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Aims of this chapter (1)

Introduce the method of Dynamic Programming

Focus on a number of simple consumption-savings examples
Once these examples are well understood, take the nontrivial
step from a deterministic to a stochastic world

Introduce the concept of complete markets

Arrow-Debreu securities
Negishi’s insight
Competitive risk sharing

Construct the representative agent under complete markets

A-D securities and aggregation
Macroeconomic irrelevance of heterogeneity
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Three-period consumption example (1)

Individual who lives for three periods and has the following
lifetime utility function:

Λ1 ≡ U(C1) + βU(C2) + β2U(C3) (S1)

Ct is consumption in period t
β ≡ 1/(1 + ρ) is the discount factor due to impatience (ρ is
the rate of time preference, ρ > 0)
U(x) is a felicity function satisfying U ′(x) > 0, U ′′(x) < 0,
and the usual Inada style condition limx→0 U

′(x) = +∞

Felicity function is logarithmic:

U(Ct) = lnCt (S2)

Foundations of Modern Macroeconomics - Third Edition Chapter 17 5 / 93



Dynamic programming
Complete markets and Arrow-Debreu securities

Constructing the representative agent

Deterministic
Stochastic – Finite horizon
Stochastic – Infinite horizon

Three-period consumption example (2)

Financial asset accumulation:

At+1 = (1 + rt)At + wt − Ct (S3)

rt is the interest rate in period t
wt is the wage in period t
At is assets at the start of period t.
Initial stock of financial assets A1 at time t = 1 (savings from
the past)

The agent chooses Ct and At+1 for t ∈ {1, 2, 3} to maximize
(S1) subject to (S3), taking as given (a) initial assets A1 and
(b) the paths of factor prices rt and wt

Since the world ends for this consumer at the end of period
t = 3 there is a terminal constraint of the form:

At+4 ≥ 0 (S4)
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Traditional solution method (1)

Lagrangian:

L1 ≡ U(C1) + βU(C2) + β2U(C3)

+ λ1 [(1 + r1)A1 + w1 − C1 −A2]

+ λ2 [(1 + r2)A2 + w2 − C2 −A3]

+ λ3 [(1 + r3)A3 + w3 − C2 −A4]

where λt are the Lagrange multipliers
First-order necessary conditions for consumption:

∂L1

∂C1
= U ′(C1)− λ1 = 0 (S5a)

∂L1

∂C2
= βU ′(C2)− λ2 = 0 (S5b)

∂L1

∂C3
= β2U ′(C3)− λ3 = 0 (S5c)

Foundations of Modern Macroeconomics - Third Edition Chapter 17 7 / 93



Dynamic programming
Complete markets and Arrow-Debreu securities

Constructing the representative agent

Deterministic
Stochastic – Finite horizon
Stochastic – Infinite horizon

Traditional solution method (2)

First-order necessary conditions for consumption:

∂L1

∂A2
= −λ1 + (1 + r2)λ2 = 0 (S5d)

∂L1

∂A3
= −λ2 + (1 + r3)λ3 = 0 (S5e)

∂L1

∂A4
= −λ3 ≤ 0, A4 ≥ 0, A4

∂L1

∂A4
= 0 (S5f)

Since λ3 > 0, it follows from (S5f) that the consumer will
exhaust all his financial assets during the last period of life:

A∗
4 = 0

where the star designates the optimum choice for A4
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Traditional solution method (3)

Consolidated lifetime budget constraint:

(1 + r1)A1 +H1 = C1 +
C2

1 + r2
+

C3

(1 + r2)(1 + r3)
(S6)

where H1 is human wealth:

H1 ≡ w1 +
w2

1 + r2
+

w3

(1 + r2)(1 + r3)
(S7)

Using (S5a)–(S5c) and (S2) in (S6) we find:

C∗
1 =

(1 + r1)A1 +H1

1 + β + β2
(S8a)

C∗
2

1 + r2
= β

(1 + r1)A1 +H1

1 + β + β2
(S8b)

C∗
3

(1 + r2)(1 + r3)
= β2 (1 + r1)A1 +H1

1 + β + β2
(S8c)
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Traditional solution method (4)

Optimal asset levels:

A∗
2 = (1 + r1)A1 + w1 − C∗

1 (S8d)

A∗
3 = (1 + r2)A2 + w2 − C∗

2 (S8e)

A∗
4 = 0 (S8f)

Parameterized version of the three-period model in Table
17.1

Each period is 25 years; zero initial financial assets, i.e. A1 = 0
The wage rate and interest rate are both constant over time,
i.e. rt = r and wt = w
Output per worker is normalized to unity so that with a capital
share of α = 0.3 the wage rate is equal to w = 0.7
For annual ra = 0.04 and ρa = 0.03 we find r = 1.6658 and
β = 0.4776
Panel (a) of Table 17.1 shows that the consumer is a strong
saver in the first two periods and a dissaver in the final period
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Table 17.1: Some numerical examples

(a) Deterministic choices

Consumption: C∗
1 0.6221

C∗
2 0.7920

C∗
3 1.0084

Assets: A∗
2 0.0779

A∗
3 0.1157

A∗
4 0.0000
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Alternative viewpoint (1)

There is an alternative way of writing down the solutions
which gives us a first glance at policy functions

Consider the consumer who has a in assets in period t = 1.
What does he choose for current consumption and next
period’s assets?

No need to redo the optimization problem

Substitute a for A1 in (S8a) and (S8b):

Ĉ1 = C1(a; r1, r2, r2, w1, w2, w3)

≡
1

1 + β + β2

[

(1 + r1)a+ w1 +
w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]

(S9a)
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Alternative viewpoint (2)

and:

Â2 = (1 + r1)a+ w1 − Ĉ1

= A
+
1 (a; r1, r2, r3, w1, w2, w3)

≡
β(1 + β)

1 + β + β2
[(1 + r1)a+ w1]

−
1

1 + β + β2

[

w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]

(S9b)

where the hats designate conditionally optimal choices
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Alternative viewpoint (3)

The policy function C1(a; ·) in (S9a) gives the choice for
current consumption in period 1 (hence the subscript) if he
has a in assets at the start of that period

If a = A1 then it follows readily that C∗
1 = C1(A1; ·)

If a < A1 the conditionally optimal solution is feasible but
suboptimal
If a > A1 the conditionally optimal solution is infeasible as the
consumer does not possess that much in financial assets

The policy function A
+
1 (a; ·) in (S9b) represents the

conditionally optimal choice that the agents makes in period 1
(hence the subscript) about the level of assets he want to
carry over to the next period (hence the superscript ‘+ ’)

Obviously A∗
2 = A

+

1 (a; ·) for a = A1 only
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Alternative viewpoint (4)

Now consider the consumer with a in assets in period t = 2.
What does he choose for C2 and A3?

The answer is obtained by maximizing lnC2 + β lnC3 subject
to:

(1 + r2)a+ w2 +
w3

1 + r3
= C2 +

C3

1 + r3
This gives the policy functions:

Ĉ2 = C2(a; r2, r3, w2, w3)

≡
1

1 + β

[

(1 + r2)a+ w2 +
w3

1 + r3

]

(S9c)

Â3 = (1 + r2)a+ w2 − Ĉ1 = A
+
2 (a; r2, r3, w2, w3)

≡
β

1 + β
[(1 + r2)a+ w2]−

1

1 + β

w3

1 + r3
(S9d)
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Alternative viewpoint (5)

Obviously, Ĉ2 = C∗
2 and Â3 = A∗

3 if and only if a = A∗
2, i.e.

C∗
2 = C2(A

∗
2; ·) and A∗

3 = A
+
2 (A

∗
2; ·)

Finally, consider the consumer who has a in assets in period
t = 3. What does he choose for C3 and A4?
The answer is obtained by maximizing lnC3 subject to
(1 + r3)A3 + w3 = C3 +A4 and A4 ≥ 0
This gives the policy functions:

Ĉ3 = C3(a; r3, w3) ≡ (1 + r3)a+ w3 (S9e)

Â4 = A
+
3 (a; r3, w3) ≡ 0 (S9f)

Just as before, Ĉ3 = C∗
3 if and only if a = A∗

3, i.e. so that
C∗
3 = C3(A

∗
3; ·)

Unlike what we found before, however, Â4 = A∗
4 = 0

regardless of a, i.e. the consumer will always deplete resources
completely in the final period of life

Foundations of Modern Macroeconomics - Third Edition Chapter 17 16 / 93



Dynamic programming
Complete markets and Arrow-Debreu securities

Constructing the representative agent

Deterministic
Stochastic – Finite horizon
Stochastic – Infinite horizon

DP insight (1)

Principle of Optimality. An optimal policy has the
property that whatever the initial state and decision are, the
remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision. (Bellman,
1957, p. 83)

DP solves a complex multi-stage problem by breaking it up
into a number of smaller subproblems

DP computes value functions which depend on the state
variable at each time

Return to the decision problem of the consumer who lives for
three periods

We start at the end of life and work back to the first period
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DP: Choice problem in period t = 3

The objective is to maximize V3 ≡ U(C3), subject to the
budget constraint, A4 = (1 + r3)A3 + w3 − C3

Consumer with a in assets chooses Ĉ3 = C3(a; r3, w3) and
Â4 = A

+
3 (a; r3, w3) ≡ 0

Substituting Ĉ3 into the felicity function gives the value
function for period t = 3 in terms of a:

V3(a) ≡ U(C3(a; r3, w3)) = ln [(1 + r3)a+ w3] (S10a)

Note its derivative:

V ′
3(a) = (1 + r3)U

′(C3(a; r3, w3)) =
1 + r3

C3(a; r3, w3)
(S10b)
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DP: Choice problem in period t = 2

The objective is to maximize V2 ≡ U(C2) + βU(C3), subject
to the budget constraint, A3 = (1 + r2)A2 + w2 − C2

Choice of current consumption c and the amount of assets to
carry over into the third period a+

Choice of a+ will ensure that the value function in period 3 is
equal to V3(a

+)

Choice problem in period 2:

V2(a) = max
c,a+

U(c) + βV3(a
+)

subject to: a+ = (1 + r2)a+ w2 − c (S10c)

Eq. (S10c) is the Bellman Equation

FONC for the maximization problem on the right-hand side:

U ′(c) = βV ′
3((1 + r2)a+ w2 − c) (S10d)
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DP: Choice problem in period t = 2

This is an implicit relationship between c and a, the solution
of which gives the policy function C2(a, r2, w2)

For the logarithmic felicity function U(c) = ln c equation
(S10d) simplifies to:

1

c
=

β(1 + r3)

(1 + r3)[(1 + r2)a+ w2 − c] + w3
(S10e)

Solving for c = C2(a; ·) we find:

C2(a; ·) ≡
1

1 + β

[

(1 + r2)a+ w2 +
w3

1 + r3

]

(S10f)
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DP: Choice problem in period t = 2

The policy function for a+ follows from the constraint,
A

+
2 (a, r2, w2) = (1 + r2)a+ w2 −C2(a, r2, w2):

A
+
2 (a; ·) =

β

1 + β
[(1 + r2)a+ w2]−

1

1 + β

w3

1 + r3
(S10g)

By substituting C2(a; ·) and A
+
2 (a; ·) into (S10c) we find the

value function for period t = 2:

V2(a) ≡ U(C2(a; ·)) + βV3(A
+
2 (a; ·))

= ln

(

ββ

(1 + β)1+β

)

+ β ln(1 + r3)

+ (1 + β) ln

[

(1 + r2)a+ w2 +
w3

1 + r3

]

(S10h)
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Digression: Benveniste-Scheinkman Theorem

In (S10d) we find an intimate relationship between the
derivative of the value function, V ′

3(a), and marginal utility,
U ′(C3(a; ·))

This is not a coincidental result

To show the result for t = 2 we use (S10h) to find:

V ′
2(a) ≡ U ′(C2(a; ·))

dC2(a; ·)

da
+ βV ′

3(A
+
2 (a; ·))

[

(1 + r2)

−
dC2(a; ·)

da

]

=
[

U ′(C2(a; ·))− βV ′
3(A

+
2 (a; ·))

] dC2(a; ·)

da
+ β(1 + r2)V

′
3(A

+
2 (a; ·))

= (1 + r2)U
′(C2(a; ·)) (S10i)
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DP: Choice problem in period t = 1

The problem:

V1(a) = max
c,a+

U(c) + βV2(a
+)

subject to: a+ = (1 + r1)a+ w1 − c (S10j)

FONC:
U ′(c) = βV ′

2((1 + r1)a+ w1 − c)) (S10k)

For U(c) = ln c to:

1

c
=

β(1 + β)

(1 + r1)a+ w1 +
w2

1+r2
+ w3

(1+r2)(1+r3)

(S10l)

Foundations of Modern Macroeconomics - Third Edition Chapter 17 23 / 93



Dynamic programming
Complete markets and Arrow-Debreu securities

Constructing the representative agent

Deterministic
Stochastic – Finite horizon
Stochastic – Infinite horizon

DP: Choice problem in period t = 1

Policy function for consumption:

C1(a; ·) ≡
1

1 + β + β2

[

(1 + r1)a+ w1 +
w2

1 + r2

+
w3

(1 + r2)(1 + r3)

]

(S10m)

Policy function for future assets:

A
+
1 (a; ·) =

β(1 + β)

1 + β + β2
[(1 + r1)a+ w1]

−
1

1 + β + β2

[

w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]

(S10n)
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DP: Choice problem in period t = 1

Value function:

V1(a) = U(C1(a; ·) + βV2(A
+
1 (a; ·))

= −(1 + β + β2) ln(1 + β + β2) + β(1 + 2β) lnβ

+ (1 + β(1 + β)) ln

[

(1 + r1)a+ w1 +
w2

1 + r2

+
w3

(1 + r2)(1 + r3)

]

+ β(1 + β) ln(1 + r2) + β2 ln(1 + r3) (S10o)
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Summary of the DP method (1)

We have computed the policy functions for consumption,
Ct(a; ·), for future assets, A+

t (a; ·), and the value functions,
Vt(a), all in terms of a

Application: consider an agent who has A1 in assets

Maximum attainable (lifetime) utility level is V1(A1)

Optimal consumption in the first period is C∗
1 = C1(A1; ·)

Optimal assets at the start of the second period is
A∗

2 = A
+
1 (A1; ·)

In the second period we find that C∗
2 = C2(A

∗
2; ·) and

A∗
3 = A

+
2 (A

∗
2; ·)

In the third period we find C∗
3 = C3(A

∗
3; ·) and

A∗
4 = A

+
3 (A

∗
3; ·) = 0
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Summary of the DP method (2)

We visualize the value functions Vt(a) as well as the policy
functions for consumption Ct(a) and next-period’s financial
assets A+

t (a) in Figure 17.1

Schematically the method of dynamic programming in a
T -period finite horizon setting thus proceeds as follows

Compute the value function for the final period, VT (a), as
well as the policy functions, CT (a) and A

+
T (a)

Use the Bellman equation to compute VT−1(a) and the policy
functions CT−1(a) and A

+
T−1(a). Continue this step until

V1(a), C1(a) and A
+
1 (a) are obtained

Impose the initial condition, a = A1 and iterate forward in
time to compute the optimal choices, C∗

1 = C1(A1),
A∗

2 = A
+
1 (A1), C

∗
2 = C2(A

∗
2), A

∗
3 = A

+
2 (A

∗
2), . . . ,

C∗
T = CT (A

∗
T ), A

∗
T+1 = A

+
T (A

∗
T ) = 0
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Figure 17.1: Value functions and policy functions

(a) Value functions: Vt(a)
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Figure 17.1: Value functions and policy functions

(b) Policy functions for consumption: Ct(a)
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Figure 17.1: Value functions and policy functions

(c) Policy functions for next period’s assets: A+
t (a)
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DP: Infinite planning problem (1)

Lifetime utility:

Λ1 ≡

∞
∑

t=1

βt−1U(Ct) (S11a)

Financial asset accumulation:

At+1 = (1 + rt)At + wt − Ct (S11b)

Use the method of DP right from the start

There is no final period so we cannot start by computing
VT (a)

Instead we postulate the Bellman equation for period t as:

Vt(a) = max
c,a+

U(c) + βVt+1(a
+)

subject to: a+ = (1 + rt)a+ wt − c (S11c)
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DP: Infinite planning problem (2)

The first-order condition for c is:

U ′(c) = βV ′
t+1((1 + rt)a+ wt − c) (S11c)

In principle we could solve (S11c) for c = Ct(a),
A

+
t (a) = (1 + rt)a+ wt −Ct(a), and find:

Vt(a) = U(Ct(a)) + βVt+1(A
+
t (a)) (S11d)

Oops, we do not know the functional form of V ′
t+1(a

+) so this
seems to be a dead end!

But the Benveniste-Scheinkman Theorem furnishes a link
between the derivative of the value function and marginal
utility
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DP: Infinite planning problem (3)

By differentiating (S11d) with respect to a we find:

V ′
t (a) = U ′(Ct(a))

dCt(a)

da
+ βV ′

t+1(A
+
t (a))

[

(1 + rt)−
dCt(a)

da

]

=
[

U ′(Ct(a))− βV ′
t+1(A

+
t (a))

] dCt(a)

da
+ β(1 + rt)V

′
t+1(A

+
t (a))

= (1 + rt)U
′(Ct(a)) (S11e)

By induction we find that:

V ′
t+1(a

+) = (1 + rt+1)U
′(c+) (S11f)
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DP: Infinite planning problem (4)

Hence, (S11c) can be rewritten as:

U ′(c) = β(1 + rt+1)U
′(c+) (S11g)

Put differently, consumption in adjacent periods will be
related according to the usual Euler equation:

U ′(Ct) = β(1 + rt+1)U
′(Ct+1) (S11h)

which simplifies for the logarithmic felicity function to:

Ct+1

Ct
= β(1 + rt+1) (S11i)

The Euler equation is a vital piece of information which often
allows us to compute the optimal solutions for current and
future consumption without any further need for value
functions or policy functions
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Stochastic 3-period example (1)

Back to the three-period consumption-savings model

Agent faces idiosyncratic labour productivity risk

Expected utility at birth:

E1[Λ1] = U(C1) + βE1[U(C2)] + β2E1[U(C3)] (S12a)

Financial assets accumulation:

At+1 = (1 + rt)At + ηtwt − Ct (S12b)

ηt is a stochastic variable representing labour productivity risk
(nature draws realizations over time)
rt and wt are taken as given

Terminal constraint of the form:

At+4 ≥ 0 (S12c)
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Stochastic 3-period example (2)

Simple stochastic process for ηt:
1 At birth the agent has an average productivity level,

η1 = e2 = 1
2 For later periods, ηt follows a three state stationary Markov

Scheme, i.e. ηt ∈ {e1, e2, e3}
3 The transition probabilities are defined as:

pij = Prob(ηt+1 = ej |ηt = ei) (S12d)

For obvious reasons it must be the case that
∑3

j=1
pij = 1

4 The transition matrix is defined as:

P ≡





p11 p12 p13
p21 p22 p23
p31 p32 p33



 (S12e)

We assume that 0 < pij < 1 so there are no absorbing states.
Since p13, p13 > 0 spectacular reversals of fortune are possible.
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Figure 17.2: Markov process for labour productivity
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Figure 17.3: Labour productivity over the life cycle
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Stochastic 3-period example (3)

Since η1 = e2 by assumption the initial unconditional
probability distribution of η1 is trivial:

π1 ≡





π11
π12
π13



 =





0
1
0



 (S12f)

To obtain the next period’s unconditional probability
distribution of η2 we use the result that π′

2 = π′
1P , where P is

given in (S12e) above:

π2 ≡





π21
π22
π23



 =





p21
p22

1− p21 − p22



 (S12g)

From the perspective of period t = 1 (‘unconditionally’) the
consumer assigns probability π2j to being in state j in period
t = 2
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Stochastic 3-period example (4)

The unconditional probability distribution of η3 is determined
by π′

3 = π′
2P :

π3 ≡





π31
π32
π33



 =





p21(p11 + p22) + p23p31
p12p21 + p222 + p23p32
p13p21 + p23 (p22 + p33)



 (S12h)
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Traditional “brute force” method (1)

What is the optimal consumption level in the first period?

Expected utility in terms of asset levels:

E1[Λ1] = U((1 + r1)A1 + e2w1 −A2)

+ β
[

π21U((1 + r2)A2 + e1w2 −A3)

+ π22U((1 + r2)A2 + e2w2 −A3)

+ π23U((1 + r2)A2 + e3w2 −A3)
]

+ β2
[

π31U((1 + r3)A3 + e1w3 −A4)

+ π32U((1 + r3)A3 + e2w3 −A4)

+ π33U((1 + r3)A3 + e3w3 −A4)
]

(S13a)

Choice variables are A2, A3, and A4
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Traditional “brute force” method (2)

No unused assets are planned (Kuhn-Tucker conditions):

∂E1[Λ1]

∂A4
= −β2

[

π31U
′((1 + r3)A3 + e1w3 −A4)

+ π32U
′((1 + r3)A3 + e2w3 −A4)

+ π33U
′((1 + r3)A3 + e3w3 −A4)

]

< 0,

A4 ≥ 0, A4
∂E1[Λ1]

∂A4
= 0 (S13b)

It follows that A∗
4 = 0 just as in the deterministic case
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Traditional “brute force” method (3)

Assets in period t = 2:

∂E1[Λ1]

∂A2
= −U ′((1 + r1)A1 + w1 −A2)

+ β(1 + r2)
[

π21U
′((1 + r2)A2 + e1w2 −A3)

+ π22U
′((1 + r2)A2 + e2w2 −A3)

+ π23U
′((1 + r2)A2 + e3w2 −A3)

]

= 0

(S13c)
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Traditional “brute force” method (4)

Assets in period t = 3:

∂E1[Λ1]

∂A3
= −β

[

π21U
′((1 + r2)A2 + e1w2 −A3)

+ π22U
′((1 + r2)A2 + e2w2 −A3)

+ π23U
′((1 + r2)A2 + e3w2 −A3)

]

+ β2(1 + r3)
[

π31U
′((1 + r3)A3 + e1w3)

+ π32U
′((1 + r3)A3 + e2w3)

+ π33U
′((1 + r3)A3 + e3w3)

]

= 0 (S13d)
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Traditional “brute force” method (5)

Eqns. (S13c)-(S13d) represent two equations in two unknowns
which can in principle be solved for A∗

2 and A∗
3 in terms of the

parameters of the problem (i.e., r2, r3, w2, w3, ej , and pij)

Even for U(c) ≡ ln c there are no analytical solutions

Numerical methods must be used to find A∗
2 and A∗

3

This gives us two points on the policy functions:

A∗
2 = A

+
1 (A1, e2) (S13e)

C∗
1 = C1(A1, e2) = (1 + r1)A1 + e2w1 −A

+
1 (A1, e2) (S13f)
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Traditional “brute force” method (6)

In period t = 2, the consumer has A∗
2 = A

+
1 (A1, e2) for sure

but he enters the risky part of life as nature reveals the
realization of η2

If the agent gets η2 = ei then expected utility from the
perspective of period t = 2 is given by:

E2[Λ2(A
∗
2, ei)] = U((1 + r2)A

∗
2 + eiw2 −A3)

+ β
3

∑

j=1

pijU((1 + r3)A3 + ejw3) (S13g)

The only choice variable is A3
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Traditional “brute force” method (7)

FONC:

dE2[Λ2(A
∗
2, ei)]

dA3
= −U ′((1 + r2)A

∗
2 + eiw2 −A3)

+ β(1 + r3)
3

∑

j=1

pijU
′((1 + r3)A3 + ejw3) = 0

(S13h)

Numerically, equation (S13h) can easily be solved for A∗
3

This gives us the points on the policy functions if the state is
(A∗

2, ei):

A∗
3 = A

+
2 (A

∗
2, ei) (S13i)

C∗
2 = C2(A

∗
2, ei) = (1 + r2)A2 + eiw2 −A

+
2 (A2, ei) (S13j)
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Traditional “brute force” method (8)

In period t = 3, the consumer has A∗
3 = A

+
2 (A2, ei) in

financial assets and the value of η3 = ej is revealed

The optimal choices are trivial:

C∗
3 = C3(A

∗
3, ej) = (1 + r3)A

∗
3 + ejw3 (S13k)

A∗
4 = A

+
3 (A

∗
3, ej) = 0 (S13l)

Conclusion

It is feasible though tedious to compute the optimal choices in
the traditional manner by repeatedly solving a maximization
problem involving expected remaining lifetime utility
With idiosyncratic labour productivity risk of the Markov form,
the state vector in a particular period consists of assets at the
start of the period as well as the productivity indicator for that
period
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DP: Choice problem in period t = 3

Start at the end of life and work back to the first period

The consumer who has a in assets and labour productivity η
will choose c and a+ in order to maximize U(c) = ln c subject
to a+ = (1 + r3)a+ ηw3 − c

Policy and value functions:

C3(a, η; r3, w3) ≡ (1 + r3)a+ ηw3 (S14a)

A
+
3 (a, η; r3, w3) = 0 (S14b)

V3(a, η) ≡ U(C3(a, η; r3, w3))

= ln [(1 + r3)a+ ηw3] (S14c)
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DP: Choice problem in period t = 3

Note that:

V ′
3(a, η) ≡

∂V3(a, η)

∂a
= (1 + r3)U

′(C3(a, η; ·))

=
1 + r3

(1 + r3)a+ ηw3
(S14d)

Since η has three possible realizations, there are three each of
the V3(a, η) and V ′

3(a, η) functions that must be computed
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DP: Choice problem in period t = 2

Choice problem in period t = 2

Bellman equation:

V2(a, η) = max
c,a+

U(c) + βEη+|η

[

V3(a
+, η+)

]

subject to: a+ = (1 + r2)a+ ηw2 − c (S14e)

Here Eη+|η [·] stands for the conditional expectations operator
so that:

Eη+|η

[

V3(a
+, η+)

]

=
3

∑

j=1

pijV3(a
+, ηj) (S14f)

where we let η = ei and η+ = ej
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DP: Choice problem in period t = 2

First-order condition for c:

U ′(c) = βEη+|η

[

V ′
3(a

+, η+)
]

= β
3

∑

j=1

pijV
′
3(a

+, ηj) (S14g)

For U(c) = ln c, η = ei, and η+ = ej we find that (S14g)
reduces to:

1

c
= β(1 + r3)

3
∑

j=1

pij
(1 + r3)a+ + ejw3

= β
3

∑

j=1

pij
(1 + r2)a+ eiw2 − c+ ej

w3

1+r3

Numerical methods give us c = C2(a, η; ·) and
A

+
2 (a, η; ·) ≡ (1 + r2)a+ ηw2 −C2(a, η; ·)
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DP: Choice problem in period t = 2

The value function in the second period is given by:

V2(a, η) = U(C2(a, η; ·)) + βEη+|η[V3(A
+
2 (a, η; ·), η

+)]
(S14h)

Differentiate with respect to a to obtain the
Benveniste-Scheinkman result in a stochastic setting:

V ′
2(a, η) ≡ U ′(C2(a, η; ·))

dC2(a, η; ·)

da

+ βEη+|η

[

V ′
3(A

+
2 (a, η; ·), η

+)

(

(1 + r2)−
dC2(a, η; ·)

da

)]

= (1 + r2)U
′(C2(a, η; ·)) (S14i)
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DP: Choice problem in period t = 1

Bellman equation:

V1(a, η) = max
c,a+

U(c) + βEη+|η

[

V2(a
+, η+)

]

subject to: a+ = (1 + r1)a+ ηw1 − c, (S14j)

First-order condition for c:

U ′(c) = βEη+|η

[

V ′
2(a

+, η+)
]

(S14k)

The policy functions are C1(a, η; ·) and A
+
1 (a, η; ·), and the

value function is:

V1(a, η) = U(C1(a, η; ·)) + βEη+|η

[

V2(A
+
2 (a, η; ·), η

+)
]

(S14l)
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Stochastic DP: Closing remarks

Stochastic consumption Euler equations:

U ′(C2(a, η; ·)) = β(1 + r3)Eη+|η

[

U ′(C3(a
+, η+; ·))

]

U ′(C1(a, η; ·)) = β(1 + r2)Eη+|η

[

U ′(C2(a
+, η+; ·))

]

Not quite as useful here as they are in a deterministic setting

To solve the consumer’s choice problem we must compute the
policy functions and value functions numerically

Figure 17.4 plots value functions

Figure 17.5 plots policy functions

Table 17.1 gives some numbers

Model can explain consumption and wealth inequality
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Figure 17.3: Value functions – stochastic case
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Figure 17.3: Value functions – stochastic case

(b) Value functions for period t = 2: V2(a, η)
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Figure 17.3: Value functions – stochastic case

(c) Value functions for period t = 3: V3(a, η)
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Figure 17.4: Policy functions – stochastic case
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Figure 17.4: Policy functions – stochastic case

(b) Consumption: C2(a, η)
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Figure 17.4: Policy functions – stochastic case
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Figure 17.4: Policy functions – stochastic case
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Table 17.1: Some numerical examples

(b) Sequential stochastic choices

Choices made in period 1:

Consumption: C∗
1 0.6165

Assets: A∗
2 0.0835

Choices made in period 2:

Consumption: C∗
2 (e1) 0.6591

C∗
2 (e2) 0.7982

C∗
2 (e3) 0.9411

Assets: A∗
3(e1) 0.0884

A∗
3(e2) 0.1243

A∗
3(e3) 0.1564
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Table 17.1: Some numerical examples

(b) Sequential stochastic choices

Choices made in period 3:

Consumption: C∗
3 (e1, e1) 0.7607

C∗
3 (e1, e2) 0.9357

C∗
3 (e2, e1) 0.8564

C∗
3 (e2, e2) 1.0314

C∗
3 (e2, e3) 1.2064

C∗
3 (e3, e2) 1.1171

C∗
3 (e3, e3) 1.2921

Assets: A∗
4(ei, ej) 0.0000
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Optimal stochastic growth model (1)

Focus on the social planning solution

Large population of identical consumers
Population size is constant and normalized to unity
The benevolent social planner maximizes the utility function of
the representative consumer

Objective function:

Ω0 ≡ E0

[

∞
∑

t=0

βtU(Ct)

]

(S15a)

Macroeconomic resource constraint:

Ct +Kt+1 = ZtF (Kt, 1) + (1− δ)Kt (S15b)

where Zt is the random technology shock
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Optimal stochastic growth model (1)

The history of all technology shocks that have occurred at or
before time t by ht:

ht ≡ (Z0, Z1, . . . , Zt) (S15c)

In the most general case the optimal plans that the social
planner formulates at time t will depend on the entire vector
ht

If we assume that the stochastic process has the Markov
property, however, then Zt is all the planner needs to know to
make optimal plans at time t

Two constraints, (a) consumption must be non-negative
Ct ≥ 0 and (b) at time t = 0 the existing capital stock is
given (K0 is fixed) and Z0 is known
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Traditional method (1)

The traditional approach to solve the social planning problem
exploits the Markov assumption for the technology shocks and
writes the Lagrangian at time t = 0 as:

L0 = U(Z0F (K0, 1) + (1− δ)K0 −K1)

+ βEZ1|Z0
[U(Z1F (K1, 1) + (1− δ)K1 −K2)]

+ β2EZ2|Z0
[U(Z2F (K2, 1) + (1− δ)K2 −K3)] + . . .

where the expectation operator EZt+1|Zt
[φ(Zt+1)] stands for

the conditional expectation of φ(Zt+1) given Zt

Since K0 is predetermined, the only choice that is made and
executed at time t = 0 is the one about K1
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Stochastic – Infinite horizon

Traditional method (2)

First/order condition:

∂L0

∂K1
= −U ′(Z0F (K0, 1) + (1− δ)K0 −K1)

+ βEZ1|Z0

[

U ′(Z1F (K1, 1) + (1− δ)K1 −K2)

×
(

Z1FK(K1, 1) + 1− δ
)]

= 0

where FK(K1, 1) is the marginal product of capital when the
stock equals K1

Rewrite:

U ′(C0) = βEZ1|Z0

[

U ′(C1) ·
(

Z1FK(K1, 1)+ 1− δ
)]

(S15d)
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Deterministic
Stochastic – Finite horizon
Stochastic – Infinite horizon

Traditional method (2)

Define the “implicit real interest rate” as:

rt+1 ≡ Zt+1FK(Kt+1, 1)− δ (S15e)

For any arbitrary period t the social optimum is characterized
by the corresponding stochastic Euler equation:

U ′(Ct) = βEZt+1|Zt

[

U ′(Ct+1) · (1 + rt+1)
]

(S15f)
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Stochastic – Infinite horizon

DP: Choice problem in period t

At time t the control variable is consumption for that time
period, Ct, whilst the state variables are the capital stock and
the technology indicator, Kt and Zt

Many writers express the Bellman equation as:

V (Kt, Zt) = max
Ct,Kt+1

U(Ct) + βEZt+1|Zt
[V (Kt+1, Zt+1)]

subject to Kt+1 = ZtF (Kt, 1) + (1− δ)Kt − Ct

The value function does not depend on time itself because the
horizon is infinite and the problem is recursive

We prefer to write the Bellman equation as:

V (K,Z) = max
C,K+

U(C) + βEZ+|Z

[

V (K+, Z+)
]

s.t. K+ = Z F (K, 1) + (1− δ)K − C (S16a)
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DP: Choice problem in period t

The first-order necessary condition for the maximization
problem on the right-hand side is:

U ′(C) = βEZ+|Z

[

∂V (K+, Z+)

∂K+

]

(S16b)

Using the Benveniste-Scheinkman Theorem results in:

∂V (K,Z)

∂K
= βEZ+|Z

[

∂V (K+, Z+)

∂K+
·
(

Z FK(K, 1) + 1− δ
)

]

=
(

Z FK(K, 1) + 1− δ
)

· U ′(C) (S16c)

By leading (S16c) by one period gives:

∂V (K+, Z+)

∂K+
=

(

Z+FK(K+, 1) + 1− δ
)

· U ′(C+) (S16d)

Foundations of Modern Macroeconomics - Third Edition Chapter 17 73 / 93



Dynamic programming
Complete markets and Arrow-Debreu securities

Constructing the representative agent

Deterministic
Stochastic – Finite horizon
Stochastic – Infinite horizon

DP: Choice problem in period t

Finally, by combining (S16b) and (S16d) we obtain the
stochastic Euler equation:

U ′(C) = βEZ+|Z

[(

Z+FK(K+, 1)+1−δ
)

·U ′(C+)
]

(S16e)

In Chapters 18 and 19 we show how models containing a
stochastic Euler equation can be solved (approximately) to
obtain the policy functions C(K,Z) and K

+(K,Z)
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Complete markets and Arrow-Debreu securities

Constructing the representative agent

Optimal risk sharing (1)

construct a tractable aggregate model in a situation where
individuals are faced with an inherently stochastic world

Key concept: complete markets in dated contingent claims –
so-called Arrow-Debreu securities

Simple example of a multi-period endowment economy
inhabited by a large number of individuals

Dynamic endowment economy featuring a time horizon
denoted by T

There are I agents indexed by i = 1, . . . , I

In each period t = 0, 1, . . . , T there is a realization of a some
stochastic event st ∈ S

Any trading among individuals occurs after s0 is revealed, i.e.
the initial state is a certainty
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Optimal risk sharing (2)

History of stochastic events up to and including period t by
the vector ht ∈ Ht:

ht ≡ (s0, s1, . . . , st) (S17a)

ht = (ht−1, st)
ht is publicly and perfectly observable by all agents
unconditional probability of observing ht by πt(h

t)

πt(h
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)

πt(h
t|hτ ) = π(st|st−1)π(st−1|st−2) . . . π(sτ+1|sτ )

Ht, denoting the set of all possible histories at time t, typically
becomes very large as time evolves

Endowment of the non-storable commodity for agent i
depends on st and is denoted by yi(st)
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Optimal risk sharing (3)

Consumption of agent i at time t under history ht is denoted
by cit(h

t)

At time t = 0 each agent i chooses a life-time consumption
plan denoted by ci =

{

cit(h
t)
}∞

t=0

Expected utility function of agent i is given by:

Λ(ci) ≡ E0

[

βtU(cit)
]

=
T
∑

t=0

∑

ht∈Ht

βtU(cit(h
t))πt(h

t) (S17b)

Economy-wide resource constraint (for all t = 0, 1, . . . , T and
ht ∈ Ht):

I
∑

i=1

cit(h
t) =

I
∑

i=1

yit(h
t) (S17c)
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Optimal risk sharing (4)

How does a social planner allocate risk in the endowment
economy?

Negishi approach: characterize the set of Pareto optimal
allocations

Objective function of the social planner:

Ω0 ≡
I

∑

i=1

λiΛ(c
i) (S17d)

λi is the time-invariant Pareto weight that the planner assigns
to agent i
Every agent matters to the planner, λi > 0
By normalization one can always ensure that

∑I

i=1
λi = 1

Social planner chooses ci =
{

cit(h
t)
}∞

t=0
for all i in order to

maximize Ω0 subject to the resource constraints (S17c)
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Optimal risk sharing (5)

Lagrangian:

L0 ≡
T
∑

t=0

∑

ht∈Ht

[

I
∑

i=1

λiβ
tU(cit(h

t))πt(h
t) + µt(h

t)
I

∑

i=1

(

yit(h
t)− cit(h

t)
)

]

where µt(h
t) is the Lagrange multiplier for the resource

constraint at time t and history ht

The first-order necessary condition for cit(h
t):

βtU ′(cit(h
t))πt(h

t) =
µt(h

t)

λi
(S17e)

Note that (S17e) must hold for each t, ht, and i
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Optimal risk sharing (6)

Comparing a benchmark individual – say agent 1 – with any
other agent i we obtain from (S17e) that for given t and ht:

U ′(cit(h
t))

U ′(c1t (h
t))

=
λ1

λi
(S17f)

This is the Efficient Risk Sharing condition

From (S17f) we obtain:

cit(h
t) = U ′−1(λ1U

′(c1t (h
t))/λi) (S17g)

By substituting (S17g) into the resource constraint (S17c) we
obtain:

I
∑

i=1

U ′−1(λ1U
′(c1t (h

t))/λi) =
I

∑

i=1

yit(h
t) (S17h)
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Optimal risk sharing (7)

By substituting (S17g) into the resource constraint (S17c) we
obtain:

I
∑

i=1

U ′−1(λ1U
′(c1t (h

t))/λi) =
I

∑

i=1

yit(h
t) (S17h)

c1t (h
t) depends on the aggregate realized endowment at time

t (right-hand side)
Example with two agents (I = 2) and a logarithmic felicity
function (U(x) = lnx):

c1t (h
t) = λ1

I
∑

i=1

yit(h
t), c2t (h

t) = (1− λ1)
I

∑

i=1

yit(h
t) (S17i)
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Optimal risk sharing: Decentalization (1)

The Pareto optimal equilibrium can be decentralized provided
the securities market is complete, i.e. individuals are able to
trade a (potentially huge) set of claims on period t
consumption contingent on history ht with each other

At time t = 0 agents trade claims to consumption at all times
t > 0 contingent on all possible histories ht

Trading occurs at all nodes ht ∈ Ht because the agents do not
know which histories will actually materialize
After time t = 0 no further trades occur
We let q0t (h

t) denote the price of claims on period t
consumption contingent on history ht

Individual i’s lifetime budget constraint:

T
∑

t=0

∑

ht∈Ht

q0t (h
t)cit(h

t) =
T
∑

t=0

∑

ht∈Ht

q0t (h
t)yit(h

t) (S18a)
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Optimal risk sharing: Decentalization (2)

Individual i chooses ci ≡
{

cit(h
t)
}∞

t=0
in order to maximize

(S17b) subject to (S18a)

Lagrangian:

Li
0 ≡

T
∑

t=0

∑

ht∈Ht

[

βtU(cit(h
t))πt(h

t)+ζiq
0
t (h

t)
(

yit(h
t)−cit(h

t)
)]

where ζi is the Lagrange multiplier for the lifetime budget
constraint faced by agent i

First-order necessary condition for cit(h
t):

βtU ′(cit(h
t))πt(h

t) = ζiq
0
t (h

t) (S18b)

Compare agent 1 and any other agent i:

U ′(cit(h
t))

U ′(c1t (h
t))

=
ζi
ζ1

(S18c)
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Optimal risk sharing: Decentalization (3)

Hence in the decentralized economy we have:

cit(h
t) = U ′−1(ζiU

′(c1t (h
t))/ζ1) (S18d)

I
∑

i=1

U ′−1(ζiU
′(c1t (h

t))/ζ1) =
I

∑

i=1

yit(h
t) (S18e)

Just as in the planning optimum, c1t (h
t) depends only on the

aggregate realized endowment at time t (right-hand side)

For the two-person logarithmic felicity case:

c1t (h
t) =

ζ2
ζ1 + ζ2

I
∑

i=1

yit(h
t), c2t (h

t) =
ζ1

ζ1 + ζ2

I
∑

i=1

yit(h
t)

(S18f)
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Optimal risk sharing: Decentalization (4)

For the two-person logarithmic felicity case:

c1t (h
t) =

ζ2
ζ1 + ζ2

I
∑

i=1

yit(h
t), c2t (h

t) =
ζ1

ζ1 + ζ2

I
∑

i=1

yit(h
t)

(S18f)

Intuitively, a “lucky individual” is somebody who at time t = 0
expects the economy to evolve in such a way that the value of
the lifetime endowment is high (Mother Nature has stacked
the deck in favour of such a person)
For such an individual the marginal utility of endowment
income (ζi) is relatively low. Hence, if person 1 is the lucky
individual then it follows that ζ2 > ζ1 and that c1t (h

t) > c2t (h
t)

Foundations of Modern Macroeconomics - Third Edition Chapter 17 85 / 93



Dynamic programming
Complete markets and Arrow-Debreu securities
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Optimal risk sharing: Decentalization (5)

Back to the Negishi (1960) insight

the competitive risk-sharing equilibrium allocation is Pareto
optimal with weights such that λi = 1/ζi
in view of the inverse relationship between λi and ζi, a “lucky
individual” (as defined above) gets a larger weight in the social
welfare function than a less lucky person gets
the shadow prices of the social planning problem equals the
contingent price, i.e. µt(h

t) = q0t (h
t)

Some two-person examples

Only idiosyncratic risk: complete insurance
Only aggregate risk: efficient risk bearing
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Optimal risk sharing: Decentalization (6)

Special Case #1: only idiosyncratic risk

Stochastic events are such that st ∈ [0, 1] and that the
endowments are given by:

y1t (h
t) = st, y2t (h

t) = 1− st (S18g)

There is no aggregate risk because total endowment income is
constant for each t and ht, i.e.

∑2

i=1
yit(h

t) = 1
Competitive risk-sharing equilibrium:

c̄i = (1− β)

T
∑

t=0

∑

ht∈Ht

βtπt(h
t)yit(h

t) (S18h)

There is perfect consumption smoothing over time and across
histories
Even though individual endowment incomes fluctuate
randomly each individual can completely insure against this
idiosyncratic risk
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Optimal risk sharing: Decentalization (7)

Special Case #2: only aggregate risk

Endowment incomes:

y1t (h
t) = αst, y2t (h

t) = (1− α)st (S18h)

with 0 < α < 1
Agents are in the same boat
Competitive risk-sharing equilibrium:

c2t (h
t) = U ′−1(ζ2U

′(c1t (h
t))/ζ1) (S18i)

c1t (h
t) + c2t (h

t) = st (S18j)

Both consumption levels are stochastic
Efficient risk sharing results in shifting the risk to those who
can best bear it
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Aggregation (1)

Under complete contingent-claim markets risk sharing is
efficient and there is full insurance

Under quite general conditions regarding preferences one can
construct a fictional “representative agent” and ignore the
underlying heterogeneity of individuals when interested in
macroeconomic issues

Simple demonstration of this result in our simple endowment
model

Set q00(h
0) = q00(s0) = 1 as the numeraire (price system is

expressed in units of period 0 goods)

Logarithmic felicity function, U(x) = lnx

It follows from (S18b) that:

ζi =
1

ci0(s0)
=

βtπt(h
t)

q0t (h
t)cit(h

t)
(S19a)
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Aggregation (2)

Individual Euler equation:

cit(h
t)

ci0(s0)
=

βtπt(h
t)

q0t (h
t)

(S19b)

The right-hand side of this expression is the same for all
i = 1, 2, . . . , I

Aggregate Euler equation:

Ct(h
t)

C0(s0)
=

βtπt(h
t)

q0t (h
t)

(S19c)

where aggregate consumption, Ct(h
t), is defined as:

Ct(h
t) ≡

I
∑

i=1

cit(h
t) (S19d)
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Aggregation (3)

Consider the “representative agent” who has a utility function
which depends on aggregate consumption:

Λ(C) ≡ E0

[

βtU(Ct)
]

=
T
∑

t=0

∑

ht∈Ht

βt lnCt(h
t)πt(h

t) (S19e)

The economy-wide budget constraint facing the representative
agent is obtained by summing (S18a) over all individuals:

T
∑

t=0

∑

ht∈Ht

q0t (h
t)Ct(h

t) =

T
∑

t=0

∑

ht∈Ht

q0t (h
t)Yt(h

t) (S19f)

where Yt(h
t) is the aggregate endowment:

Yt(h
t) ≡

I
∑

i=1

yit(h
t) (S19g)
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Aggregation (4)

The fictional representative agent chooses Ct(h
t) in order to

maximize (S19e) subject to (S19f)

Lagrangian:

L ≡
T
∑

t=0

∑

ht∈Ht

[

βt lnCt(h
t)πt(h

t)+ζq0t (h
t)
(

Yt(h
t)−Ct(h

t)
)]

,

where ζ is the Lagrange multiplier for the aggregate budget
constraint

First-order necessary condition for Ct(h
t):

βt πt(h
t)

Ct(ht)
= ζq0t (h

t) (S19h)
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Aggregation (5)

First-order necessary condition for Ct(h
t):

βt πt(h
t)

Ct(ht)
= ζq0t (h

t) (S19h)

It is easy to see that (S19h) implies (S19c)
We obtain exactly the same solution for Ct(h

t) as before by
letting the fictional agent do the utility maximization
The economy’s aggregate consumption Ct(h

t) behaves as if
chosen by a representative consumer with a logarithmic felicity
function defined over aggregate consumption, Ct(h

t), who
owns the economy’s total endowment Yt(h

t)

Aggregation result holds for all felicity functions of the HARA
class
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