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Figure F.1: Lee-Carter mortality index for the Netherlands
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F.1 Estimating the Gompertz-Makeham process

Our simulations require cohort life tables, which are only available (more or less complete)

for pre-1918 cohorts. Life tables for more recent cohorts are incomplete for obvious reasons.

Using published period life tables to estimate cohort mortality profiles leads to an overesti-

mation of mortality because of the well documented downward trend in mortality. To solve

this we use a two-stage procedure in this paper. In the first step we estimate the Lee-Carter

model for the period 1920–2000. Following Lee and Carter (1992), we estimate the logarithm

of the period mortality rates using the singular value decomposition:

ln m
p
u,t = au + ktbu + εu,t, (F.1)

where m
p
u,t is the period mortality rate, i.e. the probability that an individual of age u will die

this year, given that he has survived until time t, au and bu are age-varying vectors and kt is

a time-varying vector. The relative size of the first eigenvalue in the singular value decom-

position confirms the Lee-Carter (1992) conclusion that a one-factor model is sufficient and a

plot of the Lee-Carter mortality index1 (see Figure F.1) also confirms that for the Netherlands

an AR(1) process with trend, kt = kt−1 + γ0 + ηt with γ0 the trend and ηt an error term, prop-

erly describes the behaviour of the Lee-Carter mortality index kt (more formal test statistics

are available upon request).

From the period life table estimates and the trend of the mortality index we calculate the

cohort life tables as follows:

ln mc
u,v = au + (kv + γ0u)bu, (F.2)

1As Lee and Carter (1992) note, the parameters of their model are not uniquely identified, we use their pro-

posed restrictions, so kt add up to zero.

2



where v is the year of birth and γ0 is the trend in kt.
2

In principle, we could use a continuous time version of these discrete time ‘expected’ co-

hort mortality rates directly in the paper to calculate the mortality process and the mortality-

rate-adjusted function ∆(·). The main problem with this approach is that the Lee-Carter

model does not restrict the age mortality profiles au and bu and we would have one parame-

ter for each age-class. For computational reasons we need a more parsimonious specification

of the mortality process. Moreover, there is no explicit function for the corresponding ∆(·)-

function. To solve this we approximate the Lee-Carter cohort mortality rates for the relevant

ages (16–80 years, we exclude youth and very old age mortality) with a Gompertz-Makeham

mortality process. As is well known in the literature (see e.g. Lee & Carter, 1992), the GM

mortality process is not capable of capturing mortality at low ages and very high ages. For

low ages observed mortality is decreasing and GM gives an underestimate, whilst for very

high ages mortality seems to increase at a lower than exponential rate and GM gives an over-

estimation. Since the GM model is not intended to capture child mortality and mortality at

very high age, estimating the GM parameters without ‘cleaning’ the data first will lead to

errors. Fortunately, we are only interested mortality rates in the range of 16–80, the range

relevant for most of our economic decisions.

Specifically, we calculate the non-linear-least-squares estimates of the cohort specific GM

parameters. The model we estimate for each year is:3

mc
u,v = 1 − e−m(u,v) + ǫu,v, with m(u, v) = µ0(v) + µ1(v)eµ2(v)u (F.3)

Figure F.5 shows the estimates for µ0, µ1 and µ2 for the cohort 1920 to 2000, excluding the

war years.4

The first panel of Figure F.2 clearly shows the well documented downward trend in µ0.

This shows that for all ages the constant probability of dying has nearly vanished over time

for the 16-80 years old domain. The second and third panels show the path of µ1 (the mul-

tiplicative term) and µ2 (the exponential term). µ1 is clearly downward sloping, whereas

µ2 is constant at first and upward sloping from the 1950s. This signals that for ages where

the multiplicative term matters most mortality decreases, but later in life the exponential

term dominates and mortality increases. For the observed pattern of the GM parameters

our assumption of m(u, v + s) < m(u, v) obviously do not hold for all ages between all co-

horts. However, for any v and s combination within our domain, the growth of mu,v+s only

2This procedure assumes that an individual born in year v assumes that the observed kv is the actual or proper

mortality index. This is a rather strong assumption for clear outliers (e.g. the war years). Fortunately, this is not

an issue for the cohorts of interest.
3Note that we approximate the discrete time hazard rate mu = Φ(u+1)−Φ(u)

1−Φ(u)
by 1 − e−m(u) instead of m(u).

The latter amplifies approximation errors, whereas the first gives a very close approximation.
4The observed Lee-Carter mortality index kt during these years is clearly an outlier and blur the picture, see

Figure F.1.
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dominates mu,v after ages well beyond the age of 100 and the level only after 110. These age

domains are not relevant from a macroeconomic viewpoint.

As we point out in footnote 24, the µ2 effect may dominate for very high ages. (Of course,

the G-M process is not suited to describe such mega-old people.) Figures F.3 and F.4 show

remaining lifetimes. Figure F.3 shows the average of males and females as given by Statistics

Netherlands (CBS), Figure F.4 shows the expected remaining lifetime calculated using the

procedure used in the paper. We only show ages 50, 60, 70, 80 and 90 to avoid that younger

ages suppress the axes too much (the profiles for younger ages are comparable to the profile

of age 50, but steps of 10 years higher). There is one striking difference between the two

graphs: our estimates have (more or less) the same gradient, but are structurally higher.

This difference is caused by the fact that Statistics Netherlands uses period life tables for

their estimates and we use estimated cohort life tables. Period life tables do not take lower

mortality over time into account, hence expected remaining lifetimes based on them are

lower. For our purposes we prefer cohort life tables.

Figure F.3 clearly shows that the gradient of expected remaining lifetimes diminishes as

one gets older. Our estimates also have this feature due to the higher values of µ2. The µ2

parameter affects mortality rates exponentially and only kicks in at high age. Before that

G-M mortality is mostly determined by the constant term µ0 and the linear term µ1. The

upward trend of µ2 will only dominate the downward trends of µ0 and µ1 after the age of

110.

Figure F.5 shows the long term forecasts of the Gompertz-Makeham parameters. It shows

the same estimates as Figure F.2, but this time with extrapolated data until 2050. We admit

that this extrapolation is highly questionable (it involves estimation of the Lee-Carter Mor-

tality index well beyond 2050), but it does give a nice picture. One striking feature is that µ2

will stabilize and even decline after 2015. According to our estimates, µ2 will not continue

to increase until it also dominates the downward trends of µ0 and µ1.

F.2 Endogenous growth

In the main body of the paper we have restricted attention to the case for which the intergen-

erational knowledge externality is relatively weak (i.e. 0 ≤ φ < 1) and the system reaches

a steady state in terms of per capita levels. In this paper we study the knife-edge case for

which the intergenerational knowledge transfer is very strong and subject to constant returns

(φ = 1). It has been studied extensively in the literature, despite a lack of empirical support

for this knife-edge case. See, among others, Azariadis and Drazen (1990), de la Croix and

Licandro (1999), Boucekkine et al. (2002), Echevarrı́a (2004), and Echevarrı́a and Iza (2006).
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Figure F.2: Gompertz-Makeham parameters based on Lee-Carter cohort table estimates (ex-

cluding war-year outliers)
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Figure F.3: Expected remaining lifetimes according to Statistics Netherlands
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Figure F.4: Expected remaining lifetimes according to own estimates

0

5

10

15

20

25

30

35

40

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Ex
pe

cte
d R

em
ain

ing
 Li

fet
im

e

Age 50

Age 90

Age 80

Age 70

Age 60

6



Figure F.5: Gompertz-Makeham parameters based on Lee-Carter cohort table estimates (ex-

cluding war-year outliers)
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F.2.1 Long-run effects

The steady-state growth path for per capita human capital can be written as follows:

ĥ(t) =
∫ t−e∗

−∞

l(t − v) ˆ̄h(t − v)dv

= bAHe∗
∫ t−e∗

−∞

e−[n̂(t−v)+M(t−v,ψ)] ĥ(v)dv, (F.4)

where we have used (6) and (18) to arrive at the second expression. As Romp (2007, pp.

91-94) shows, the steady-state growth path features the following key properties: (i) there

is a unique steady-state growth rate of per capita variables, and (ii) all per capita variables

feature uniform convergence to their respective steady-state growth path.

Denoting the steady-state growth rate by γ̂, it follows that along the balanced growth

path we have ĥ (v) = ĥ (t) e−γ̂(t−v). By using this result in (F.4) and simplifying we obtain

the implicit definition for γ̂:

1 = bAHe∗
∫

∞

e∗
e−[(γ̂+n̂)u+M(u,ψ)] du. (F.5)

Clearly, the model implies a scale effect in the growth process, i.e. a productivity improve-

ment in the human capital production function gives rise to an increase in the steady-state

growth rate (∂γ̂/∂AH > 0). Equation (F.5) can also be used to compute the effect on the

asymptotic growth rate of the fiscal and demographic shocks.

Pure schooling shock Just as in Subsection 5.1 in the paper, the interpretation of our results

is facilitated by first considering a pure schooling shock. By differentiating (F.5) with respect

to γ̂ and e∗, and gathering terms we find:

∂γ̂

∂e∗
=

e−[(γ̂+n̂)e∗+M(e∗,ψ)] · [∆ (e∗, γ̂ + n̂) − e∗]

e∗
∫

∞

e∗ u e−[(γ̂+n̂)u+M(u,ψ)] du

=
e−[(γ̂+n̂)e∗+M(e∗,ψ)]

e∗
∫

∞

e∗ u e−[(γ̂+n̂)u+M(u,ψ)] du
·

[

∆ (e∗, γ̂ + n̂) − ∆ (e∗, r) −
sE

1 − tL

]

> 0, (F.6)

where we have used equation (13) to arrive at the final expression. The sign of ∂γ̂/∂e∗ is

determined by the term in square brackets on the right-hand side of (F.6). By appealing to

the endogenous-growth counterpart of Assumption 2 (with n̂ replaced by n̂ + γ̂) we find

that the steady-state growth rate increases as a result of the pure schooling shock.

Fiscal shock An increase in the educational subsidy or the labour income tax affects the

steady-state growth rate via its positive effect on the schooling period. Indeed, we deduce

from (38)-(39) and (F.6) that:

∂γ̂

∂ [sE/ (1 − tL)]
=

∂γ̂

∂e∗
·

∂e∗

∂ [sE/ (1 − tL)]
> 0. (F.7)
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Birth rate shock The growth effects of a birth rate change are computed most readily by

restating the shock in terms of the steady-state population growth rate, n̂, and noting the

monotonic relationship between n̂ and b stated in (34) in the paper. Indeed, by substituting

the steady-state version of (19) into (F.5) we find an alternative implicit expression for γ̂:

∫

∞

0
e−[n̂u+M(u,ψ)] du = AHe∗

∫

∞

e∗
e−[(γ̂+n̂)u+M(u,ψ)] du. (F.8)

Since the birth rate shock leaves the schooling period unchanged, it follows from (F.8) that:

∂γ̂

∂b
=

∂γ̂

∂n̂
·

∂n̂

∂b
=

∂n̂

∂b
·

[

∫

∞

0 u e−[n̂u+M(u,ψ)] du

AHe∗
∫

∞

e∗ u e−[(γ̂+n̂)u+M(u,ψ)] du
− 1

]

R 0. (F.9)

Despite the fact that ∂n̂/∂b > 0, the growth effect of a birth rate change is ambiguously

because the term in square brackets on the right-hand side of (F.9) cannot be signed a priori.

Indeed, using the calibrated version of the model, we find that the relationship between γ̂

and b is hump-shaped. As is illustrated in Figure F.2.1(a), the growth rate rises with the birth

rate for low birth rates, but is decreasing for higher birth rates. For the calibrated model,

the maximum growth rate of 1.67% per annum is attained at a (very low) birth rate of about

0.4% per annum.

Mortality shock Just as in the exogenous growth model, increased longevity constitutes

by far the most complicated shock studied here. Indeed, as can be seen from equation (F.5)

above, a mortality shock affects three distinct items featuring in the implicit expression for

the steady-state growth rate, γ̂, namely (a) the optimal schooling period, e∗, (b) the steady-

state growth rate of the population, n̂, and (c) the cumulative mortality factor, M (u, ψ). By

differentiating (F.5) with respect to γ̂ and ψ (and recognising the dependence of e∗ and n̂ on

ψ) we find after some steps:

∂γ̂

∂ψ
=

∂γ̂

∂e∗
·

∂e∗

∂ψ
−

∂n̂

∂ψ
+

∫

∞

e∗ −
∂M(u,ψ)

∂ψ e−[(γ̂+n̂)u+M(u,ψ)] du
∫

∞

e∗ u e−[(γ̂+n̂)u+M(u,ψ)] du
R 0. (F.10)

The overall growth effect of increased longevity is ambiguous. The first composite term on

the right-hand side of (F.10) represents the schooling effect, which is positive (see (37) and

(F.6)). The third term on the right-hand side represents the cumulative mortality effect and is

also positive (given Proposition 2(i)). The ambiguity thus arises because the second term on

the right-hand side exerts a negative influence on growth, i.e. increased longevity boosts the

steady-state population growth rate (see equation (35)) which in turn slows down growth.

In Figure F.2.1(b) we use the calibrated version of the model to plot the relationship be-

tween the steady-state growth rate and a measure of longevity, namely life expectancy at

birth, R (0, ψ) ≡ ∆ (0, 0, ψ). Interestingly, there is a inverse U-shaped relationship between

long-term growth and longevity. For the calibrated model, a maximum growth rate of 1.20%

per annum is attained for a life expectancy of R (0, ψ) = 76 years.
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Figure F.6: Growth and demography

F.2.2 Transitional dynamics

In this subsection we visualise the transitional effects of fiscal and demographic shocks in

the endogenous growth model. Unlike Boucekkine et al. (2002), we are able to study shocks

which change the optimal schooling period. For reasons of space we ignore the adjustment

paths for the remaining macroeconomic variables and restrict attention to the growth rate

of per capita human wealth, γ (t) ≡ ḣ (t) /h (t). Except for φ and AH, we use the same

calibration values as before (see Subsection 5.2). Because the model contains a scale effect,

we set AH = 0.13 and obtain a realistic steady-state growth rate, γ̂0 = 1.2%. The discussion

here can be quite brief because, following a shock, the transition proceeds along the same

phases as in the exogenous growth model.

Fiscal shock Figure F.2.2(a) illustrates the path for γ (t) following a 20% increase in the

educational subsidy. For 0 ≤ t < e∗1 − e∗0 there are no new labour market entrants and the

growth rate collapses. Then, for e∗1 − e∗0 ≤ t < e∗1 pre-shock students enter the labour market

and the growth rate jumps above its initial steady-state level. Finally, for t ≥ e∗1 the growth

rate converges in a non-monotonic fashion to its long-run value, i.e. lim
t→∞

γ(t) = γ̂1 = 1.24%,

where γ̂1 exceeds the initial steady-state growth rate γ̂0 (see equation (F.7) above).

Birth rate shock In Figure F.2.2(b) the transitional effects of a baby bust are illustrated.

There is no effect on the optimal schooling period but the population growth rate falls from

n̂0 to n̂1—see Figure F.2.2(a). Growth jumps sharply due to the fast reduction in n (t) that

occurs at impact and immediately hereafter. Intuitively, pre-shock students enter the labour

market but their human capital is spread out over fewer people than before the shock so

that growth in per capita terms increases sharply. About twenty-two years after the shock,

n (t) ≈ n̂1 and there is a sharp decline in growth. This is because the post-shock students
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start to enter the labour market. Despite the fact that they have higher human capital than

existing workers, as a group they are not large enough to maintain the previous growth in

per capita human capital. Thereafter, the growth rate converges in a non-monotonic fashion

to its long-run level γ̂1 = 1.4%, which is higher than the initial steady-state growth rate, i.e.

γ̂1 > γ̂0. Given our calibration, the economy lies to the right of the peak in the curve for γ̂

in Figure F.2.1(a) so that a baby bust increases long-run growth.

Mortality shock In Figure F.2.2(c) the effect on the growth rate of increased longevity of

generations born after time t = 0 is illustrated. Just as for the exogenous growth model,

nothing happens to growth for the period 0 ≤ t < e∗0 because only pre-shock agents enter

the labour market and the same type of agents die off. For e∗0 ≤ t < e∗1 there are no new

labour market entrants and the growth rate collapses. At time t = e∗1 the oldest of the

post-shock cohorts enter the labour market and as a result growth is boosted again. For

t > e∗1 , the growth rate converges non-monotonically towards the new steady-state growth

rate γ̂1 = 1.2% ≈ γ̂0. In terms of Figure F.2.1(b), the calibration places the economy on the

flat segment of the γ̂ curve (near the top). This explains why there is a negligible effect on

the long-run growth rate.

F.2.3 Discussion

The main findings of this section are as follows. For the calibrated model, the long-run

growth rate in per capita human capital increases as a result of a positive fiscal impulse or

a fall in the birth rate. Increased longevity, however, reduces this long-run growth rate. The

transition path in the growth rate is cyclical and rather complex for all shocks considered,

and the new equilibrium is reached only very slowly.

F.3 Schooling decision with imperfect annuity markets

In this section we study the individual schooling decision when annuities are imperfect.

Following the paper, we assume that time is continuous and that people do not know how

long they will live. To prevent borrowing constraints (which would render the analysis

intractable) we assume that life insurance is available, but allow this type of insurance to be

less than actuarially fair (Yaari’s case C). People maximize lifetime utility by choosing their

time spent at school e and a path for consumption c(u).

max
e,c(u)

Λ =
∫

∞

0
U (c(u))e−θu−M(u)du, (F.11)

subject to budget identity and a transversality condition

ȧ(u) = [r + q(u)]a(u) + w(u, e) + z − c(u), (F.12)

0 = lim
u→∞

a(u)e−ru−Q(u) = 0, (F.13)
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Figure F.7: Per capita human capital growth
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where q(u) ≥ 0 denotes the net annuity payment and Q(u) its primitive. (The annuity rate

of interest in r + q (u).) The net annuity payment may or may not depend on mortality (see

below). With perfect annuities (the case discussed in the paper), we set q (u) = m (u). In

reality, annuities are typically less-than-actuarially fair, i.e. q (u) < m (u), and the insurance

companies make excess profits. In a general equilibrium setting we assume that such excess

profits are distributed in a lump-sum fashion to surviving households, i.e. z denotes such

transfers.

The wage rate w(u, e) is defined as:

w(u, e) =







0 for u < e

w(e) for u ≥ e
(F.14)

Integration of the budget identity (F.12) subject to the initial condition a (0) = 0 and using

the transversality condition (F.13) gives the lifetime budget constraint:
∫

∞

0
c(u)e−ru−Q(u)du = z

∫

∞

0
e−ru−Q(u)du + w(e)

∫

∞

e
e−ru−Q(u)du ≡ li(e). (F.15)

If instantaneous utility is given by a power utility function (as in the paper), the Euler equa-

tion can be written as

ċ(u)

c(u)
= σ[r − θ − m(u) + q(u)]. (F.16)

By solving the Euler equation and substituting the resulting expression into the lifetime bud-

get constraint (F.15) we find:

c(u) = li(e)Φ(u), (F.17)

Φ(u) =
eσ[(r−θ)u−M(u)+Q(u)]

∫

∞

0 e−ru−Q(u)+σ[(r−θ)u−M(u)+Q(u)]du
. (F.18)

Substituting (F.17) into the utility function (F.11) we find the concentrated utility function to

be maximized by choice of e:

max
e

Λ =
∫

∞

0
U (li(e)Φ(u)))e−θu−M(u)du (F.19)

Differentiation with respect to time spent at school gives the first-order condition:

dΛ

de
=

dli

de
·

∫

∞

0
Φ(u)U ′(c(u))e−θu−M(u)du = 0. (F.20)

The integral is always positive so this first order condition reduces to dli/de = 0 which

implies that the optimal schooling choice maximizes lifetime income.

Recall (from (F.15)) that lifetime income is equal to:

li(e) ≡ z
∫

∞

0
e−ru−Q(u)du + w(e)

∫

∞

e
e−ru−Q(u)du. (F.21)

If mortality is to exert an effect on the schooling decision, it must do so via the Q (u) term.

Several points are worth noting.
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• With perfect annuities, q (u) = m (u), Q (u) = M (u), and the schooling choice is

affected by mortality. This is the case discussed in the paper (and in the literature).

• With imperfect annuities there are two sub-cases.

– The net annuity payment depends on mortality, i.e. q (u) = f (m (u)). If mortality

changes, insurance companies change the annuity payment, Q (u) is affected, as

is the schooling choice.

– The net annuity payment does not depend on mortality at all. In this rather un-

realistic case, changes in mortality do not affect q (u) or Q (u) and the schooling

choice does not depend on mortality. The excess profits of insurance companies

do not influence the schooling decision because they are distributed in a lump-

sum fashion to surviving agents (see above). Mortality changes do not have an

effect via this general equilibrium channel either.

We conclude that mortality affects the schooling decision also with imperfect annuities, un-

less the net annuity payment bears no relationship whatsoever with the mortality rate. In the

paper follow the literature and choose to work with the simplest case of perfect annuities.

Of course, in reality annuity markets are not perfect. But they are not absent either–see for

example Cannon and Tonks (2006) for a survey on the UK experience. To summarize, we

defend our perfect annuity assumption on two grounds:

• Much (if not all) of the literature adopts this assumption. Assuming imperfect annu-

ities would make our paper difficult to relate to existing work.

• As Cannon and Tonks (2006, p. 5) argue, annuities are less than actuarially fair but

not outrageously so. They cite “money’s worth” ratios in the range of 0.85-1.05. Of

course there is such a thing called the “annuity puzzle.” Voluntary annuity demand

is quite low despite the fact that annuities are theoretically very attractive. But this

puzzle cannot be explained with the standard expected utility approach upon which

our model (and much of the literature we contribute to) is based.
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