ > 1.

We can prove part (v) by combining parts (iii), (iv), and (v).

Lemma A.7. [Properties of the Ψ(k, z3) function] Let Ψ(k, z3) be defined as in (A.28). This

function has the following properties:

(i) limk→0Ψ(k, z3) = 0;

(ii) Ψk(k, z3) ≡ ∂Ψ(k, z3)/∂k > 0 and Ψz3(k, z3) ≡ ∂Φ(k, z3)/∂z3 S 0 ⇔ σ T 1 for k > 0;

(iii) limk→0Ψk(k, z3) =





+∞ for 0 < σ < 1
1

1− Φ̄(1, z3)
for σ = 1

1 for 1 < σ ≤ σ̄

;

13



(iv) limk→0
Γ′(k)

Ψk(k, 1)
= +∞;

(v) limk→∞Ψk(k, 1) =
1

1− Φ̄(σ, 1)
> 0.

Proof. Part (i) follows readily from Lemma A.6(i) for 1 < σ ≤ σ̄ and from Lemma A.6(iii)

for 0 < σ ≤ 1.

To prove part (ii) we compute:

Ψk(k, z3) =
1− (1− σ)(1− α− η)Φ(k, z3)

1
φ1k

1−α−η+1

1− Φ(k, z3)
, (A.35)

Ψz3(k, z3) =
π (1− σ) Φ (k, z3)

1− z3π

k

1− Φ (k, z3)
, (A.36)

for which the signs follow from the fact that 0 < α+η < 1, 0 < Φ(k, z3) < 1, 1/(φ1k
1−α−η+1) <

1, and σ > 0.

Part (iii) follows from (A.35) by using Lemma A.6(i).

To prove part (iv) we use (A.35) and Lemma A.2(ii) to write:

Γ′(k)

Ψk(k, 1)
=

(1− α)(α+ η)Ω0

1 + n

[1− Φ(k, 1)]kα+η−1

1− (1− σ)(1− α+ η)Φ(k, 1) 1
φ1k

1−α−η+1

. (A.37)

For 1 ≤ σ < σ̄ the result follows immediately from Lemma A.6 and the fact that limk→0 k
α+η−1 =

+∞. For 0 < σ < 1 we use that limk→0[1− Φ(k, 1)]kα+η−1 = +∞.

Part (v) follows from (A.35) and Lemma A.6(ii).

We now proceed to the proof of Proposition 2 for the PA model.

Proposition 2. [Existence and stability of the PA model] Consider the PA model and adopt

Assumption 1. The following properties can be established:

(i) The model has two steady-state solutions, the trivial one features kt+1 = kt = 0, and

the economically relevant one satisfies kt+1 = kt = k̂PA, where k̂PA is the solution to:

k̂PA

1− Φ(k̂PA, 1)
=

(1− α) Ω0(k̂
PA)α+η

1 + n
.

(ii) The trivial steady-state solution is unstable whilst the non-trivial solution is stable:

0 <
dkt+1

dkt
< 1, for kt+1 = kt = k̂PA.

For any positive initial value the capital intensity converges monotonically to k̂PA.
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(iii) The steady-state capital intensity satisfies the following inequality:

k̂PA S k̂WE ⇔ σ S 1

Proof. The steady-state equation (A.27) has two roots. By Lemmas A.2(i) and A.7(i) one

root is at k̂ = 0. To investigate the stability of that root we write:

dkt+1

dkt

∣∣∣∣
k̂=0

= lim
k→0

Γ′(k)

Ψk(k, 1)
= +∞. (A.38)

where we have used Lemma A.7(iv). It follows that the trivial solution is unstable and

that Γ (k) lies above Ψ(k, 1) for positive values of k close to the origin. We know that

Γ (k) is concave and satisfies limk→∞ Γ′ (k) = 0 while Ψ(k, 1) is strictly increasing with

limk→∞Ψk(k, 1) > 0. Hence there is a unique positive and finite nontrivial root, k̂PA. At

k = k̂PA, Ψ (k, 1) cuts Γ (k) from below such that 0 < Γ′(k̂PA)/Ψk(k̂
PA, 1) < 1, thus proving

stability of the nontrivial equilibrium. Since Ψz3(k, z3) T 0 for σ S 1, increasing the pertu-

bation parameters z3 from 0 to 1 rotates the Ψ(k, z3) function in a counterclockwise fashion

(0 ≤ σ < 1), a clockwise fashion (1 < σ ≤ σ̄), or not at all (σ = 1). As a consequence

k̂PA S k̂WE for σ S 1.
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A.3 Proof of Lemma 1

Lemma 1. [Implications of the factor price frontier] Assume that the economy is initially in

the steady state associated with the WE or TY scenario, and is dynamically efficient (r̂ > n).

Let dkt+∞/dzi denote the long-run effect on the capital intensity of a unit perturbation in zi

occurring at shock-time τ = 0 and evaluated at zi = 0. It follows that the long-run effect on

weighted factor prices can be written as:

Ĉo

(1 + r̂)2
drt+∞

dzi
+

dwt+∞

dzi
= ∆

dkt+∞

dzi
, (L1.1)

where ∆ is a positive constant:

∆ ≡

[
η + α (1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

α
> 0. (L1.2)

Proof. We first note that – evaluated at the initial steady state – we can write:

drt+∞

dzi
= − (1− α− η)αΩ0k̂

α+η−2dkt+∞

dzi
,

dwt+∞

dzi
= (α+ η) (1− α) Ω0k̂

α+η−1dkt+∞

dzi
.

By using r̂ + δ = αΩ0k̂
α+η−1 these expressions can be rewritten as follows:

drt+∞

dzi
= − (1− α− η)

r̂ + δ

k̂

dkt+∞

dzi
,

dwt+∞

dzi
= (α+ η) (1− α)

r̂ + δ

α

dkt+∞

dzi
.

By substituting these expressions into (L1.1) and noting that Ĉo/(1+ r̂) = (1 + n) k̂ for both

WE and TY we obtain::

∆ ≡

[
−α (1− α− η)

1 + n

1 + r̂
+ (α+ η) (1− α)

]
r̂ + δ

α

=

[
η + α (1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

α
.

Since η ≥ 0 and r̂ > n it follows that ∆ is strictly positive.
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A.4 Scenario changes: Allocation effects

Note the following steady-state relationship:

φ1k̂
1−α−η + 1 =

1 + r̂

r̂ + δ
, (A.39)

where φ1 ≡ (1− δ)/(αΩ0) as given in (A.6).

We define:

γ0 ≡ (1− α− η)
r̂ + δ

1 + r̂
, (A.40)

such that 0 < γ0 < 1 as 0 ≤ η < 1− α and δ ≤ 1.

The analytical expressions for the derivatives used below and their sign can be found in

Section A.2.

A.4.1 From WE to TO

The relevant fundamental difference equation is given by:

Ψ(kt+1, z1)− Γ(kt) = 0.

We start from the steady state of WE, such that initially kt+1 = kt = k̂ and z1 = 0.

• Impact effect on the future capital intensity:

dkt+1

dz1
= −

Ψz1(k̂, 0)

Ψ(k̂, 0)
= −

π

1− π

k̂Ψ(k̂)

1− (1− σ)γ0Ψ(k̂)
< 0. (A.41)

• Long-run effect on the capital intensity:

dkt+∞

dz1
= −

Ψz1(k̂, 0)

Ψk(k̂, 0)− Γ′(k̂)
= −

π

1− π

k̂Φ(k̂)

1− α− η − (1− σ)γ0Φ(k̂)
< 0, (A.42)

since in the initial steady state we have Γ′(k̂) < Ψk(k̂, 0) by Proposition 2 and:

Γ′(k̂) = (α+ η)
Γ(k̂)

k̂
= (α+ η)

Ψ(k̂, 0)

k̂
=

α+ η

1− Φ(k̂)
.
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A.4.2 From WE to TY

The relevant fundamental difference equation is given by:

Ψ(kt+1)− Γ(kt, z2) = 0.

We start from the steady state of WE, such that initially kt+1 = kt = k̂ and z2 = 0.

• Impact effect on the future capital intensity:

dkt+1

dz2
=

Γz2(k̂, 0)

Ψ′(k̂)
=

π(1 + r̂)k̂

1 + n

1− Φ(k̂)

1− (1− σ)γ0Φ(k̂)
> 0. (A.43)

• Long-run effect on the capital intensity:

dkt+∞

dz2
=

Γz2(k̂, 0)

Ψ′(k̂)− Γk(k̂, 0)
=

π(1 + r̂)k̂

1 + n

1− Φ(k̂)

1− α− η − (1− σ)γ0Φ(k̂)
> 0, (A.44)

since in the initial steady state we have Γk(k̂, 0) < Ψ′(k̂) by Proposition 2 and:

Γk(k̂, 0) = (α+ η)
Γ(k̂, 0)

k̂
= (α+ η)

Ψ(k̂)

k̂
=

α+ η

1− Φ(k̂)
.

A.4.3 From WE to PA

The relevant fundamental difference equation is given by:

Ψ(kt+1, z3)− Γ(kt) = 0.

We start from the steady state of WE, such that initially kt+1 = kt = k̂ and z3 = 0.

• Impact effect on the future capital intensity:

dkt+1

dz3
= −

Ψz3(k̂, 0)

Ψk(k̂, 0)
= −π(1− σ)

k̂Φ(k̂, 0)

1− (1− σ)γ0Φ(k̂, 0)
T 0 ⇔ σ T 1. (A.45)

• Long-run effect on the capital intensity:

dkt+∞

dz3
= −

Ψz3(k̂, 0)

Ψk(k̂, 0)− Γ′(k̂)
= −π(1−σ)

k̂Φ(k̂, 0)

1− α− η − (1− σ)γ0Φ(k̂, 0)
T 0 ⇔ σ T 1,

(A.46)

since in the initial steady state we have Γ′(k̂) < Ψk(k̂, 0) by Proposition 2 and:

Γ′(k̂) = (α+ η)
Γ(k̂)

k̂
= (α+ η)

Ψ(k̂, 0)

k̂
=

α+ η

1− Φ(k̂, 0)
.
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A.4.4 From TY to PA

The relevant fundamental difference equation is given by:

Ψ(kt+1, z3) = Γ(kt, z2).

When we move from the TY to the PA scenario we administer two seperate shocks. As a

consequence, the impact and long-run effects are more subtle than in the cases discussed

above. At impact z3 changes from 0 to 1, while z2 jumps from 1 to 0 only after period t+ 1.

Hence, only in the long run we have z2 = 1− z3. We start from the steady state of TY, such

that initially kt+1 = kt = k̂, z2 = 1, and z3 = 0.

• Impact effect on the future capital intensity.

The fundamental difference equation in the impact period is:

Ψ(kt+1, 1) = Γ(kt, 1).

Using a first-order approximation of Ψ(kt+1, z3) around the point (k̂, 0) we obtain:

Ψ(kt+1, z3) ≈ Ψ(k̂, 0) + Ψk(k̂, 0)[kt+1 − k̂] + Ψz3(k̂, 0)z3.

It follows that:

Ψ(k̂, 0)−Ψ(kt+1, 1) ≈ Ψ(k̂, 0)−Ψ(k̂, 0)−Ψk(k̂, 0)[kt+1 − k̂]−Ψz3(k̂, 0),

0 ≈ −Ψ(k̂, 0)[kt+1 − k̂]−Ψz3(k̂, 0),

since Ψ(kt+1, 1) = Γ(k̂, 1) by the fundamental difference equation in the impact period

and Ψ(k̂, 0) = Γ(k̂, 1) as we start in the steady state of TY. The impact effect on the

future capital intensity dkt+1/dz3 ≈ kt+1 − k̂ can then be approximated as:

dkt+1

dz3
= −

Ψz3(k̂, 0)

Ψk(k̂, 0)
.

• Long-run effect on the capital intensity.

The fundamental difference equation immediately after the impact period is:

Ψ(kt+2, 1) = Γ(kt+1).
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Using a first-order approximation of Γ(kt+1) around k̂ we obtain:

Γ(kt+1) ≈ Γ(k̂) + Γ′(k̂)[kt+1 − k̂].

We also know that:

Ψ(k̂, 0) = Γ(k̂, 1) = Γ(k̂) +
π (1 + r̂) k̂

1 + n
= Γ(k̂) + Γz2(k̂, 1).

It follows that the fundamental difference equation can be approximated by:

Ψ(k̂, 0) + Ψk(k̂, 0)[kt+2 − k̂] + Ψz3(k̂, 0) ≈ Γ(k̂) + Γ′(k̂)[kt+1 − k̂],

Ψk(k̂, 0)[kt+2 − k̂] + Ψz3(k̂, 0) ≈ Γ′(k̂)[kt+1 − k̂]− Γz2(k̂, 1).

since Ψ(k̂, 0) = Γ(k̂) + Γz2(k̂, 1). Solving for kt+2 − k̂ yields:

kt+2 − k̂ = −
Ψz3(k̂, 0) + Γz2(k̂, 1)

Ψk(k̂, 0)
+

Γ′(k̂)

Ψk(k̂, 0)
[kt+1 − k̂].

Forward iteration gives:

kt+τ − k̂ = −
Ψz3(k̂, 0) + Γz2(k̂, 1)

Ψk(k̂, 0)


1 + Γ′(k̂)

Ψk(k̂, 0)
+

(
Γ′(k̂)

Ψk(k̂, 0)

)2

+ · · ·+

(
Γ′(k̂)

Ψk(k̂, 0)

)τ−2



+

(
Γ′(k̂)

Ψk(k̂, 0)

)τ−1

[kt+1 − k̂]

Note that 0 < Γ′(k̂)/Ψk(k̂, 0) < Γk(k̂, 1)/Ψk(k̂, 0) < 1 by Proposition 2. Hence the long

run effect on the capital intensity can be approximated as:

kt+∞ − k̂ = −
Ψz3(k̂, 0)− Γz2(k̂, 1)

Ψk(k̂, 0)

1

1− Γ′(k̂)/Ψk(k̂, 0)
= −

Ψz3(k̂, 0) + Γz2(k̂, 1)

Ψk(k̂, 0)− Γ′(k̂)
.

The long-run effect on the capital intensity dkt+∞/dz3 ≈ kt+∞− k̂ can then be approx-

imated as:

dkt+∞

dz3
= −

Ψz3(k̂, 0) + Γz2(k̂, 1)

Ψk(k̂, 0)− Γ′(k̂)
.

A.4.5 From TO to PA

• In period t the FDE is:

kt+1 = [1− Φ (kt+1, z3)] Γ (kt)−
z1π

1− π
Φ (kt+1) kt+1
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– future old-age transfers cannot be annuitized by definition

– at time t we have z1 = 1− z3 and Φ (kt+1) kt+1 = Φ(k̂)k̂.

• Define:

Ψ(kt+1, z1, z3) ≡
1 + z1π

1−πΦ (kt+1)

1− Φ (kt+1, z3)
kt+1,

and note that:

Ψk(kt+1, z1, z3) > 0,

Ψz1(kt+1, z1, z3) ≡
π

1−πΦ (kt+1)

1− Φ (kt+1, z3)
kt+1 > 0,

Ψz3(kt+1, z1, z3) ≡ Φz3 (kt+1, z3)
1 + z1π

1−πΦ (kt+1)

[1− Φ (kt+1, z3)]
2kt+1 R 0 ⇔ σ S 1.

• In the initial steady state we have:

Ψ(k̂TO , 1, 0) = Γ(k̂TO).

• At time t we have:

Ψ(kt+1, 0, 1) = Γ(k̂TO).

• Approximate Ψ(kt+1, z1, z3) around (k̂TO , z̄1, z̄3):

Ψ(kt+1, z1, z3) ≈ Ψ(k̂TO , z̄1, z̄3) + Ψk(k̂
TO , z̄1, z̄3)

[
kt+1 − k̂TO

]

+Ψz1(k̂
TO , z̄1, z̄3) [z1 − z̄1] + Ψz3(k̂

TO , z̄1, z̄3) [z3 − z̄3] .

• Hence around (k̂TO , 1, 0) we find:

Ψ(kt+1, 0, 1) ≈ Ψ(k̂TO , 1, 0) + Ψk(k̂
TO , 1, 0)

[
kt+1 − k̂TO

]

+Ψz1(k̂
TO , 1, 0) [z1 − 1] + Ψz3(k̂

TO , 1, 0)z3.

• It follows that:

Γ(k̂TO) = Ψ(k̂TO , 1, 0) + Ψk(k̂
TO , 1, 0)

[
kt+1 − k̂TO

]
−Ψz1(k̂

TO , 1, 0)z3 +Ψz3(k̂
TO , 1, 0)z3

0 = Ψk(k̂
TO , 1, 0)

[
kt+1 − k̂TO

]
−Ψz1(k̂

TO , 1, 0)z3 +Ψz3(k̂
TO , 1, 0)z3,
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or:

kt+1 − k̂TO

z3
=

Ψz1(k̂
TO , 1, 0)−Ψz3(k̂

TO , 1, 0)

Ψk(k̂TO , 1, 0)
.

This is the discrete counterpart to:

dkt+1

dz3

∣∣∣∣
kt=k̂TO

=
Ψz1(k̂

TO , 1, 0)−Ψz3(k̂
TO , 1, 0)

Ψk(k̂TO , 1, 0)
.

• Note that:

Ψz1(k̂
TO , 1, 0) ≡

π
1−πΦ(k̂

TO)

1− Φ(k̂TO)
k̂TO ,

Ψz3(k̂
TO , 1, 0) ≡ Φz3(k̂

TO , 0)
1 + π

1−πΦ(k̂
TO)

[
1− Φ(k̂TO , 1)

]2 k̂
TO ,

Φz3(k̂
TO , 0) ≡ π (1− σ) Φ(k̂TO)[1− Φ(k̂TO)].

Combining these results we thus obtain:

dkt+1

dz3

∣∣∣∣
kt=k̂TO

=
π

1− π

k̂TOΦ(k̂TO)

Ψk(k̂TO , 1, 0)

1− (1− σ)
[
1− π(1− Φ(k̂TO))

]

[1− Φ(k̂TO)]Ψk(k̂TO , 1, 0)
> 0.

• For period t+ 2 we note that:

Γ (kt+1) = Ψ(kt+2, 0, 1).

• Approximating both sides:

Γ(k̂TO) + Γ′(k̂TO)
[
kt+1 − k̂TO

]
= Ψ(k̂TO , 1, 0) + Ψk(k̂

TO , 1, 0)
[
kt+2 − k̂TO

]

−
[
Ψz1(k̂

TO , 1, 0)−Ψz3(k̂
TO , 1, 0)

]
z3,

or:

kt+2 − k̂TO

z3
=

Γ′(k̂TO)

Ψk(k̂TO , 1, 0)

kt+1 − k̂TO

z3

+
1

Ψk(k̂TO , 1, 0)

[
Ψz1(k̂

TO , 1, 0)−Ψz3(k̂
TO , 1, 0)

]
.

• This is the discrete counterpart to:

dkt+2

dz3

∣∣∣∣
kt=k̂TO

.

• After some iterations we find:

dkt+2

dz3

∣∣∣∣
kt=k̂TO

=
Ψz1(k̂

TO , 1, 0)−Ψz3(k̂
TO , 1, 0)

Ψk(k̂TO , 1, 0)− Γ′(k̂TO)
.
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A.5 Scenario changes: Welfare effects

Note that in the steady state of the WE scenario and the TY scenario the following relationship

holds:

Ĉo

1 + r̂
= Ŝ = (1 + n)k̂. (A.47)

Similarly, for the TO scenario we have:

Ĉo

1 + r̂
= Ŝ +

Ẑo

1 + r̂
= (1 + n)k̂ +

π(1 + n)

1− π
k̂ =

1 + n

1− π
k̂. (A.48)

The impact effect on the future interest rate (evaluated in the initial steady state) can be

written as:

drt+1

dzi
= −(1− α− η)

r̂ + δ

k̂

dkt+1

dzi
, (A.49)

which is exactly opposite in sign to the impact effect on the future capital stock.

We define:

Θ ≡

[
η

α
+ (1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

1 + n

Φ(k̂)

1− α− η − (1− σ) γ0Φ(k̂)
, (A.50)

=

[
η

α (1− α− η)
+

r̂ − n

1 + r̂

]
r̂ + δ

1 + n

r̂+δ
1+r̂Φ(k̂)

1− (1− σ) r̂+δ
1+r̂Φ(k̂)

≥ 0. (A.51)

A.5.1 From WE to TO

We want to derive analytical expressions for the welfare effect at impact and in the long run

of a change in redistribution regime from WE to TO.

A.5.1.1 Impact effect

In order to find the impact effect on welfare we write:

EΛy
t (z1) ≡ U(Cy

t ) +
1− π

1 + ρ
U(Co

t+1)− λt

[
Cy
t +

Co
t+1

1 + rt+1
− wt − z1

π (1 + n)

1− π
kt+1

]
,

where λt is the Lagrange multiplier and z1 is a perturbation parameter which equals zero

for the WE scenario and one for TO. The choice variables Cy
t and Co

t+1 can be considered
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functions of z1 in a neighbourhood of the optimal solution. The first-order conditions for the

private optimum are:

U ′(Cy
t ) = λt,

1− π

1 + ρ
U ′(Co

t+1) =
λt

1 + rt+1
,

Cy
t +

Co
t+1

1 + rt+1
= wt + z1

π (1 + n)

1− π
kt+1.

At impact (i.e. in period t), kt and wt are predetermined. Differentiation with respect to z1

yields:

dEΛy
t (z1)

dz1
= U ′(Cy

t )
dCy

t

dz1
+

1− π

1 + ρ
U ′(Co

t+1)
dCo

t+1

dz1

+

[
Cy
t +

Co
t+1

1 + rt+1
− wt − z1

π (1 + n)

1− π
kt+1

]
dλt

dz1
− λt

[
dCy

t

dz1
+

1

1 + rt+1

dCo
t+1

dz1

−
Co
t+1

(1 + rt+1)2
drt+1

dz1
−

π (1 + n)

1− π
kt+1 − z1

π (1 + n)

1− π

dkt+1

dz1

]
. (A.52)

We start from the steady state of WE, such that initially kt+1 = kt = k̂ (the superscript WE

is omitted for convenience) and z1 = 0. Incorporating the first-order conditions in (A.52) and

evaluating at z1 = 0 gives:

dEΛy
t (z1)

dz1
= U ′(Ĉy)

[
π (1 + n)

1− π
k̂ +

Ĉo

(1 + r̂)2
drt+1

dz1

]
, (A.53)

where Ĉy and Ĉo are the steady-state values of youth and old-age consumption, respectively,

in the WE scenario. We can rewrite (A.53) using (A.47) to obtain:

dEΛy
t (z1)

dz1
= U ′(Ĉy)(1 + n)k̂

[
π

1− π
+

1

1 + r̂

drt+1

dz1

]
. (A.54)

Equation (A.54) coincides with expression (27) in the text.

Substituting the results from section A.4 we find:

dEΛy
t (z1)

dz1
= U ′(Ĉy)(1 + n)k̂

[
π

1− π
− (1− α− η)

r̂ + δ

1 + r̂

1

k̂

dkt+1

dz1

]
,

= U ′(Ĉy)
π

1− π
(1 + n)k̂

[
1 +

γ0Φ(k̂)

1− (1− σ)γ0Φ(k̂)

]
,

= U ′(Ĉy)
π

1− π
(1 + n)k̂

1 + σγ0Φ(k̂)

1− (1− σ)γ0Φ(k̂)
> 0. (A.55)
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A.5.1.2 Long-run effect

In order to find the long-run welfare effect we write:

EΛy
t+∞

(z1) ≡ U(Cy
t+∞

)+
1− π

1 + ρ
U(Co

t+∞
)−λt+∞

[
Cy
t+∞

+
Co
t+∞

1 + rt+∞

− wt+∞ − z1
π (1 + n)

1− π
kt+∞

]
,

where kt+∞ and wt+∞ are no longer predetermined. Differentiation with respect to z1 yields:

dEΛy
t+∞

(z1)

dz1
= U ′(Cy

t+∞
)
dCy

t+∞

dz1
+

1− π

1 + ρ
U ′(Co

t+∞
)
dCo

t+∞

dz1

+

[
Cy
t+∞

+
Co
t+∞

1 + rt+∞

− wt+∞ − z1
π (1 + n)

1− π
kt+∞

]
dλt+∞

dz1

−λt+∞

[
dCy

t+∞

dz1
+

1

1 + rt+∞

dCo
t+∞

dz1
−

Co
t+∞

(1 + rt+∞)2
drt+∞

dz1
−

dwt+∞

dz1

−
π (1 + n)

1− π
kt+∞ − z1

π (1 + n)

1− π

dkt+∞

dz1

]
. (A.56)

We start from the steady state of WE, such that initially kt+∞ = k̂ and z1 = 0. Incorporating

the first-order conditions in (A.56) and evaluating at z1 = 0 gives:

dEΛy
t+∞

(z1)

dz1
= U ′(Ĉy)

[
π (1 + n)

1− π
k̂ +

Ĉo

(1 + r̂)2
drt+∞

dz1
+

dwt+∞

dz1

]
. (A.57)

We can rewrite (A.57) using (L1.1) to obtain:

dEΛy
t+∞

(z1)

dz1
= U ′(Ĉy)

[
π (1 + n)

1− π
k̂ +∆

dkt+∞

dz1

]
. (A.58)

Substituting the results from section A.4 we find:

dEΛy
t+∞

(z1)

dz1
= U ′(Ĉy)

[
π(1 + n)

1− π
k̂ −

π

1− π

[
η + α(1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

α

·
k̂Φ(k̂)

1− α− η − (1− σ)γ0Φ(k̂)

]
,

= U ′(Ĉy)
π

1− π
(1 + n)k̂

[
1−

[
η

α
+ (1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

1 + n

·
Φ(k̂)

1− α− η − (1− σ)γ0Φ(k̂)

]
,

= U ′(Ĉy)
π

1− π
(1 + n)k̂[1−Θ] S 0 ⇔ Θ T 1. (A.59)
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A.5.2 From WE to TY

We want to derive analytical expressions for the welfare effect at impact and in the long run

of a change in redistribution regime from WE to TY.

A.5.2.1 Impact effect

In order to find the impact effect on welfare we write:

EΛy
t (z2) ≡ U(Cy

t ) +
1− π

1 + ρ
U(Co

t+1)− λt

[
Cy
t +

Co
t+1

1 + rt+1
− wt − z2π(1 + rt)kt

]
,

where λt is the Lagrange multiplier and z2 is a perturbation parameter which equals zero

for the WE scenario and one for TY. The choice variables Cy
t and Co

t+1 can be considered

functions of z1 in a neighbourhood of the optimal solution. The first-order conditions for the

private optimum are:

U ′(Cy
t ) = λt,

1− π

1 + ρ
U ′(Co

t+1) =
λt

1 + rt+1
,

Cy
t +

Co
t+1

1 + rt+1
= wt + z2π (1 + rt) kt.

At impact (i.e. in period t), kt, wt, and rt are predetermined. Differentiation with respect to

z2 yields:

dEΛy
t (z2)

dz2
= U ′(Cy

t )
dCy

t

dz2
+

1− π

1 + ρ
U ′(Co

t+1)
dCo

t+1

dz2

+

[
Cy
t +

Co
t+1

1 + rt+1
− wt − z2π(1 + rt)kt

]
dλt

dz2
− λt

[
dCy

t

dz2
+

1

1 + rt+1

dCo
t+1

dz2

−
Co
t+1

(1 + rt+1)
2

drt+1

dz2
− π (1 + rt) kt

]
. (A.60)

We start from the steady state of WE, such that initially kt+1 = kt = k̂ (the superscript WE

is omitted for convenience) and z2 = 0. Incorporating the first-order conditions in (A.60) and

evaluating at z2 = 0 gives:

dEΛy
t (z2)

dz2
= U ′(Ĉy)

[
π (1 + r̂) k̂ +

Ĉo

(1 + r̂)2
drt+1

dz2

]
, (A.61)
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where Ĉy and Ĉo are the steady-state values of youth and old-age consumption, respectively,

in the WE scenario. We can rewrite (A.61) using (A.47) to obtain:

dEΛy
t (z2)

dz2
= U ′(Ĉy)(1 + n)k̂

[
π(1 + r̂)

1 + n
+

1

1 + r̂

drt+1

dz2

]
. (A.62)

Equation (A.62) coincides with expression (32) in the text.

Substituting the results from section A.4 we find:

dEΛy
t (z2)

dz2
= U ′(Ĉy)(1 + n)k̂

[
π(1 + r̂)

1 + n
− (1− α− η)

r̂ + δ

1 + r̂

1

k̂

dkt+1

dz2

]
,

= U ′(Ĉy)π(1 + r̂)k̂

[
1−

γ0[1− Φ(k̂)]

1− (1− σ)γ0Φ(k̂)

]
,

= U ′(Ĉy)π(1 + r̂)k̂
1− γ0[1− σΦ(k̂)]

1− (1− σ)γ0Φ(k̂)
> 0. (A.63)

A.5.2.2 Long-run effect

In order to find the long-run welfare effect we write:

EΛy
t+∞

(z2) ≡ U(Cy
t+∞

)+
1− π

1 + ρ
U(Co

t+∞
)−λt+∞

[
Cy
t+∞

+
Co
t+∞

1 + rt+∞

− wt+∞ − z2π (1 + rt+∞) kt+∞

]
,

where kt+∞, wt+∞, and rt+∞ are no longer predetermined. Differentiation with respect to z2

yields:

dEΛy
t+∞

(z2)

dz2
= U ′(Cy

t+∞
)
dCy

t+∞

dz2
+

1− π

1 + ρ
U ′(Co

t+∞
)
dCo

t+∞

dz2

+

[
Cy
t+∞

+
Co
t+∞

1 + rt+∞

− wt+∞ − z2π (1 + rt+∞) kt+∞

]
dλt+∞

dz2

−λt+∞

[
dCy

t+∞

dz2
+

1

1 + rt+∞

dCo
t+∞

dz2
−

Co
t+∞

(1 + rt+∞)2
drt+∞

dz2
−

dwt+∞

dz2

−π(1 + rt+∞)kt+∞ − z2π
d(1 + rt+∞)kt+∞

dz2

]
. (A.64)

We start from the steady state of WE, such that initially kt+∞ = k̂ and z2 = 0. Incorporating

the first-order conditions in (A.64) and evaluating at z2 = 0 gives:

dEΛy
t+∞

(z2)

dz2
= U ′(Ĉy)

[
π(1 + r̂)k̂ +

Ĉo

(1 + r̂)2
drt+∞

dz2
+

dwt+∞

dz2

]
. (A.65)

We can rewrite (A.65) using (L1.1) to obtain:

dEΛy
t+∞

(z2)

dz2
= U ′(Ĉy)

[
π(1 + r̂)k̂ +∆

dkt+∞

dz2

]
. (A.66)
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Substituting the results from section A.4 we find:

dEΛy
t+∞

(z2)

dz2
= U ′(Ĉy)

[
π(1 + r̂)k̂ +

[
η + α(1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

α

·
π(1 + r̂)k̂

1 + n

1− Φ(k̂)

1− α− η − (1− σ)γ0Φ(k̂)

]
,

= U ′(Ĉy)π(1 + r̂)k̂

[
1 +

[
η

α
+ (1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

1 + n

·
1− Φ(k̂)

1− α− η − (1− σ)γ0Φ(k̂)

]
,

= U ′(Ĉy)π(1 + r̂)k̂

[
1 +

1− Φ(k̂)

Φ(k̂)
Θ

]
> 0. (A.67)
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A.5.3 From WE to PA

We want to derive analytical expressions for the welfare effect at impact and in the long run

of a change from the WE to the PA scenario.

A.5.3.1 Impact effect

In order to find the impact effect on welfare we write:

EΛy
t (z3) ≡ U(Cy

t ) +
1− π

1 + ρ
U(Co

t+1)− λt

[
Cy
t +

(1− z3π)C
o
t+1

1 + rt+1
− wt

]
,

where λt is the Lagrange multiplier and z3 is a perturbation parameter which equals zero for

the WE scenario and one for PA. The first-order conditions for the private optimum are:

U ′ (Cy
t ) = λt,

1− π

1 + ρ
U ′(Co

t+1) =
1− z3π

1 + rt+1
λt,

Cy
t +

(1− z3π)C
o
t+1

1 + rt+1
= wt.

At impact (i.e. in period t), wt is predetermined. Differentiation with respect to z3 yields:

dEΛy
t (z3)

dz3
= U ′(Cy

t )
dCy

t

dz3
+

1− π

1 + ρ
U ′(Co

t+1)
dCo

t+1

dz3

+

[
Cy
t +

(1− z3π)C
o
t+1

1 + rt+1
− wt

]
dλt

dz3
− λt

[
dCy

t

dz3
+

(1− z3π)

1 + rt+1

dCo
t+1

dz3

−
πCo

t+1

1 + rt+1
−

(1− z3π)C
o
t+1

(1 + rt+1)
2

drt+1

dz3

]
. (A.68)

We start from the steady state of WE, such that initially kt+1 = kt = k̂ (the superscript WE

is omitted for convenience) and z3 = 0. Incorporating the first-order conditions in (A.68) and

evaluating at z3 = 0 gives:

dEΛy
t (z3)

dz3
=

U ′(Ĉy)Ĉo

1 + r̂

[
π +

1

1 + r̂

drt+1

dz3

]
. (A.69)

where Ĉy and Ĉo are the steady-state values of youth and old-age consumption, respectively,

in the WE scenario. We can rewrite (A.69) using (A.47) to obtain:

dEΛy
t (z3)

dz3
= U ′(Ĉy)(1 + n)k̂

[
π +

1

1 + r̂

drt+1

dz3

]
. (A.70)
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Equation (A.70) coincides with expression (36) in the text.

Substituting the results from section A.4 we find:

dEΛy
t (z3)

dz3
= U ′(Ĉy)(1 + n)k̂

[
π − (1− α− η)

r̂ + δ

1 + r̂

1

k̂

dkt+1

dz3

]
,

= U ′(Ĉy)π(1 + n)k̂

[
1 +

(1− σ)γ0Φ(k̂, 0)

1− (1− σ)γ0Φ(k̂, 0)

]
,

= U ′(Ĉy)
π(1 + n)k̂

1− (1− σ)γ0Φ(k̂, 0)
> 0. (A.71)

A.5.3.2 Long-run effect

In order to find the long-run welfare effect we write:

EΛy
t+∞

(z3) ≡ U(Cy
t+∞

) +
1− π

1 + ρ
U(Co

t+∞
)− λt+∞

[
Cy
t+∞

+
(1− z3π)C

o
t+∞

1 + rt+∞

− wt+∞

]
,

where wt+∞ is no longer predetermined. Differentiation with respect to z3 yields:

dEΛy
t+∞

(z3)

dz3
= U ′(Cy

t+∞
)
dCy

t+∞

dz3
+

1− π

1 + ρ
U ′(Co

t+∞
)
dCo

t+∞

dz3

+

[
Cy
t+∞

+
(1− z3π)C

o
t+∞

1 + rt+∞

− wt+∞

]
dλt+∞

dz3

−λt+∞

[
dCy

t+∞

dz3
+

1− z3π

1 + rt+∞

dCo
t+∞

dz3
−

πCo
t+∞

1 + rt+∞

−
(1− z3π)C

o
t+∞

(1 + rt+∞)2
drt+∞

dz3
−

dwt+∞

dz3

]
. (A.72)

We start from the steady state of WE, such that initially kt+∞ = k̂ and z3 = 0. Incorporating

the first-order conditions in (A.72) and evaluating at z3 = 0 gives:

dEΛy
t+∞

(z3)

dz3
= U ′(Ĉy)

[
πĈo

1 + r̂
+

Ĉo

(1 + r̂)2
drt+∞

dz3
+

dwt+∞

dz3

]
. (A.73)

We can rewrite (A.73) using (A.47) and (L1.1) to obtain:

dEΛy
t+∞

(z3)

dz3
= U ′(Ĉy)

[
π(1 + n)k̂ +∆

dkt+∞

dz3

]
. (A.74)
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Substituting the results from section A.4 we find:

dEΛy
t+∞

(z3)

dz3
= U ′(Ĉy)

[
π(1 + n)k̂ −

[
η + α(1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

α

·π(1− σ)
k̂Φ(k̂, 0)

1− α− η − (1− σ)γ0Φ(k̂, 0)

]
,

= U ′(Ĉy)π(1 + n)k̂

[
1− (1− σ)

[
η

α
+ (1− α− η)

r̂ − n

1 + r̂

]

·
r̂ + δ

1 + n

Φ(k̂, 0)

1− α− η − (1− σ)γ0Φ(k̂, 0)

]
,

= U ′(Ĉy)π(1 + n)k̂[1− (1− σ)Θ], (A.75)

since Φ(k, z3) evaluated in (k̂, 0) is equivalent to the function Φ(k̂) as given in the definition

of Θ in (A.50).
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A.5.4 From TY to PA

We want to derive analytical expressions for the welfare effect at impact and in the long run

of a change from the TY to the PA scenario.

A.5.4.1 Impact effect

In order to find the impact effect on welfare we write:

EΛy
t (z3) ≡ U(Cy

t ) +
1− π

1 + ρ
U(Co

t+1)− λt

[
Cy
t +

(1− z3π)C
o
t+1

1 + rt+1
− wt − π (1 + rt) kt

]
,

where λt is the Lagrange multiplier and z3 is a perturbation parameter which equals zero for

the TY scenario and one for PA. The choice variables Cy
t and Co

t+1 can be considered functions

of z3 in a neighbourhood of the optimal solution. Note that in the impact period the transfers

to the young (the last term between square brackets) have not yet been abolished.

The first-order conditions for the private optimum are:

U ′(Cy
t ) = λt,

1− π

1 + ρ
U ′(Co

t+1) =
1− z3π

1 + rt+1
λt,

Cy
t +

(1− z3π)C
o
t+1

1 + rt+1
= wt + π (1 + rt) kt.

At impact (i.e. in period t), kt and wt are predetermined. Differentiation with respect to z3

yields:

dEΛy
t (z3)

dz3
= U ′(Cy

t )
dCy

t

dz3
+

1− π

1 + ρ
U ′(Co

t+1)
dCo

t+1

dz3

+

[
Cy
t +

(1− z3π)C
o
t+1

1 + rt+1
− wt − π (1 + rt) kt

]
dλt

dz3
− λt

[
dCy

t

dz3

+
(1− z3π)

1 + rt+1

dCo
t+1

dz3
−

πCo
t+1

1 + rt+1
−

(1− z3π)C
o
t+1

(1 + rt+1)
2

drt+1

dz3

]
. (A.76)

We start from the steady state of TY, such that initially kt+1 = kt = k̂ (the superscript TY

is omitted for convenience) and z3 = 0. Incorporating the first-order conditions in (A.76) and

evaluating at z3 = 0 gives:

dEΛy
t (z3)

dz3
=

U ′(Ĉy)Ĉo

1 + r̂

[
π +

1

1 + r̂

drt+1

dz3

]
. (A.77)
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where Ĉy and Ĉo are the steady-state values of youth and old-age consumption, respectively,

in the TY scenario. We can rewrite (A.77) using (A.47) to obtain:

dEΛy
t (z3)

dz3
= U ′(Ĉy)(1 + n)k̂

[
π +

1

1 + r̂

drt+1

dz3

]
. (A.78)

Equation (A.78) coincides with expression (38) in the text.

Substituting the results from section A.4 we find:

dEΛy
t (z3)

dz3
= U ′(Ĉy)(1 + n)k̂

[
π − (1− α− η)

r̂ + δ

1 + r̂

1

k̂

dkt+1

dz3

]
,

= U ′(Ĉy)π(1 + n)k̂

[
1 +

(1− σ)γ0Φ(k̂, 0)

1− (1− σ)γ0Φ(k̂, 0)

]
,

= U ′(Ĉy)
π(1 + n)k̂

1− (1− σ)γ0Φ(k̂, 0)
> 0. (A.79)

A.5.4.2 Long-run welfare effect

In order to find the long-run welfare effect we write:

EΛy
t+∞

(z3) ≡ U(Cy
t+∞

) +
1− π

1 + ρ
U(Co

t+∞
)− λt+∞

[
Cy
t+∞

+
(1− z3π)C

o
t+∞

1 + rt+∞

−wt+∞ − (1− z3)π (1 + rt+∞) kt+∞

]
,

where kt+∞, wt+∞, and rt+∞ are no longer predetermined. The first-order conditions for the

private optimum are:

U ′(Cy
t+∞

) = λt+∞,

1− π

1 + ρ
U ′(Co

t+∞
) =

1− z3π

1 + rt+∞

λt+∞,

Cy
t+∞

+
(1− z3π)C

o
t+∞

1 + rt+∞

= wt+∞ + (1− z3)π (1 + rt+∞) kt+∞.

Note that the last condition differs from the one used in the impact analysis since the transfers

to the young are abolished in the PA scenario (with z3 = 1) from period t+ 1 onwards. This

implies that in deriving the long-run welfare effect we should treat the transfer term as a
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constant. Differentiation with respect to z3 yields:

dEΛy
t+∞

(z3)

dz3
= U ′(Cy

t+∞
)
dCy

t+∞

dz3
+

1− π

1 + ρ
U ′(Co

t+∞
)
dCo

t+∞

dz3

+

[
Cy
t+∞

+
(1− z3π)C

o
t+∞

1 + rt+∞

− wt+∞ − (1− z3)π (1 + r̂) k̂

]
dλt+∞

dz3

−λt+∞

[
dCy

t+∞

dz3
+

1− z3π

1 + rt+∞

dCo
t+∞

dz3
−

πCo
t+∞

1 + rt+∞

−
(1− z3π)C

o
t+∞

(1 + rt+∞)2
drt+∞

dz3

−
dwt+∞

dz3
+ π (1 + rt+∞) kt+∞

]
. (A.80)

We start from the steady state of TY, such that initially kt+∞ = k̂ and z3 = 0. Incorporating

the first-order conditions in (A.80) and evaluating at z3 = 0 gives:

dEΛy
t+∞

(z3)

dz3
= U ′(Ĉy)

[
πĈo

1 + r̂
+

Ĉo

(1 + r̂)2
drt+∞

dz3
+

dwt+∞

dz3
− π(1 + r̂)k̂

]
. (A.81)

We can rewrite (A.81) using (A.47) and (L1.1) to obtain:

dEΛy
t+∞

(z3)

dz3
= U ′(Ĉy)

[
−π(r̂ − n)k̂ +∆

dkt+∞

dz3

]
. (A.82)

Substituting the results from section A.4 we find:

dEΛy
t+∞

(z3)

dz3
= U ′(Ĉy)

[
−π(r̂ − n)k̂ +∆

dkt+∞

dz3

]

= −U ′(Ĉy)

[
π(r̂ − n)k̂ +

[
η + α(1− α− η)

r̂ − n

1 + r̂

]
r̂ + δ

α

Ψz3(k̂, 0) + Γz2(k̂, 1)

Ψk(k̂, 0)− Γ′(k̂)

]
.

We know that:

Ψk(k̂, 0)− Γ′(k̂) =
1− α− η − (1− σ) γ0Φ(k̂, 0)

1− Φ(k̂, 0)
,

Ψz3(k̂, 0) + Γz2(k̂, 1) = πk̂
(1− σ) Φ(k̂, 0) + 1+r̂

1+n

(
1− Φ(k̂, 0)

)

1− Φ(k̂, 0)
.

It follows that:

dEΛy
t+∞

(z3)

dz3
= −U ′(Ĉy)πk̂

[
r̂−n+Θ

(
(1 + n) (1− σ) Φ(k̂, 0) + (1 + r̂)(1− Φ(k̂, 0))

Φ(k̂, 0)

)]
.

For 0 < σ ≤ 1 the welfare effect is unambiguously negative.
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A.6 Additional visualization

In this section we present some additional visualization of the various cases considered in the

paper.

Figure A.1 depicts the fundamental difference equations for the different scenarios and for

different values of the intertemporal substitution elasticity. The pure scenarios are given by

WE, TY, TO, and PA. The curve labeled TYt is used in the transition from TY to PA. At

the time of the shock, the young still receive transfers because the shock-time old did not

have an opportunity to annuitize their savings. For σ = 1 we find that TY and TYt coincide

because the change in the interest rate has no effect on the savings propensity. For σ < 1

(σ > 1) we find that TYt lies below (above) TY.

Figure A.2 shows the transitional dynamics for kt+τ , EΛ
y
t+τ , C

y
t+τ , and Co

t+τ for the change

from WE to TO, TY, or PA. Again different values for σ are considered. This figure formed

part of the original CESifo working paper. Figure A.2(f) depicts the strong version of the

tragedy of annuitization. Generations τ = 0 and τ = 1 are better off as a result of annuitiza-

tion but all subsequent generations are worse off.

Figure A.3 shows the transitional dynamics for kt+τ , EΛ
y
t+τ , C

y
t+τ , and Co

t+τ for the change

from TY or TO to PA. Again different values for σ are considered. This figure also formed

part of the original CESifo working paper. Figure A.3(b) depicts the weak version of the

tragedy of annuitization. Generation τ = 0 is better off as a result of annuitization but all

subsequent generations are worse off.

Figure A.3(f) depicts the welfare effects for the transition from TO to TY. This case is

mentioned in Section 5.4 in the paper. Interestingly, the tragedy of annuitization now occurs

at shock time. Indeed, all generations except generation τ = 0 are better off as a result of

annuitization.
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Figure A.1: Transitional dynamics

(a) Weak intertemporal substitution effect (σ = 1
2)
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(b) Benchmark intertemporal substitution effect (σ = 1)
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(c) Strong intertemporal substitution effect (σ = 3
2)
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Figure A.2: Transitional dynamics in the exogenous growth model

Panel A: Benchmark: σ = 1

(a) capital intensity (kt+τ ) (b) expected lifetime utility (EΛy

t+τ )
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(Figure A.2, continued)

Panel B: Weak intertemporal substitution effect: σ = 1
2

(e) capital intensity (kt+τ ) (f) expected lifetime utility (EΛy

t+τ )
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(g) youth consumption (Cy

t+τ ) (h) old-age consumption (Co
t+τ )
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(Figure A.2, continued)

Panel C: Strong intertemporal substitution effect: σ = 3
2

(i) capital intensity (kt+τ ) (j) expected lifetime utility (EΛy

t+τ )
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(k) youth consumption (Cy
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Figure A.3: Transition from transfers to annuities in the exogenous growth model

Panel A: from TY to PA (σ = 1)

(a) capital intensity (kt+τ ) (b) expected lifetime utility (EΛy

t+τ )
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(Figure A.3, continued)

Panel B: from TO to PA (σ = 1)

(e) capital intensity (kt+τ ) (f) expected lifetime utility (EΛy

t+τ )
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A.7 The role of scale economies

As is mentioned in Section 5.3 of the paper our conclusions are robust to non-zero values of η.

Provided the externality is bounded away from the endogenous growth case (0 ≤ η ≤ 1− α),

the model features exogenous growth and the analytical methods discussed in the paper are

valid.

In Tables A.1 and A.2 we show the results for, respectively, η = 0.3 and η = 0.6. Note that

the latter case is very close to the endogenous growth case (as 1−α = 0.7). As is assereted in

the paper, the presence of a capital externaility exacerbates the (negative or positive) effects

of the transitions between scenarios. Qualitatively, however, the conclusions based on the

case with η = 0 are unchallenged.
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Table A.1: Steady-state equilibrium values⋆

Panel A: η = 0.3, σ = 1 Panel B: η = 0.3, σ = 1
2 Panel C: η = 0.3, σ = 3

2

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

WE TO TY PA WE TO TY PA WE TO TY PA

Ĉy 0.6053 0.3932 0.8237 0.6053 0.6053 0.2735 0.9291 0.4141 0.6053 0.4494 0.7838 0.6987

Ĉo 0.4546 0.4028 0.5482 0.6495 0.4546 0.2726 0.6286 0.4263 0.4546 0.4662 0.5184 0.7647

ĝ 0.0916 0.0916 0.0916

Ẑo 0.1209 0.0818 0.1399

Ẑy 0.1105 0.1267 0.1044

ŷ 1.0000 0.6232 1.2031 1.0000 1.0000 0.4230 1.3768 0.6591 1.0000 0.7203 1.1384 1.1752

k̂ 0.0636 0.0289 0.0866 0.0636 0.0636 0.0152 0.1084 0.0317 0.0636 0.0368 0.0789 0.0832

ŵ 0.7000 0.4363 0.8421 0.7000 0.7000 0.2961 0.9638 0.4614 0.7000 0.5042 0.7969 0.8226

r̂ 3.8010 5.5491 3.2541 3.8010 3.8010 7.4546 2.8954 5.3121 3.8010 4.9544 3.4106 3.3198

r̂a 4.00 4.81 3.69 4.00 4.00 5.48 3.46 4.71 4.00 4.56 3.78 3.73

r̂Aa 4.93 5.65 4.65

EΛy
t −0.6253a −0.5580 −0.4907 −0.5695 −0.7930a −0.6844 −0.5854 −0.6941 −0.5816a −0.5243 −0.4644 −0.5381

EΛy
t −0.2879a −0.2321 −0.1458a −0.0746 −0.3356a −0.2901

EΛy
t −1.0757a −1.0873 −2.9693a −2.9878 −0.8181a −0.8311

ÊΛ
y

−0.6253 −1.0757 −0.2879 −0.5695 −0.7930 −2.9693 −0.1458 −1.5730 −0.5816 −0.8181 −0.3356 −0.3821

⋆Hats denote steady-state values. To facilitate interpretation, r̂a and r̂Aa are reported as annual percentage rates of return. In the

rows for EΛy
t the superscript a denotes the initial steady-state equilibrium that is perturbed.
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Table A.2: Steady-state equilibrium values⋆

Panel A: η = 0.6, σ = 1 Panel B: η = 0.6, σ = 1
2 Panel C: η = 0.6, σ = 3

2

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

WE TO TY PA WE TO TY PA WE TO TY PA

Ĉy 0.6053 0.0370 2.0760 0.6053 0.6053 0.0037 4.5966 0.0515 0.6053 0.0871 1.4983 1.5659

Ĉo 0.4546 0.0379 1.3816 0.6495 0.4546 0.0037 3.1098 0.0530 0.4546 0.0904 0.9909 1.7139

ĝ 0.0916 0.0916 0.0916

Ẑo 0.0114 0.0011 0.0271

Ẑy 0.2784 0.6266 0.1997

ŷ 1.0000 0.0586 3.0320 1.0000 1.0000 0.0057 6.8119 0.0820 1.0000 0.1396 2.1761 2.6337

k̂ 0.0636 0.0027 0.2181 0.0636 0.0636 0.0002 0.5362 0.0039 0.0636 0.0071 0.1509 0.1865

ŵ 0.7000 0.0410 2.1224 0.7000 0.7000 0.0040 4.7683 0.0574 0.7000 0.0977 1.5233 1.8436

r̂ 3.8010 5.5491 3.2541 3.8010 3.8010 7.4546 2.8954 5.3121 3.8010 4.9544 3.4106 3.3198

r̂a 4.00 4.81 3.69 4.00 4.00 5.48 3.46 4.71 4.00 4.56 3.78 3.73

r̂Aa 4.93 5.65 4.65

EΛy
t −0.6253a −0.5726 −0.4850 −0.5695 −0.7930a −0.7086 −0.5748 −0.7061 −0.5816a −0.5362 −0.4604 −0.5324

EΛy
t 0.7810a 0.8370 0.8622a 0.8748 0.4312a 0.4950

EΛy
t −3.8098a −3.8051 −300.5791a −256.9482 −1.9547a −1.9525

ÊΛ
y

−0.6253 −3.8098 0.7810 −0.5695 −0.7930 −300.5791 0.8622 −20.5102 −0.5816 −1.9547 0.4312 0.5853

⋆Hats denote steady-state values. To facilitate interpretation, r̂a and r̂Aa are reported as annual percentage rates of return. In the

rows for EΛy
t the superscript a denotes the initial steady-state equilibrium that is perturbed.
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A.8 The endogenous growth model

In this section we briefly consider the knife-edge case featuring η = 1 − α. The model then

exhibits growth which is driven endogenously by the rate of capital accumulation. We can

solve (T1.7) for the equilibrium growth rate:

(1 + n) (1 + γ) = [1− Φ (r̄, z3)]

[
(1− α) Ω0 +

Zy
t

kt

]
−

Φ (r̄, z3)

1 + r̄

Zo
t+1

kt
, (A.83)

where γ ≡ kt+1/kt − 1 is the (time-invariant) equilibrium growth rate and we have used the

fact that the interest rate is constant in this scenario such that rt = r̄ ≡ αΩ0 − δ for all t.

Using the expressions in (A.83) we can derive the equilibrium growth rates under the three

revenue recycling schemes and after the introduction of a private annuity market.

(WE) If the government uses the proceeds from the accidental bequests for wasteful govern-

ment expenditures the growth rate becomes:

1 + γWE =
1− Φ (r̄, 0)

1 + n
(1− α) Ω0. (48a)

(TY) If instead the proceeds are redistributed to the young we find:

1 + γTY =
1− Φ (r̄, 0)

1 + n
[(1− α) Ω0 + π (1 + r̄)] . (48b)

(TO) If the accidental bequests go the elderly then the growth rate is given by

1 + γTO =
1 + γWE

1 + Φ (r̄, 0) π
1−π

. (48c)

(PA) Finally, if a private annuity market is introduced we have:

1 + γPA =
1− Φ(r̄, 1)

1 + n
(1− α) Ω0. (48d)

Straightforward inspection of the growth rates reveals that γTY > γWE > γTO for all admis-

sible values of σ. Hence, in terms of growth, it is better to give the accidental bequests to

the young than to use them for wasteful expenditures, yet it is better to let the accidental

bequests go to waste than to give them to the elderly.

Comparison with the private annuities scenario is more subtle. The introduction of private

annuities increases the rate against which individuals save. The savings response of consumers,
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and thereby the growth rate in the perfect annuities scenario relative to the various recycling

schemes, depends on the value of the intertemporal elasticity of substitution σ. For the

benchmark case with σ = 1 savings are independent of the interest rate and γTY > γPA =

γWE > γTO . If 0 < σ < 1 the higher interest rate will lead to less savings than in the

benchmark scenario so that we get γTY > γWE > γPA > γTO . Finally, if σ > 1 the higher

interest rate will lead to more savings which results in γPA > γWE > γTO and, depending on

the exact magnitude of σ, γPA T γTY .

In order to compare consumer welfare across the various scenarios we must recognize the fact

that steady-state expected lifetime utility grows at a scenario-dependent rate in an endogenous

growth model. To see this, note that if η = 1 − α we can write the consumption demand

equations (5) and (6) under scenario i as:

Cy,i
t+τ ≡ Φ

(
ri
)
θiwi

t+τ , Co,i
t+τ+1 ≡ (1 + ri)

[
1− Φ

(
ri
)]

θiwi
t+τ , (A.49)

where ri = r̄ for i ∈ {WE,TY,TO} and ri = r̄A for i = PA. The value of the parameter θi

depends on the specific scenario i ∈ {WE,TY,TO,PA}.1 Wages grow over time according to

the equilibrium growth rate associated with scenario i:

wi
t+τ =

(
1 + γi

)τ
wt. (A.50)

Consider an economy that is initially in the WE scenario and features a wage rate at time t

equal to wt. Expected lifetime utility of future newborns under scenario i can then be written

as:

ÊΛ
y,i

t+τ ≡





Φ
(
ri
)
−1/σ

[
θi
(
1 + γi

)τ
wt

]1−1/σ
−

2 + ρ− π

1 + ρ

1− 1/σ
for σ > 0, σ 6= 1

Ξ0 +
2 + ρ− π

1 + ρ

[
θi
(
1 + γi

)τ
wt

]
+

1− π

1 + ρ
ln
(
1 + ri

)
for σ = 1

(A.51)

We call this welfare metric normalized utility. Clearly, ÊΛ
y,i

t+τ depends both on post-shock

time τ and on the scenario-dependent (endogenous) value of γi. From equation (A.51) we

observe that with the introduction of a transfer regime or an annuity market there is both a

1For the three public policy regimes we get θWE = 1, θTY =
[

1 +
π(1+r̄)
(1−α)Ω0

]

, and θ
TO =

[

1 + π
1+n
1−π

1+γTO

(1−α)Ω0

]

.

For private annuities ri = r̄
A and θ

PA = 1.
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level effect (represented by a change in the θi parameter) and a growth effect (induced by a

change in γi). However, over time the growth effect will always dominate the level effect.

In order to quantify the growth and welfare effects we adopt the following approach. For

n, π, α, δ, and r we use the same values as for the exogenous growth model (see the text

below Proposition 2). We calibrate an annual growth rate of one percent in the WE scenario

(γWE = 0.49) and obtain Ω0 = 15.72 and ρ = 1.78 (or 2.58% annually). The equilibrium

growth rate under the various policy schemes is reported in Table 4 for different values of σ

and the corresponding welfare paths are depicted in Figure A.4.

In line with the exogenous growth model we find that if the economy exhibits endogenous

growth and the intertemporal substitution elasticity is in the realistic range (0 < σ ≤ 1) then

it is better to transfer the proceeds of accidental bequests to the young than to open up a

private annuity market – see Table 4 in the paper and Figure A.4. In addition we find that

for low values of σ it may even be better to waste the accidental bequests than to have a

system of private annuities. Hence, both the weak and the strong version of the tragedy of

annuitization show up in terms of economic growth rates.

Finally, we find that only if σ is unrealistically high (e.g., σ = 3
2) private annuities slightly

outperform transfers to the young in terms of growth – see Table 4(c). However, in terms of

welfare, PA only outpaces the TY scenario after three periods (i.e. 120 years) and even then

only marginally so – see Figure A.4(c).
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Figure A.4: Welfare paths in the endogenous growth model

(a) Weak intertemporal substitution effect: σ = 1
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(b) Benchmark: σ = 1
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(c) Strong intertemporal substitution effect: σ = 3
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