Foundations of Modern Macroeconomics Third Edition Chapter 16: Overlapping generations in discrete time

(sections 16.1 - 16.2)

Ben J. Heijdra

Department of Economics, Econometrics & Finance University of Groningen

13 December 2016

Outline

Introduction

The Diamond-Samuelson model

- Basic model
- Oynamics and stability
- Efficiency

Applications

- Public pension systems
- PAYG pensions and induced retirement
- Population ageing

Aims of this chapter (1)

- Study second "work-horse" model of overlapping generations based on discrete time. Motivation for doing this:
 - Key model in modern macroeconomics and public finance theory
 - Better captures life-cycle behaviour
 - Chain of bequests easier to study
 - Endogenous fertility decisions; political economy issues
 - Natural extension to Computable General Equilibrium (CGE) policy models (e.g. Auerbach & Kotlikoff)

Aims of this chapter (2)

- Apply model to various issues:
 - Funded vs. unfunded pensions
 - Pension reform
 - Pensions and induced retirement
 - Ageing and the macroeconomy
- Study various extensions:
 - Growth and human capital
 - Public investment
 - Endogenous fertility

Basic model Dynamics and stability Efficiency

Households (1)

- Live two periods: "youth" (superscript Y) and "old age" (superscript O)
- Consume in both periods
- Work only during youth
- Unlinked with past or future generations (no bequests)
- Save during youth to finance old-age consumption (life-cycle saving)
- Utility function of young agent at time t:

$$\Lambda_{t}^{Y} \equiv U(C_{t}^{Y}) + \frac{1}{1+\rho}U(C_{t+1}^{O})$$
(S1)

Basic model Dynamics and stability Efficiency

Households (2)

- Continued
 - $U(\cdot)$ is felicity function (Inada-style conditions)
 - $\rho > 0$ captures time preference
- Budget identities:

$$C_t^Y + S_t = w_t$$

 $C_{t+1}^O = (1 + r_{t+1})S_t$

- S_t is saving
- w_t is wage income (exogenous labour supply)
- r_{t+1} is real interest rate
- Consolidated (lifetime) budget constraint:

$$w_t = C_t^Y + \frac{C_{t+1}^O}{1 + r_{t+1}}$$
(S2)

Introduction Basic model The Diamond-Samuelson model Dynamics and stability Applications Efficiency

Households (4)

• Utility maximization yields consumption Euler equation:

$$\frac{U'(C_{t+1}^O)}{U'(C_t^Y)} = \frac{1+\rho}{1+r_{t+1}}$$
(S3)

• Savings function:

$$S_t = S(w_t, r_{t+1}) \tag{S4}$$

• $0 < S_w < 1$: both goods are normal

- S_r ambiguous (offsetting income and substitution effects)
- If intertemporal substitution elasticity is high ($\sigma > 1$) then $S_r > 0$ (and vice versa)

Introduction Basi The Diamond-Samuelson model Dyna Applications Effic

Basic model Dynamics and stability Efficiency

Firms (1)

- Perfect competition, CRTS technology $Y_t = F(K_t, L_t)$, Inada conditions
- Hire L_t from young (at wage w_t) and K_t from old (at rental rate $r_t + \delta$):

 $w_t = F_L(K_t, L_t)$ $r_t + \delta = F_K(K_t, L_t)$

• Interest rate facing young depends on future (aggregate) capital-labour ratio: $r_{t+1} + \delta = F_K(K_{t+1}, L_{t+1})$

Introduction Basic model The Diamond-Samuelson model Dynamics and stability Applications Efficiency

• Intensive-form expressions:

$$y_t = f(k_t) \tag{S5}$$

$$w_t = f(k_t) - k_t f'(k_t) \tag{S6}$$

$$r_{t+1} = f'(k_{t+1}) - \delta$$
 (S7)

where $y_t \equiv Y_t/L_t$ and $k_t \equiv K_t/L_t$

Basic model Dynamics and stability Efficiency

Aggregate market equilibrium (1)

Resource constraint:

$$Y_t + (1 - \delta)K_t = K_{t+1} + C_t,$$
(S8)

where C_t is aggregate consumption:

$$C_t \equiv L_{t-1}C_t^O + L_t C_t^Y$$

• Consumption by the old:

$$L_{t-1}C_t^O = (r_t + \delta)K_t + (1 - \delta)K_t$$

• Consumption by the young:

$$L_t C_t^Y = w_t L_t - S_t L_t$$

Basic model Dynamics and stability Efficiency

Aggregate market equilibrium (2)

• Hence, aggregate output is:

$$C_{t} = (r_{t} + \delta)K_{t} + (1 - \delta)K_{t} + w_{t}L_{t} - S_{t}L_{t}$$

= $Y_{t} + (1 - \delta)K_{t} - S_{t}L_{t}$ (S9)

• Comparing (S8) and (S9) yields:

$$S_t L_t = K_{t+1} \tag{S10}$$

saving by the young determines the future capital stockPopulation growth:

$$L_t = L_0(1+n)^t, \quad n > -1$$

Intensive-form expression:

$$S(w_t, r_{t+1}) = (1+n) k_{t+1}$$
 (S11)

Fundamental difference equation: General case

• Model can be expressed in single nonlinear difference equation:

$$(1+n)k_{t+1} = S(\underbrace{f(k_t) - k_t f'(k_t)}_{w_t}, \underbrace{f'(k_{t+1}) - \delta}_{r_{t+1}})$$
(S12)

• Slope of fundamental difference equation:

$$\frac{dk_{t+1}}{dk_t} = \frac{-S_w k_t f''(k_t)}{1 + n - S_r f''(k_{t+1})}$$

Stability condition is | dk_{t+1}/dk_t | < 1
Numerator is positive (because 0 < S_w < 1 and f''(·) < 0)
Denominator is ambiguous (because S_r is)

Basic model Dynamics and stability Efficiency

Fundamental difference equation: Unit-elastic case

• For expository purposes focus on *unit-elastic* case:

$$y_t = Z_0 k_t^lpha$$
 so that $w_t = (1-lpha) Z_0 k_t^lpha$

 $U(x) = \ln x$ so that $S_t = w_t/(2+\rho)$

• Fundamental difference equation for unit-elastic model:

$$k_{t+1} = g(k_t) \equiv \frac{1 - \alpha}{(1+n)(2+\rho)} Z_0 k_t^{\alpha}$$
(S13)

Figure 16.1 shows the phase diagram Steady-state equilibrium at E₀ is unique and stable

Figure 16.1: The unit-elastic Diamond-Samuelson model

Basic model Dynamics and stability Efficiency

Steady-state efficiency (1)

- Ignoring transitional dynamics, what would an optimal steady-state look like?
- Optimal steady-state is such that the lifetime utility of a "representative" young agent is maximized subject to the resource constraint:

$$\max_{\{C^Y, C^O, k\}} \quad \Lambda^Y \equiv U(C^Y) + \frac{1}{1+\rho} U(C^O)$$

subject to: $f(k) - (n+\delta)k = C^Y + \frac{C^O}{1+n}$

Basic model Dynamics and stability Efficiency

Steady-state efficiency (2)

- The first-order conditions give rise to two types of golden rules:
 - FONC #1, biological-interest-rate *consumption* golden-rule:

$$\frac{U'(C^O)}{U'(C^Y)} = \frac{1+\rho}{1+n}$$

• FONC #2, *production* golden-rule:

$$f'(k) = n + \delta$$

• Even if one is violated the other must still hold

• In decentralized setting, $r = f'(k) - \delta$ so production rule calls for r = n. If r < n there is overaccumulation (dynamic inefficiency). This is quite possible in the unit-elastic model

²ublic pension systems 2AYG pensions and induced retirement 20pulation ageing

Some basic applications of the model

- Old-age pensions
 - Fully-funded versus pay-as-you-go (PAYG) pensions
 - Reforming the pension system: transitional problems
- Pensions and induced retirement
- Ageing of the population

 Introduction
 Public pension systems

 The Diamond-Samuelson model
 PAYG pensions and induced retirement

 Applications
 Population ageing

Old-age pensions (1)

- To study a pension system we must add government taxes and transfers to the model
- Budget identities:

$$C_t^Y + S_t = w_t - T_t$$
$$C_{t+1}^O = (1 + r_{t+1})S_t + Z_{t+1}$$

- T_t is tax levied on the young
- Z_t is transfer provided to the old
- Consolidated lifetime budget constraint:

$$w_t - T_t + \frac{Z_{t+1}}{1 + r_{t+1}} = C_t^Y + \frac{C_{t+1}^O}{1 + r_{t+1}}$$
(S14)

Introduction Public pension systems The Diamond-Samuelson model PAYG pensions and induced retirement Applications Population ageing

Old-age pensions (2)

- Financing method of the government distinguishes two prototypical systems:
 - Fully-funded system:

$$Z_{t+1} = (1 + r_{t+1})T_t$$

Contribution T_t earns market interest rate r_{t+1}

• PAYG system:

$$L_{t-1}Z_t = L_tT_t \quad \Leftrightarrow \quad Z_t = (1+n)T_t$$

Contribution T_t earns the right to receive $(1+n)T_{t+1}$ when old, where n is the biological interest rate

Fully-funded pensions (1)

- Striking neutrality property
- Recall that lifetime budget constraint is:

$$w_t - T_t + \frac{Z_{t+1}}{1 + r_{t+1}} = C_t^Y + \frac{C_{t+1}^O}{1 + r_{t+1}}$$

• Recall that under fully-funded system we have:

$$Z_{t+1} = (1 + r_{t+1})T_t$$

• So T_t and Z_{t+1} drop out of the lifetime budget constraint:

$$w_t = C_t^Y + \frac{C_{t+1}^O}{1 + r_{t+1}}$$
(S15)

Public pension systems PAYG pensions and induced retirement Population ageing

Fully-funded pensions (2)

- Economies with or without fully-funded system are identical!
- Intuition: household only worries about its total saving $S_t + T_t = S(w_t, r_{t+1})$. Part of this is carried out by the government but it carries the same rate of return
- Proviso: system should not be "too severe" $(T_t < S(w_t, r_{t+1}))$. Otherwise households are forced to save too much by the pension system

PAYG pensions (1)

- Features transfer from young to old in each period
- We look at *defined-contribution* system: $T_t = T$ for all t so that $Z_{t+1} = (1+n)T$
- Household lifetime budget constraint becomes:

$$\hat{w}_t \equiv w_t - \frac{r_{t+1} - n}{1 + r_{t+1}} T = C_t^Y + \frac{C_{t+1}^O}{1 + r_{t+1}}$$
(S16)

• Ceteris paribus factor prices, the PAYG system expands (contracts) the household's resources if the market interest rate, r_{t+1} , falls short of (exceeds) the biological interest rate, n

Introduction Public pension systems
The Diamond-Samuelson model Applications PAYG pensions and induced retirement
Population ageing

PAYG pensions (2)

• For logarithmic felicity the savings function becomes:

$$S(w_t, r_{t+1}, T) \equiv \frac{1}{2+\rho} w_t - \left[1 - \frac{1+\rho}{2+\rho} \cdot \frac{r_{t+1} - n}{1+r_{t+1}}\right] \cdot T$$

with $0 < S_w < 1$, $S_r > 0$, $-1 < S_T < 0$ (if $r_{t+1} > n$), and $S_T < -1$ (if $r_{t+1} < n$)

Capital accumulation:

$$S(w_t, r_{t+1}, T) = (1+n) k_{t+1}$$

• Factor rewards under Cobb-Douglas technology:

$$w_t \equiv w(k_t) = (1 - \alpha)Z_0k_t^{\alpha}$$
$$r_{t+1} \equiv r(k_{t+1}) = \alpha Z_0k_{t+1}^{\alpha - 1} - \delta$$

Public pension systems PAYG pensions and induced retirement Population ageing

PAYG pensions (3)

- Fundamental difference equation is illustrated in Figure 16.4
 - Two equilibria: unstable on (at D) and stable one (at E_0)
 - Introduction of PAYG system is windfall gain to the then old but leads to crowding out of capital (see path A to C to E₀). In the long run, wages fall and the interest rate rises

Public pension systems PAYG pensions and induced retirement Population ageing

Figure 16.4: PAYG pensions in the unit-elastic model

Digression: Welfare effect of PAYG system (1)

- Ignoring transitional dynamics, what is the effect on welfare if *T* is changed marginally?
- Two useful tools:
 - Indirect utility function
 - Factor price frontier
- Indirect utility function is defined as follows:

$$\bar{\Lambda}^Y(w,r,T) \equiv \max_{\{C^Y,C^O\}} \left\{ \Lambda^Y(C^Y,C^O) \quad \text{s.t.} \quad \hat{w} = C^Y + \frac{C^O}{1+r} \right\}$$

with:

$$\hat{w} = w - \frac{r-n}{1+r} \cdot T$$

Public pension systems PAYG pensions and induced retirement Population ageing

Digression: Welfare effect of PAYG system (2)

• Key properties of the IUF:

$$\begin{split} \frac{\partial \bar{\Lambda}^Y}{\partial w} &= \frac{\partial \Lambda^Y}{\partial C^Y} > 0\\ \frac{\partial \bar{\Lambda}^Y}{\partial r} &= \frac{S}{1+r} \cdot \frac{\partial \Lambda^Y}{\partial C^Y} > 0\\ \frac{\partial \bar{\Lambda}^Y}{\partial T} &= -\frac{r-n}{1+r} \cdot \frac{\partial \Lambda^Y}{\partial C^Y} \gtrless 0 \end{split}$$

• An increase in T has three effects:

- Wage effect: $w \downarrow$ which is bad for welfare
- Interest rate effect: $r\uparrow$ which is good for welfare
- Direct effect depending on sign of r-n

Public pension systems PAYG pensions and induced retirement Population ageing

Digression: Welfare effect of PAYG system (3)

• Factor price frontier is defined as follows:

$$w_t = \phi(r_t)$$

• Key property of FPF:

$$\frac{dw_t}{dr_t} \equiv \phi'(r_t) = -k_t$$

Introduction Public pension systems The Diamond-Samuelson model Applications PAYG pensions and induced retirement Applications Population ageing

Digression: Welfare effect of PAYG system (4)

• Welfare effect of marginal change in T:

$$\begin{aligned} \frac{d\bar{\Lambda}^Y}{dT} &= \frac{\partial\bar{\Lambda}^Y}{\partial w} \frac{dw}{dT} + \frac{\partial\bar{\Lambda}^Y}{\partial r} \frac{dr}{dT} + \frac{\partial\bar{\Lambda}^Y}{\partial T} \\ &= \frac{\partial\Lambda^Y}{\partial C^Y} \left[\frac{dw}{dT} + \frac{S}{1+r} \cdot \frac{dr}{dT} - \frac{r-n}{1+r} \right] \\ &= -\frac{r-n}{1+r} \cdot \frac{\partial\Lambda^Y}{\partial C^Y} \left[1 + k \frac{dr}{dT} \right] \end{aligned}$$

- There is thus an intimate link between the welfare effect and dynamic (in)efficiency:
 - If r = n then $\frac{d\bar{\Lambda}^Y}{dT} = 0$ (no first-order welfare effects despite capital crowding out)
 - If economy is initially dynamically inefficient (r < n) then ^{dĀY}/_{dT} > 0 (yield on PAYG pension is higher than market interest rate and capital crowding out is a good thing)

Public pension systems PAYG pensions and induced retirement Population ageing

Pension reform: From PAYG to funded system (1)

- Ignoring transitional dynamics is not a good idea: there may be non-trivial welfare costs due to transition from one to another equilibrium
- In a dynamically **inefficient** economy (with r < n initially) an *increase* in T moves the economy in the direction of the golden-rule equilibrium *and* improves welfare for all generations during transition. Optimal to expand and not to abolish the system

Public pension systems PAYG pensions and induced retirement Population ageing

Pension reform: From PAYG to funded system (2)

- In a dynamically efficient economy (with r > n initially) a decrease in T moves the economy in the direction of the golden-rule equilibrium but during transition it improves welfare for some generations (e.g. those born in the steady-state) and deteriorates it for other generations (e.g. the currently old). How do we evaluate the desirability?
 - Postulate social welfare function, weighting all generations
 - Adopt the Pareto criterion
- In a dynamically efficient economy it is **impossible** to move from a PAYG to a funded system in a Pareto-improving manner: a cut in T makes the old worse off and there is no way to compensate them without making some future generation worse off

Public pension systems PAYG pensions and induced retirement Population ageing

Induced retirement (1)

- Martin Feldstein: PAYG system not only affects the household's savings decision but also its retirement decision
 - Labour supply is endogenous during youth
 - The pension contribution rate is potentially distorting (proportional to labour income)
 - *Intragenerational* fairness: pension is proportional to contribution during youth (the lazy get less than the diligent)

Public pension systems PAYG pensions and induced retirement Population ageing

Induced retirement (2)

- Preview of some key results:
 - Pension contribution acts like an employment *subsidy* if the so-called *Aaron condition* holds
 - The general model displays a continuum of perfect foresight equilibria (Cobb-Douglas case has unique perfect foresight equilibrium)
 - If economy is in golden-rule equilibrium (r = n) then the contribution rate is non-distorting at the margin
 - Pareto-improving transition from PAYG to fully-funded system *may* now be possible

Households (1)

- Retired in old-age but endogenous labour supply during youth (early retirement)
- Utility function of a young agent:

$$\Lambda_t^Y \equiv \Lambda^Y(C_t^Y, C_{t+1}^O, 1 - N_t)$$
(S17)

• Budget identities:

$$C_t^Y + S_t = w_t N_t - T_t$$

$$C_{t+1}^O = (1 + r_{t+1})S_t + Z_{t+1}$$

Introduction Public pension systems The Diamond-Samuelson model Applications PAYG pensions and induced retirement Population ageing

Households (2)

• Pension contribution proportional to wage income:

$$T_t = t_L w_t N_t$$

where t_L is the statutory tax rate ($0 < t_L < 1$)

• Pension received during old age:

$$Z_{t+1} = \left[t_L w_{t+1} \overline{NL}_{t+1} \right] \cdot \frac{N_t}{\overline{NL}_t}$$

- Term 1: pension contributions of the future young generation (to be disbursed to the then old)
- Term 2: share of pension revenue received by household (intragenerational fairness)

Introduction Public pension systems
The Diamond-Samuelson model
Applications
PAYG pensions and induced retirement
Population ageing

Households (3)

• Consolidated (lifetime) budget constraint:

$$(1 - t_{Et}) w_t N_t = C_t^Y + \frac{C_{t+1}^O}{1 + r_{t+1}}$$
(S18)
$$t_{Et} \equiv t_L \cdot \left[1 - \frac{w_{t+1}}{w_t} \frac{\overline{NL}_{t+1}}{\overline{NL}_t} \frac{1}{1 + r_{t+1}} \right]$$

- Agent has perfect foresight regarding labour supply of the future young
- Effective tax rate, t_{Et} , different from the statutory tax rate, t_L

Introduction Public pension systems The Diamond-Samuelson model Applications PAYG pensions and induced retirement Population ageing

Households (4)

Household chooses C^Y_t, C^O_{t+1}, and N_t in order to maximize lifetime utility (S17) subject to the lifetime budget constraint (S18). First-order conditions:

$$\frac{\partial \Lambda^Y}{\partial C_{t+1}^O} = \frac{1}{1+r_{t+1}} \cdot \frac{\partial \Lambda^Y}{\partial C_t^Y}$$
$$\left[-\frac{\partial \Lambda^Y}{\partial N_t} = \right] \frac{\partial \Lambda^Y}{\partial (1-N_t)} = (1-t_{Et}) w_t \frac{\partial \Lambda^Y}{\partial C_t^Y}$$

- MRS between future and present consumption is equated to the relative price of future consumption
- MRS between leisure and consumption (during youth) is equated to the after-effective-tax wage rate
- It is not t_L but t_{Et} which exerts a potentially distorting effect on labour supply

 Introduction
 Public pension systems

 The Diamond-Samuelson model
 PAYG pensions and induced retirement

 Applications
 Population ageing

Households (5)

• Symmetric solution as all agents are identical. With constant population growth, $L_{t+1} = (1+n)L_t$ and t_{Et} simplifies to:

$$t_{Et} \equiv t_L \cdot \left[1 - \frac{w_{t+1}}{w_t} \frac{N_{t+1}}{N_t} \frac{1+n}{1+r_{t+1}} \right] = \frac{t_L}{1+r_{t+1}} \cdot \left[r_{t+1} - \frac{\Delta \overline{WI}_{t+1}}{\overline{WI}_t} \right]$$

• t_{Et} is negative if the *Aaron condition* holds, i.e. if the combined effect of growth in wage income per worker and in the population exceeds the interest rate:

$$t_{Et} < 0 \qquad \Leftrightarrow \qquad \frac{\Delta \overline{WI}_{t+1}}{\overline{WI}_t} > r_{t+1}$$

Public pension systems PAYG pensions and induced retirement Population ageing

Households (6)

Continued

- Growth in wage income widens the revenue obtained per young household
- Population growth increases the number of young households and thus widens the total revenue
- Effect of t_L on labour supply is ambiguous for two reasons:
 - Depends on Aaron condition (is t_{Et} negative of positive?)
 - Depends on income versus substitution effect

Introduction Public pension systems The Diamond-Samuelson model Applications Population ageing

The macroeconomy (1)

Relation between household saving and the capital-labour ratio:

$$S_t = (1+n)N_{t+1}k_{t+1}$$

where $k_t \equiv K_t / (L_t N_t)$

• Labour supply and the savings function:

$$N_t = N \left(w_t (1 - t_{Et}), r_{t+1} \right)$$

$$S \left(\cdot \right) \equiv \frac{C^O \left(w_t (1 - t_{Et}), r_{t+1} \right) - (1 + n) t_L w_{t+1} N_{t+1}}{1 + r_{t+1}}$$

Introduction The Diamond-Samuelson model Applications PAYG pensions and induced retirement Population ageing

The macro-economy (2)

Fundamental difference equation:

$$S[w_t(1 - t_{Et}), r_{t+1}, t_L w_{t+1} N(w_{t+1}(1 - t_{Et+1}), r_{t+2})]$$

= (1 + n)N(w_{t+1}(1 - t_{Et+1}), r_{t+2})k_{t+1}

- (Bad) $w_t = w(k_t)$ and $r_t = r(k_t)$ so expression contains k_t , k_{t+1} , and k_{t+2} via the factor prices alone!
- (Worse) t_{Et+1} depends on N_{t+2} which itself depends on k_{t+2} , k_{t+3} , and t_{Et+2} (infinite regress)
- (Disaster) FDE depends on the entire sequence of capital stocks $\{k_{t+\tau}\}_{\tau=0}^{\infty}$ so there is a continuum of perfect foresight equilibria
- (But) if the utility function is Cobb-Douglas, then labour supply is constant and the perfect foresight equilibrium is unique (case discussed below)

Steady-state welfare effect

- Despite non-uniqueness of transition path, the steady-state equilibrium is unique, so we can study its welfare properties
- The indirect utility function is now:

$$\begin{split} \bar{\Lambda}^{Y}(w,r,t_{L}) &\equiv \max_{\{C^{Y},C^{O},N\}} \Lambda^{Y}(C^{Y},C^{O},1-N) \\ \text{subject to:} \quad wN\left[1-t_{L}\frac{r-n}{1+r}\right] = C^{Y} + \frac{C^{O}}{1+r} \end{split}$$

• The welfare effect of a marginal change in the statutory tax is:

$$\frac{d\Lambda^Y}{dt_L} = -N\frac{r-n}{1+r}\cdot\frac{\partial\Lambda^Y}{\partial C^Y}\left[w+(1-t_L)k\frac{dr}{dt_L}\right]$$

- No first-order welfare effect if r = n (golden-rule equilibrium)
- If $r \neq n$ then welfare effect is ambiguous because $\frac{dr}{dt_L}$ is ambiguous

Introduction Public pension systems
The Diamond-Samuelson model
Applications Population ageing

Cobb-Douglas preferences (1)

Assume that the utility function is now:

$$\Lambda_t^Y \equiv \ln C_t^Y + \lambda_C \ln(1 - N_t) + \frac{1}{1 + \rho} \ln C_t^O$$

where $\lambda_C \ge 0$ regulates the strength of the labour supply effect • Optimal household decision rules:

$$C_{t}^{Y} = \frac{1+\rho}{2+\rho+\lambda_{C}(1+\rho)} w_{t}^{N}$$
$$C_{t+1}^{O} = \frac{1+r_{t+1}}{2+\rho+\lambda_{C}(1+\rho)} w_{t}^{N}$$
$$N_{t} = \frac{2+\rho}{2+\rho+\lambda_{C}(1+\rho)}$$

Introduction Public pension systems The Diamond-Samuelson model Applications PAYG pensions and induced retirement Population ageing

Cobb-Douglas preferences (2)

• ... decision rules, continued. With:

$$w_t^N \equiv w_t(1 - t_{Et}) \equiv w_t \left[1 - t_L \left(1 - \frac{w_{t+1}}{w_t} \cdot \frac{1 + n}{1 + r_{t+1}} \right) \right]$$

- Labour supply is constant (IE and SE offset each other)
- Consumption during youth depends on the future interest rate via the effective tax rate
- Fundamental difference equation is now:

$$(1+n)k_{t+1} = \frac{w(k_t)(1-t_L)}{2+\rho} - \frac{1+\rho}{2+\rho} \cdot \frac{t_L(1+n)w(k_{t+1})}{1+r(k_{t+1})}$$

- First-order difference equation in the capital-labour ratio so the transition path is determinate
- Assuming stability, there is a unique perfect foresight equilibrium adjustment path
- An increase in t_L leads to crowding out of the steady-state capital stock (just as when lump-sum taxes are used)

Public pension systems PAYG pensions and induced retirement Population ageing

Cobb-Douglas preferences (3)

- Unlike the lump-sum case, the increase in t_L causes a distortion in the labour supply decision (provided $r \neq n$)
 - Recall that the deadweight loss of the distorting tax hinges on the elasticity of the *compensated* labour supply curve (which is positive) not of the *uncompensated* labour supply curve (which is zero for CD preferences)
 - (Weak) implication for pension reform: provided lump-sum contributions can be used during transition, a gradual move from PAYG to a funded system is possible

Digression on deadweight loss of taxation (1)

- Deadweight loss of a distorting tax: the loss in welfare due to the use of a distorting rather than a non-distorting tax
- In the context of our model, the DWL of the pension tax t_L can be illustrated with Figure 16.5
- Assumptions: (w, r) held constant and r > n (dynamic efficiency)
- Model solved in two steps to develop diagrammatic approach
- We define lifetime income as:

$$X \equiv wN\left[1 - t_L \frac{r - n}{1 + r}\right] \equiv wN(1 - t_E)$$

Introduction Public pension systems
The Diamond-Samuelson model
Applications Population ageing

Figure 16.5: Deadweight loss of taxation

Introduction Public pension systems The Diamond-Samuelson model Applications Population ageing

Digression on deadweight loss of taxation (2)

• Stage 1: Household chooses C^Y and C^O to maximize:

$$\ln C^{Y} + \frac{1}{1+\rho} \ln C^{O}$$
 s.t. $C^{Y} + \frac{C^{O}}{1+r} = X$

This yields:

$$C^{Y} = \frac{1+\rho}{2+\rho}X, \qquad C^{O} = \frac{1+r}{2+\rho}X$$

Second expression plotted in the right-hand panel of Figure 16.5

• By substituting the solutions for C^Y and C^O into the utility function we find:

$$\Lambda^Y \equiv \frac{2+\rho}{1+\rho} \ln X + \lambda_C \ln[1-N_t] + \text{constant}$$

Digression on deadweight loss of taxation (3)

• Stage 2: The household chooses X and N to maximize Λ^Y subject to the constraint $X = wN(1 - t_E)$. The resulting expressions are:

$$N = \frac{2+\rho}{2+\rho+\lambda_C(1+\rho)}$$
$$X = \frac{(2+\rho)w(1-t_E)}{2+\rho+\lambda_C(1+\rho)}$$

The maximization problem is shown in the left-hand panel of Figure 16.5: IC is the indifference curve and TE is the constraint

Introduction Public pension systems The Diamond-Samuelson model **PAYG pensions and induced retirement Applications** Population ageing

Digression on deadweight loss of taxation (4)

- The optimal solution for $t_E = 0$ is given by point E_0 in both panels. Now consider what happens if t_E is increased:
 - Right-hand panel: no effect on EE curve (r is constant)
 - Left-hand panel: TE rotates clockwise. New equilibrium at E_1 (directly below E_0)
 - Decomposition of total effect: SE: move from E $_0$ to E $_2$; IE move from E $_2$ to E $_1$
- On the vertical axis:
 - 0B is the income one would have to give the household to restore it to its initial indifference curve IC (hypothetical transfer Z_0)
 - AB is the tax revenue collected from the agent (i.e. $t_E w N$)
 - 0B minus AB is the dead-weight loss of the tax
- If lump-sum tax were used then the slope of TE would not change and the DWL would be zero (hypothetical transfer equal to tax revenue)

Macroeconomic effects of ageing (1)

- The old-age *dependency ratio* is the number of retired people divided by the working-age population
- In the models studied so far, the old-age dependency ratio is assumed to be constant: $\frac{L_{t-1}}{L_t} = \frac{1}{1+n}$
- As the data in Table 16.1 show, this is rather unrealistic:
 - In the OECD and the US the population is ageing: proportion of young falls whilst proportion of old rises
 - Note: Demographic predictions are notoriously unreliable!

Introduction Public pension systems The Diamond-Samuelson model PAYG pensions and induced retiremer Applications Population ageing

Table 16.1: Age composition of the population

	1950	1990	2025
World			
0-19	44.1	41.7	32.8
20-65	50.8	52.1	57.5
65+	5.1	6.2	9.7
OECD			
0-19	35.0	27.2	24.8
20-64	56.7	59.9	56.6
65+	8.3	12.8	18.6
United States			
0-19	33.9	28.9	26.8
20-65	57.9	58.9	56.0
65+	8.1	12.2	17.2

Introduction Public per The Diamond-Samuelson model PAYG per Applications Populatio

Public pension systems PAYG pensions and induced retirement Population ageing

Macroeconomic effects of ageing (2)

• In the absence of immigration, there are two causes for ageing:

- Decrease in fertility
- Decrease in mortality
- We can study the first effect with D-S model: focus on interaction with pension system

Introduction Public pension systems The Diamond-Samuelson model PAYG pensions and induced retirement Applications Population ageing

Revised model (1)

Population:

$$L_t = (1+n_t) L_{t-1}$$

with n_t variable

Saving-capital link:

$$S(w_t, r_{t+1}, n_{t+1}, T) = (1 + n_{t+1})k_{t+1}$$
(S19)

- $S_n < 0$: as n_{t+1} decreases, the future pension decreases $(Z_{t+1} = (1 + n_{t+1}) T)$, and saving increases
- LHS: a reduction in n_{t+1} allows for a higher capital-labour ratio for a given level of saving

Introduction Public pension systems
The Diamond-Samuelson model
Applications Population ageing

Revised model (2)

- A permanent decrease in the fertility rate increases the long-run capital stock. The transition path is shown in Figure 16.6. Economy-wide asset ownership rises because the proportion of old increases
- Qualitatively the same conclusion as Auerbach & Kotlikoff reach on basis of detailed CGE model!

Introduction Public pension systems The Diamond-Samuelson model PAYG pensions and induced retirement Applications ageing Population ageing

Figure 16.6: The effects of ageing

