Foundations of Modern Macroeconomics Third Edition Chapter 8: Search in the labour market

Ben J. Heijdra

Department of Economics, Econometrics & Finance University of Groningen

13 December 2016

Outline

Introduction

2 Simple search model

- Firm behaviour
- Worker behaviour
- Wage setting and equilibrium

- Labour taxes
- Deposits on labour

Aims of this lecture

- How can we explain unemployment duration?
- What policies can be used to reduce equilibrium unemployment?
- Can the search model explain the persistence in the unemployment rate?

Firm behaviour Norker behaviour Nage setting and equilibrium

Searching and matching (1)

Matching function:

$$MN = G(U_+^N, V_+^N)$$

- M is the matching rate
- N is the number of workers
- ${\ensuremath{\, \circ \,}} U$ is the unemployment rate
- V is the vacancy rate
- $G(\cdot, \cdot)$ features CRTS (i.e. $G(UN, VN) = N \cdot G(U, V)$ = $NV \cdot G(U/V, 1)$
- Example: Cobb-Douglas matching function: $MN = (UN)^{\alpha} (VN)^{1-\alpha}$
- Further properties: $G_U, G_V > 0$; $G_{UU}, G_{VV} < 0$; $G_{UU}G_{VV} G_{UV}^2 > 0$

Firm behaviour Worker behaviour Wage setting and equilibrium

Searching and matching (2)

• Instantaneous probability of a vacancy being filled:

$$q \equiv \frac{\text{number of matches}}{\text{number of vacancies}} = \frac{G(UN, VN)}{VN}$$
$$= \frac{VN \cdot G(UN/VN, 1)}{VN} = G(U/V, 1) \equiv q(\underline{\theta})$$

where θ is the indicator for labour market pressure:

$$\theta \equiv \frac{V}{U}$$

- If θ is high then there are relatively many vacancies so firms with a vacancy find it hard to get a match with an unemployed job seeker (q is low)
- If θ is low then there are relatively few vacancies so firms with a vacancy find it easy to get a match with an unemployed job seeker (q is high)

Firm behaviour Norker behaviour Nage setting and equilibrium

Searching and matching (3)

Continued

 $\bullet\,$ For later use: the elasticity of the $q(\theta)$ function:

$$\eta(\theta) \equiv -\frac{\theta}{q} \frac{dq}{d\theta} = \frac{G_U}{\theta q} \Rightarrow \ 0 < \eta(\theta) < 1$$

• Inst. prob. of an unemployed job seeker finding a job:

$$\begin{split} f &\equiv \frac{\text{number of matches}}{\text{number of unemployed}} = \frac{G(UN, VN)}{UN} \\ &= \frac{VN \cdot G(UN/VN, 1)}{UN} = \theta q(\theta) \equiv f(\frac{\theta}{+}) \end{split}$$

- If θ is high then there are relatively few unemployed workers so unemployed job seekers find it easy to locate a firm with a vacancy (f is high)
- If θ is low then there are relatively many unemployed workers so unemployed job seekers find it hard to locate a firm with a vacancy (f is low)

Firm behaviour Norker behaviour Nage setting and equilibrium

Searching and matching (4)

- Continued
 - $\bullet\,$ For later use: the elasticity of the $f(\theta)$ function:

$$\frac{\theta}{f}\frac{df}{d\theta} = \left[q(\theta) + \theta\frac{dq}{d\theta}\right]\frac{\theta}{\theta q(\theta)} = 1 + \frac{\theta}{q}\frac{dq}{d\theta} = 1 - \eta(\theta) > 0$$

- Note the intimate link between the probabilities facing the two searching parties, i.e. firms with a vacancy and unemployed job seekers [Two sides of the same coin]
- We now already have some duration definitions:
 - Expected duration of a job vacancy:

$$\frac{1}{q(\theta)}$$

• Expected duration of unemployment spell:

$$\frac{1}{f(\theta)}$$

Firm behaviour Vorker behaviour Vage setting and equilibrium

Searching and matching (5)

Inflow/outflow equilibrium

$$\underbrace{\delta_m(1-U)Ndt}_{(a)} = \underbrace{\theta q(\theta)UNdt}_{(b)}$$
(S1)

where δ_m is the (exogenous) job destruction rate (due to idiosyncratic match-productivity shocks

- (a) (expected) flow into unemployment
- (b) (expected) flow out of unemployment
 - ▶ Note: Large numbers, so frequencies and probabilities coincide
 - ▶ Equation (S1) implies equilibrium unemployment rate:

$$U = \frac{\delta_m}{\delta_m + \theta q(\theta)} = \frac{\delta_m}{\delta_m + f(\theta)}$$

Firm behaviour Norker behaviour Nage setting and equilibrium

Remainder of the model solved as follows

(A) Firm behaviour

- Firm with a vacancy
- Firm without a vacancy
- (B) Worker behaviour
 - Employed worker
 - Unemployed worker
- (C) Wage setting
 - What happens when a match occurs?
 - Wage as the instrument to share the rents
- (D) Market equilibrium

F**irm behaviour** Worker behaviour Wage setting and equilibrium

(A) Firm behaviour (1)

- Analyze single-job firms (risk-neutral owner)
- Focus on intuitive "derivation"
- Firms with a vacancy have the following arbitrage equation:

$$\underbrace{rJ_V}_{(a)} = \underbrace{-c + q(\theta) \left[J_O - J_V\right]}_{(b)}$$

- J_V is the value of a (firm with a) vacancy; r is the interest rate
- $\bullet \ c$ is the search cost of the firm with a vacancy
- J_O is the value of (a firm with) an occupied job
- (a) capital cost of the asset
- (b) return on the asset: "dividend" [search costs] plus expected capital gain [finding a worker, upgrading from vacancy to a filled job]

Firm behaviour Norker behaviour Nage setting and equilibrium

(A) Firm behaviour (2)

• Assumption: free entry of firms with a vacancy:

$$J_V = 0 \implies 0 = -c + q(\theta)J_O \implies$$

$$J_O = \frac{c}{q(\theta)}$$

Hence, the value of a filled job equals the expected cost of creating it [i.e. the cost of filling a vacancy]

• Firms with an occupied job have the following arbitrage equation:

$$\underbrace{rJ_O}_{(a)} = \underbrace{[F(K,1) - (r + \delta_k)K - w] - \delta_m J_O}_{(b)}$$
(S2)

- F(K,1) is the output of the single-job firm
- Firm rents capital at rental rate $r + \delta_k$
- Firm hires labour at wage rate w [to be determined below]

Firm behaviour Vorker behaviour Vage setting and equilibrium

(A) Firm behaviour (3)

Continued

$$\underbrace{rJ_O}_{(a)} = \underbrace{\left[F(K,1) - (r+\delta_k)K - w\right] - \delta_m J_O}_{(b)} \tag{S2}$$

- (a) Capital cost of the asset
- (b) Return on the asset, consisting of the "dividend" [profit, i.e. output left over after capital and labour have been paid] plus the expected capital gain [experiencing a shock by which the match is destroyed: downgrading from filled job to vacancy]
- The firm hires capital such that J_O is maximized:

$$\max_{\{K\}} (r + \delta_m) J_O \equiv F(K, 1) - (r + \delta_k) K - w \implies$$

$$F_K(K, 1) = r + \delta_k \tag{S3}$$

F**irm behaviour** Norker behaviour Nage setting and equilibrium

(A) Firm behaviour (4)

• Since $J_O = c/q(\theta)$ and $F(K, 1) = F_K K + F_L$ we can combine (S2) and (S3):

$$\underbrace{\frac{(r+\delta_m)c}{q(\theta)}}_{\substack{K,1) - K}} = F(K,1) - F_K(K,1)K - w \implies (\text{ZP condition})$$

$$\underbrace{\frac{F_L(K,1) - w}{r+\delta_m}}_{(a)} = \underbrace{\frac{c}{q(\theta)}}_{(b)}$$

- (a) The value of an occupied job, equalling the present value of rents (accruing to the firm during the job's existence) using the risk-of-job-destruction-adjusted discount rate, $r + \delta_m$, to discount future rents
- (b) Expected search costs
 - Since firm search costs are positive (c > 0) it follows that $w < F_L$ (workers do not get their marginal product!)

Firm behaviour **Worker behaviour** Wage setting and equilibrium

(B) Worker behaviour (1)

- Risk-neutral / infinitely-lived worker
- Cares only for the present value of present and future income stream
- $\bullet\,$ Receives wage w when employed and "unemployment benefit" b when unemployed
- Unemployed worker's arbitrage equation is:

$$\underbrace{rY_U}_{(a)} = \underbrace{b + \theta q(\theta) \left[Y_E - Y_U\right]}_{(b)}$$
(S4)

- Y_U is the human wealth of the unemployed worker (who is looking for a job)
- Y_E is the human wealth of the employed worker
- (a) Capital cost of the asset
- (b) Return on the asset: "dividend" [unemployment benefits] plus expected capital gain [finding a job and upgrading from unemployment to being employed]

Firm behaviour **Vorker behaviour** Vage setting and equilibrium

(B) Worker behaviour (2)

• Employed worker's arbitrage equation is:

$$\underbrace{rY_E}_{(a)} = \underbrace{w - \delta_m \left[Y_E - Y_U\right]}_{(b)} \tag{S5}$$

- Capital cost of the asset
- Return on the asset, consisting of the "dividend" [the wage] plus the expected capital gain [losing one's job due to a shock and downgrading from being employed to being unemployed]
- Combining (S4) and (S5) yields:

$$rY_U = \frac{(r+\delta_m)b + \theta q(\theta)w}{r+\delta_m + \theta q(\theta)}$$

$$rY_E = \frac{\delta_m b + [r+\theta q(\theta)]w}{r+\delta_m + \theta q(\theta)} = \frac{r(w-b)}{r+\delta_m + \theta q(\theta)} + rY_U$$

Firm behaviour Vorker behaviour Vage setting and equilibrium

(C) Wage setting (1)

- Generalized wage bargaining over the wage between the firm and the worker
- Expected gain from striking a deal
 - To the firm:

$$rJ_O^i = F(K_i, 1) - (r + \delta_k)K_i - w_i - \delta_m J_O^i \quad \Rightarrow \\ J_O^i = \frac{F_L(K_i, 1) - w_i}{r + \delta_m}$$

• To the worker:

$$r\left(Y_E^i - Y_U\right) = w_i - \delta_m \left[Y_E^i - Y_U\right] - rY_U$$

⁻irm behaviour Vorker behaviour Vage setting and equilibrium

(C) Wage setting (2)

• Bargaining is over a wage, w_i , which maximizes Ω :

$$\max_{\{w_i\}} \Omega \equiv \beta \ln \left[Y_E^i - Y_U \right] + (1 - \beta) \ln \left[J_O^i - \underbrace{J_V}_{=0} \right]$$

where $0 < \beta < 1$ represents the (relative) bargaining power of the worker and Y_U and $J_V = 0$ are the threat points of, respectively the worker and the firm

• Maximization yields the rent sharing rule:

$$Y_E^i - Y_U = \frac{\beta}{1 - \beta} \left[J_O^i - J_V \right]$$
 (S6)

ïrm behaviour Vorker behaviour Vage setting and equilibrium

(C) Wage setting (3)

- There are two ways to turn the rent sharing rule into a wage equation [details in the book]
 - 1) After some substitutions we get:

$$w_i = (1 - \beta)rY_U + \beta F_L(K_i, 1)$$

• Worker gets a weighted average of the reservation wage (rY_U) and the marginal product of labour (F_L)

Firm behaviour Vorker behaviour Vage setting and equilibrium

(C) Wage setting (4)

Continued

2) In symmetric situation we have $K_i = K$ and $w_i = w$ for all firm/worker pairs:

$$w = (1 - \beta)b + \beta \left[F_L(K, 1) + \theta c\right]$$
 (WS curve)

- Worker gets a weighted average of the unemployment benefit (b) and the match surplus $(F_L + c\theta)$
- The match surplus consists of the marginal product of labour plus the expected search costs that are saved if the deal is struck [$\theta \equiv V/U$ so that $c\theta \equiv cV/U$ represents the average hiring costs per unemployed worker]

irm behaviour Vorker behaviour Vage setting and equilibrium

(D) Market equilibrium

• Summary of the model

$$F_K(K,1) = r + \delta_k \tag{T1}$$

$$\frac{c}{c(\theta)} = \frac{F_L\left[K(r+\delta_k), 1\right] - w}{m + \delta}$$
(T2)

$$q(\theta) \qquad r + \delta_m \tag{(12)}$$

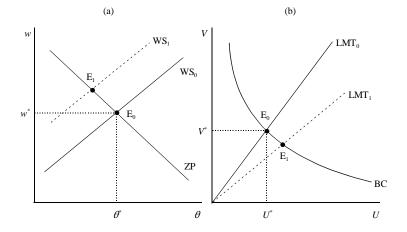
$$w = (1 - \beta)b + \beta \left[F_L\left(K(r + \delta_k), 1\right) + \theta c\right]$$
(T3)

$$U = \frac{\delta_m}{\delta_m + \theta q(\theta)} \tag{T4}$$

- Endogenous: K, w, θ , and U. Exogenous: r, b, c, δ_m , and δ_k
- Model is recursive and can thus be solved sequentially:
 - (T1) yields K^* as a function of $r + \delta_k [K^* = F_K^{-1}(r + \delta_k)]$
 - (T2)-(T3) with K = K* inserted only depend on (and determine) w* and θ*
 - Once θ^* is known equation (T4) determines U^*

Introduction Firm behaviour Simple search model Worker behaviour Further policy shocks Wage setting and eq

Figure 8.1: Search equilibrium in the labour market



Firm behaviour Vorker behaviour Vage setting and equilibrium

Graphical analysis (1)

- The model can be represented graphically in Figure 8.1
- ZP curve: [equation (T2)] supply of vacancies under free entry/exit of firms
 - Slopes downwards in (w, θ) space:

$$\left(\frac{dw}{d\theta}\right)_{ZP} = \frac{(r+\delta_m)c}{q(\theta)^2}q'(\theta) < 0$$

Intuition: $w \downarrow$ increases the value of an occupied job [raises the right-hand side of (T2)]. To restore the zero-profit equilibrium the expected search cost for firms (the left-hand side of (T2) must also increase, i.e. $q(\theta) \downarrow$ and $\theta \uparrow$ • Shifts up as $c \downarrow$ or as $\delta_m \downarrow$

Firm behaviour Vorker behaviour Vage setting and equilibrium

Graphical analysis (2)

- WS curve: [equation (T3)] wage setting curve
 - Upward sloping in (w, θ) space:

$$\left(\frac{dw}{d\theta}\right)_{WS} = \beta c > 0$$

Intuition: the worker receives part of the search costs that are foregone when he strikes a deal with a firm with a vacancy • Shifts up as $b \uparrow$ or $c \uparrow$

• In panel (a) the intersection of ZP and WS yields the equilibrium (w^*, θ^*) combination. This is the ray from the origin in panel (b)

Firm behaviour Vorker behaviour Vage setting and equilibrium

Graphical analysis (3)

• The Beveridge curve (BC) is given by equation (T4). It can be linearized in (V, U) space as follows:

$$\tilde{V} = \frac{1}{1-\eta}\tilde{\delta}_m - \frac{\delta_m + f\eta}{f(1-\eta)}\tilde{U}$$

where $\tilde{U}\equiv dU/U$, $\tilde{V}\equiv dV/V$, and $\tilde{\delta}_m\equiv d\delta_m/\delta_m$

BC slopes down: for a given unemployment rate, V ↓ leads to a fall in the instantaneous probability of finding a job (f ↓), i.e. for points below the BC curve the unemployment rate is less than the rate required for flow equilibrium in the labour market (U < δ_m/(δ_m + f)). To restore flow equilibrium the U ↑
 Shifts to the right as δ_m ↑

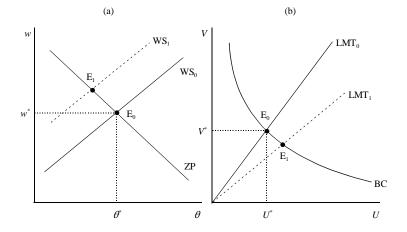
Firm behaviour Vorker behaviour Nage setting and equilibrium

Shock 1: Increase in the unemployment benefit

- Suppose that $b \uparrow$
- In Figure 8.1 this shock is illustrated
 - WS curve to the left
 - Equilibrium from E_0 to E_1
 - $w^* \uparrow \text{ and } \theta^* \downarrow$
 - In panel (b) the LMT ratio rotates clockwise
 - $\bullet \ V \downarrow \text{ and } U \uparrow \\$

Introduction Firm behaviour Simple search model Worker behaviour Further policy shocks Wage setting and eq

Figure 8.1: Search equilibrium in the labour market



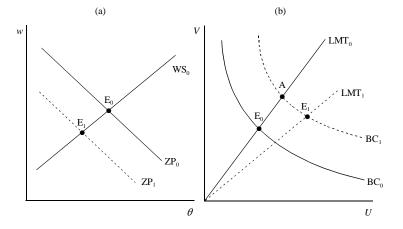
⁻irm behaviour Vorker behaviour Vage setting and equilibrium

Shock 2: Increase in the job destruction rate

- Suppose that $\delta_m \uparrow$
- ZP curve down in panel (a) of Figure 8.2
- Equilibrium from E₀ to E₁
- $\bullet \ w^* \downarrow \text{ and } \theta^* \downarrow \\$
- In panel (b) the LMT ratio rotates clockwise and BC shifts outwards [dominant effect]
- $\bullet \ V \uparrow \text{ and } U \uparrow \\$

Firm behaviour Worker behaviour Wage setting and equilibrium

Figure 8.2: The effects of a higher job destruction rate



Labour taxes

- The effects of labour taxes; t_E levied on firms t_L levied on households
- The model becomes:

$$\frac{c}{q(\theta)} = \frac{F_L \left(K(r+\delta_k), 1 \right) - w(1+t_E)}{r+\delta_m}$$
$$w = (1-\beta)\frac{b}{1-t_L} + \beta \frac{F_L \left(K(r+\delta_k), 1 \right) + \theta c}{1+t_E}$$
$$U = \frac{\delta_m}{\delta_m + \theta q(\theta)}$$

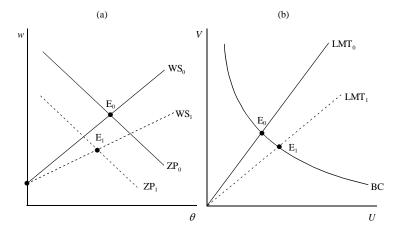
Labour taxes Deposits on labour

Labour taxes

- In Figure 8.3 the effects of the payroll tax increase are analyzed ($t_E \uparrow$)
 - WS curve to the right
 - ZP curve to the left
 - equilibrium from E_0 to E_1 and $w^*\downarrow$ and $\theta^*\downarrow$
 - In panel (b) the LMT ratio rotates clockwise
 - $\bullet \ V \downarrow \text{ and } U \uparrow \\$

.abour taxes Deposits on labou

Figure 8.3: The effects of a payroll tax



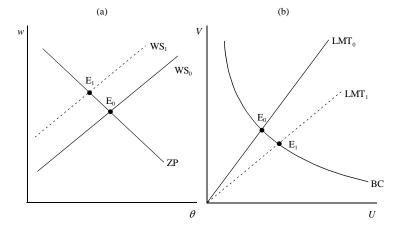
Labour taxes Deposits on labour

Labour taxes

- In Figure 8.4 the effects of the labour income tax increase are analyzed $(t_L \uparrow)$
 - WS curve to the left [z untaxed!]
 - Equilibrium from E_0 to E_1 and $w^*\uparrow$ and $\theta^*\downarrow$
 - In panel (b) the LMT ratio rotates clockwise
 - $\bullet \ V \downarrow \text{ and } U \uparrow \\$

.abour taxes Deposits on labou

Figure 8.4: The effects of a labour income tax



_abour taxes Deposits on labour

Deposits on labour

- Workers as empty pop bottles
- Deposit scheme: firm pays a deposit s_H to the government when it fires a worker, to be refunded s_H when it (re-) hires that (or another) worker
- Model becomes:

$$\frac{F_L(K,1) - w + rs_H}{r + \delta_m} = \frac{c}{q(\theta)}$$
$$w = (1 - \beta)b + \beta \left[F_L(K,1) + rs_H + \theta c\right]$$
$$U = \frac{\delta_m}{\delta_m + \theta q(\theta)}$$

Hence, the capital value of the deposit (rs_H) acts as a subsidy on the use of labour!

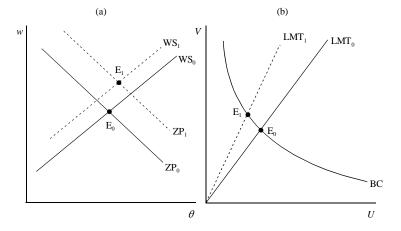
_abour taxes Deposits on labour

Deposits on labour

- In Figure 8.5 we show the effects of $s_H \uparrow$
 - ZP curve to the right
 - WS curve up
 - Equilibrium from E_0 to E_1 and $w^*\uparrow$ and $heta^*\uparrow$
 - In panel (b) the LMT ratio rotates counterclockwise
 - $\bullet \ V \uparrow \text{ and } U \downarrow \\$
- The system works to combat unemployment!

.abour taxes Deposits on labou

Figure 8.5: The effects of a deposit on labour



Encore: Unemployment persistence in the search model

- One of the stylized facts of the labour market: high persistence in the unemployment rate
- Pissarides argues that loss of skills during unemployment can explain this phenomenon
 - Unemployed lose human capital ["skills"]
 - Are thus less attractive to firms, vacancy supply falls
 - More long-term unemployment

.abour taxes Deposits on labour

Punchlines

- Central elements of the search model:
 - Search frictions
 - Matching function
 - Wage negotiations
 - Beveridge curve
- Attractive model which abandons notion of the aggregate labour market
- Holds up well empirically