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In this appendix we present the derivations for the main results used in the paper. References
to equations without the prefix “A” are to equations found in the paper. In Tables A.2 and A.3
there is an overview of, respectively, variables and parameters.

A.1 Households

A.1.1 Individual households

The optimization problem faced by the representative consumer can be solved in two stages. The
method extends the procedure of Marini and van der Ploeg (1988) by allowing the intertemporal
substitution elasticity to differ from unity and by incorporating endogenous labour supply. In step
1 the path of full consumption, x̄(v, τ), is solved. In step 2 full consumption is allocated between
its components c̄(v, τ) and 1− l̄(v, τ).

Stage 1. Full consumption is defined as the sum of spending on consumption goods and on
leisure:

x̄ (v, τ) ≡ c̄ (v, τ) + w (τ)
[
1− l̄ (v, τ)

]
, (A.1)

where w (τ) is the real wage rate and final output is the numeraire good (so that PY (τ) = 1). We
define the ideal cost-of-living index as PU (τ) as:

PU (τ)ū(v, τ) = x̄(v, τ), (A.2)

where ū(v, τ) ≡ Ω[c̄(v, τ), 1− l̄(v, τ)] is the CES sub-utility function:

ū (v, τ) ≡
[
εC c̄ (v, τ)(σC−1)/σC + (1− εC)

[
1− l̄ (v, τ)

](σC−1)/σC
]σC/(σC−1)

, (A.3)
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with σC ≥ 0 and 0 < εC < 1. In the first stage the household chooses the optimal time sequence
of ū (v, τ) and ā (v, τ) (for τ ∈ [t,∞)) in order to maximize lifetime utility,

Λ (v, t) ≡
∫ ∞

t

[
ū(v, τ)1−1/σX − 1

1− 1/σX

]
exp [(α + β)(t− τ)] dτ, (A.4)

subject to the budget identity:

˙̄a(v, τ) = [r(τ) + β] ā(v, τ) + w(τ)− z̄(τ)− PU (τ)ū(v, τ), (A.5)

and taking as given the initial level of financial assets, ā(v, t). Financial assets are consist of
government bonds, b̄ (v, τ), plus the capital stock k̄ (v, τ), i.e. ā (v, τ) = b̄ (v, τ)+k̄ (v, τ).1 As usual,
a variable with a dot represents the time derivative of that variable, i.e. ˙̄a(v, τ) ≡ dā(v, τ)/dτ .
The (interesting) first-order conditions are (for τ ∈ [t,∞)):

ū(v, τ)−1/σX = λA(v, τ)PU (τ), (A.6)

λ̇A(v, τ) = [α− r(τ)] λA(v, τ), (A.7)

where λA(v, τ) is the co-state variable of the flow budget identity (A.5). The life-time budget
restriction is obtained by integrating the flow budget identity and imposing the NPG condition
for the household, i.e. limτ→∞ ā(v, τ)× exp[− ∫ τ

t
[r(s) + β] ds] = 0:

ā(v, t) + h̄(t) =
∫ ∞

t

PU (τ)ū(v, τ) exp
[
−

∫ τ

t

[r(s) + β] ds

]
dτ

=
∫ ∞

t

λA(v, τ)−σX PU (τ)1−σX exp
[
−

∫ τ

t

[r(s) + β] ds

]
dτ, (A.8)

where h̄(t) is defined as:

h̄(t) ≡
∫ ∞

t

[w(τ)− z̄(τ)] exp
[
−

∫ τ

t

[r(s) + β] ds

]
dτ. (A.9)

The path of λA(v, τ) is described by (A.7) which can be solved to yield the following:

λA(v, τ) = exp
[
−

∫ τ

t

[r(s)− α] ds

]
λA(v, t), τ ≥ t. (A.10)

Using (A.10) in (A.8) yields the following:

ā(v, t) + h̄(t) =
∫ ∞

t

[
exp

[∫ τ

t

[α− r(s)] ds

]
λA(v, t)

]−σX

× PU (τ)1−σX exp
[
−

∫ τ

t

[r(s) + β] ds

]
dτ. (A.11)

We know that:

PU (t) ū (v, t) = x̄ (v, t) = λA(v, t)−σX PU (t)1−σX , (A.12)

so that we can rewrite (A.11) as follows:

x̄ (v, t) = [∆ (t)]−1 [
ā(v, t) + h̄(t)

]
, (A.13)

1Below we show that, in the absence of adjustment costs for investment, Tobin’s q is unity so that the value of

claims on the capital stock is just equal to the capital stock itself.
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where ∆ (t) is defined as:

∆ (t) ≡
∫ ∞

t

(
PU (τ)
PU (t)

)1−σX

exp
[
−

∫ τ

t

[(1− σX) r(s) + ασX + β] ds

]
dτ. (A.14)

The differential equation for ∆ (t) is found by differentiating (A.14) with respect to t:

∆̇ (t) = −1− (1− σX)
ṖU (t)
PU (t)

∆ (t) + [(1− σX) r(t) + ασX + β] ∆ (t)

= −1 +

[
(1− σX)

(
r(t)− ṖU (t)

PU (t)

)
+ ασX + β

]
∆(t) . (A.15)

Equation (A.13)-(A.15) generalise the various expressions found in Blanchard (1985, pp. 233-4)
to the case of endogenous labour supply.

Stage 2. The household now chooses goods consumption (c̄(v, t)) and leisure (1 − l̄(v, t)) in
order to maximize

ū(v, t) = Ω[c̄(v, t), 1− l̄(v, t)], (A.16)

subject to the constraint (A.1). Using the sub-utility function (A.3) we find that the (interesting)
first-order condition is:

c̄(v, t)
1− l̄(v, t)

=
(

εC

1− εC

)σC

w(t)σC . (A.17)

By substituting (A.17) into the constraint (A.1) we obtain the expressions for l̄(v, t) and c̄(v, t) in
terms of full consumption x̄(v, t).

w (t)
[
1− l̄(v, t)

]
= [1− ωCX (t)] x̄(v, t), (A.18)

c̄(v, t) = ωCX (t) x̄(v, t), (A.19)

where ωCX (t) is defined as:

ωCX (t) ≡ εσC

C

εσC

C + (1− εC)σC w (t)1−σC
. (A.20)

The expression for the true price index, PU (t), is obtained by substituting (A.18)-(A.19) into the
direct sub-utility function (A.3) and noting (A.2):

PU (t) ≡




[
(εC)σC + (1− εC)σC w(t)1−σC

]1/(1−σC) for σC 6= 1(
1

εC

)εC
(

w(t)
1−εC

)1−εC

for σC = 1
. (A.21)

Finally, by using (A.2) and (A.6)-(A.7) we obtain the expression for the Euler equation for the
household:

˙̄x(v, t)
x̄(v, t)

= σX [r(t)− α] + (1− σX)
ṖU (t)
PU (t)

. (A.22)

A.1.2 Demography

In order to allow for non-zero population growth, we employ the analytical framework developed
by Buiter (1988). This framework makes a distinction between the probability of death β (≥ 0)
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and the birth rate η (≥ 0) and thus allows for net population growth or decline. We denote the
population size at time t by N(t). In the absence of international migration, the growth rate of
the population, nN , is equal to the difference between the birth and death rates:2

Ṅ(t)
N(t)

= η − β ≡ nN . (A.23)

By solving (A.23) subject to the initial condition N(0) = 1, we find the path for the aggregate
population:

N(t) = enN t. (A.24)

We assume that the size of a newborn generation is proportional to the current population:

N(v, v) = ηN(v), (A.25)

where N (v, v) is the size of the cohort born at time v. Since the death rate is constant and cohorts
are assumed to be large, the size of each generation falls exponentially according to:

N(v, t) = eβ(v−t)N(v, v), t ≥ v. (A.26)

By substituting (A.24) and (A.25) into (A.26) we finally obtain:3

N(v, t) = ηeηve−βt. (A.27)

A.1.3 Aggregate household sector

Aggregate variables are calculated as the integral of the generation-specific values weighted by the
corresponding generation sizes (given in (A.27) above).

A.1.3.1 Full consumption

Aggregate full consumption, X(t), is defined as:

X(t) ≡
∫ t

−∞
N(v, t)x̄(v, t)dv, (A.28)

where N (v, t) and x̄(v, t) are given in, respectively, (A.27) and (A.13). It follows that aggregate
full consumption can be written as:

X(t) = ∆(t)−1 [A(t) + H(t)] , (A.29)

where A(t) is aggregate financial wealth and H(t) ≡ N (t) h̄ (t) is aggregate human wealth.
The aggregate Euler equation for full consumption is obtained by differentiating (A.28) with

respect to time and noting (A.27):

Ẋ(t) =
∫ t

−∞
N(v, t) ˙̄x (v, t) dv + ηN(t)x̄(t, t)− βX(t). (A.30)

2Below we shall allow β and η to be time-dependent. Age-dependency cannot be incorporated as it would

destroy the simple aggregation properties of the model.
3An attractive feature of the Buiter formulation is that it nests two influential OLG models as special cases.

Indeed, by setting η = β the Blanchard (1985) model is obtained and by setting β = 0 the Weil (1989) model is

obtained.
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By substituting (A.22) into (A.30) and dividing by X (t) we obtain:

Ẋ(t)
X(t)

=

[
σU [r (t)− α] + (1− σU )

ṖU (t)
PU (t)

]
+

[
ηN(t)x̄(t, t)− βX(t)

X(t)

]
. (A.31)

The first term in square brackets on the right-hand side is the growth rate of individual full
consumption ( ˙̄x (v, t) /x̄(v, t)) whilst the second term is the generational turnover term which
itself depends on the demographic parameters. Growth in aggregate full consumption is boosted
because of the arrival of new agents (who start to consume out of human wealth) but it is slowed
down by the death of a cross-section of the population.

Newborn generations are born without financial assets (ā(t, t) = 0) and human wealth is age-
independent (H(t) = N (t) h̄ (t)) so the numerator of the generational turnover term simplifies
to:

ηN(t)x̄(t, t)− βX(t) = ηN(t) [∆ (t)]−1
h̄(t)− β∆(t)−1 [A(t) + H(t)]

=
(η − β)H (t)− βA (t)

∆ (t)

=
nN [A (t) + H (t)]− ηA (t)

∆ (t)
. (A.32)

By substituting (A.32) into (A.31) and noting (A.29) we find:

Ẋ(t)
X(t)

=

[
σU [r (t)− α] + nN + (1− σU )

ṖU (t)
PU (t)

]
− ηA (t)

∆ (t)X(t)
, (A.33)

where we have used the fact that nN ≡ η − β. According to (A.33), aggregate full consumption
growth differs from individual full consumption growth (given in (A.22) above) for two reasons.
First, aggregate growth exceeds individual growth if there is positive net population growth (i.e.
if nN > 0). Second, aggregate growth falls short of individual growth if the group of newborns
consume less than existing households because they are less wealthy (i.e. if A(t) > 0).

A.1.3.2 Financial wealth

Aggregate financial wealth is defined as A(t) ≡ ∫ t

−∞N(v, t)ā(v, t)dv. By differentiating this ex-
pression with respect to t and noting that ā(t, t) = 0 (newborns are born without financial wealth)
we find an expression for national saving:

Ȧ(t) = −βA(t) +
∫ t

−∞
N(v, t) ˙̄a(v, t)dv. (A.34)

By using (A.1)-(A.2) and (A.5) in (A.34) and simplifying we find:

Ȧ(t) = r (t)A(t) + w (t)N (t)−N (t) z̄ (t)−X (t) , (A.35)

X (t) = C (t) + w (t) [N (t)− L (t)] , (A.36)

where C (t) and L (t) are, respectively, aggregate consumption and aggregate labour supply. It
follows from (A.35) that aggregate saving, unlike individual saving, does not feature the death rate,
β. The annuity payments are simply transfers, via the life insurance companies, from households
which pass away to households who continue to enjoy life.
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A.1.3.3 Human wealth

Aggregate human wealth is defined as H(t) ≡ ∫ t

−∞N(v, t)h̄(t)dv = N (t) h̄ (t). It follows that:

Ḣ (t) = N (t) ˙̄h(t) + h̄ (t) Ṅ (t) . (A.37)

By differentiating (A.9) with respect to time we find:

˙̄h(t) = [r(t) + β] h̄ (t)− [w(t)− z̄(t)] . (A.38)

By substituting (A.38) into (A.37) and noting that nN ≡ Ṅ (t) /N (t) = η − β we find:

Ḣ (t) = N (t)
[
− [w(t)− z̄(t)] + [r(t) + β] h̄ (t)

]
+ N (t) h̄ (t)

Ṅ (t)
N (t)

= [r(t) + η] H (t)−N (t) [w(t)− z̄(t)] . (A.39)

While individual household human wealth grows at the annuity rate of interest (r (t)+β), aggregate
human wealth accumulates at the rate r(t) + η.

A.1.3.4 Portfolio investment

Households purchase final goods in order to augment the capital stock. Since all households face
the same trade-offs, we treat the investment problem in the aggregate (and thus minimize the
notation). The objective function of the representative household-investor is:

V (t) =
∫ ∞

t

[
wK(τ)K(τ)− I(τ)

]
e−R(t,τ)dτ, (A.40)

where K (τ) is the capital stock, wK (τ) is the real rental rate on existing capital, I (τ) is gross
investment, and R(t, τ) ≡ ∫ τ

t
r(s)ds is a discounting factor. The capital accumulation identity is:

K̇(τ) = I(τ)− δK(τ), (A.41)

where δ > 0 is the constant depreciation rate of capital. The household-investor chooses paths
for gross investment and the capital stock in order to maximize (A.40) subject to (A.41) and
taking as given the path of the real rental rate (wK(τ)), and the initial capital stock (K(t)). The
(interesting) first-order conditions of this control problem are:

λI (τ) = 1, (A.42)

λ̇I (τ) = [r (τ) + δ] λI (τ)− wK (τ) , (A.43)

where λI (t) is the co-state variable associated with the constraint (A.41). By combining (A.42)-
(A.43) we obtain the usual expression for the rental rate on capital:

wK (τ) = r (τ) + δ. (A.44)

Note that the cash flow can be written as:

wK (τ)K (τ)− I (τ) = wK (τ)K (τ)− K̇ (τ)− δK (τ)

= r (τ) K (τ)− K̇ (τ) . (A.45)
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By substituting (A.45) into the objective function of the household-investor and simplifying we
obtain:

V (t) =
∫ ∞

t

[
r (τ)K (τ)− K̇ (τ)

]
e−R(t,τ)dτ = K (t) . (A.46)

The value of the capital stock to households is just the replacement value of this stock, i.e. Tobin’s
q equals unity and V (t) = K (t).

A.2 Firms

The final goods sector uses capital and labour to produce a homogeneous good. This good is either
consumed by households or the government, or invested by households to augment the aggregate
capital stock. The final goods sector is characterized by perfect competition. There are many
identical firms and for convenience we normalize their number to unity. Technology is described
by a constant-elasticity-of-substitution (CES) production function:

Y (t) = F (K (t) , L (t)) ≡ ΨY

[
εKK (t)(σK−1)/σK + (1− εK)L (t)(σK−1)/σK

]σK/(σK−1)

, (A.47)

where Y (t) is output, ΨY is an index of general technology, K (t) is capital, and L (t) is labour.
The elasticity of substitution in non-negative (σK ≥ 0) and the efficiency parameter satisfies
0 < εK < 1.

Real profit of the representative firm is defined in the usual way:

Π (t) ≡ [1− tY (t)] F (K (t) , L (t))− wK (t)K (t)− w (t)L (t) , (A.48)

where tY (t) is a tax levied on the output of the final goods sector.4 The representative producer
in the final goods sector chooses K (t) and L (t) in order to maximize Π (t), taking input prices as
given. The first-order conditions for this static problem are:

[1− tY (t)]
∂F (K (t) , L (t))

∂K (t)
= r (t) + δ, (A.49)

[1− tY (t)]
∂F (K (t) , L (t))

∂L (t)
= w (t) . (A.50)

A.3 Loose ends

The government consumes G(τ) units of the final good and its periodic budget identity is given
by:

Ḃ(τ) = r(τ)B(τ) + G(τ)−N(τ)z̄ (τ)− tY (τ)Y (τ), (A.51)

where B(τ) is real government debt at time τ . The government can finance its expenditure on
goods plus debt services by issuing more debt (Ḃ(τ)), or by changing one or both of its tax
instruments, viz. the lump-sum tax (z̄(τ)) or the tax rate on output of the final goods sector
(tY (τ)). After dividing both sides by N (τ) and simplifying we find the budget identity in per
capita terms:

ḃ(τ) = [r(τ)− nN ] b(τ) + g(τ)− z̄ (τ)− tY (τ)y(τ), (A.52)
4The output tax is equivalent to a uniform tax on labour and capital income. See Baxter and King (1993, p.

318) and below.
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where b (τ) ≡ B (τ) /N (τ), g (τ) ≡ G (τ) /N (τ), y (τ) ≡ Y (τ) /N (τ), and we have used the
fact that nN ≡ Ṅ (τ) /N (τ). We restrict attention to the dynamically efficient case so that
r (τ) > nN . Since the government must remain solvent, the NPG condition is limτ→∞ b(τ) ×
exp[− ∫ τ

t
[r(s)− nN ] ds] = 0, so that (A.52) can be integrated forward to derive the government

budget restriction:

b(t) =
∫ ∞

t

[z̄(τ) + tY (τ)y(τ)− g(τ)] exp
[
−

∫ τ

t

[r(s)− nN ] ds

]
dτ. (A.53)

Solvency of the government implies that the level of government debt must equal the present value
of present and future primary surpluses (all measured in per capita terms).

The homogeneous good, Y (τ), is used by the private sector (for consumption and investment
purposes) and by the government. The goods market clearing condition is thus given by:

Y (τ) = C (τ) + I (τ) + G (τ) . (A.54)

A.4 Summary of the growth model

In the presence of non-zero population growth, the model developed thus far will give rise to
ongoing economic growth also in the steady state. In order to study the growth process, we
must thus rewrite the model in a stationary format by expressing all growing variables relative
to the population, N (t). The key equations of the full model are stated in Table A.1, whilst the
variable and parameter definitions are stated in, respectively, Tables A.2 and A.3. The endogenous
variables are w, r, k, l, y, c, x, ∆, ωCX , PU and one of z̄, tY , and b (11 in total).5 Since there are
also 11 equations, the model is fully determinate (in principle). We demonstrate below that the
model is saddle-point stable, with one predetermined state variable (k) and two non-predetermined
“jumping” state variables (x and ∆). The exogenous variables are g, β, η, and two of z̄, tY , and
b.

We briefly discuss the key equations in Table A.1. Consider the dynamic equations first. Equa-
tion (T1.1) is the accumulation equation for the per capita stock of capital, k (t) ≡ K (t) /N (t).
It is obtained by combining (A.41) and (A.54) and dividing by N (t). Equation (T1.2) shows the
optimum time path of per capita full consumption, x (t) ≡ X (t) /N (t). It is obtained by express-
ing (A.33) in per capita format and noting that a (t) = k (t) + b (t). Finally, equation (T1.3),
describing the dynamic behaviour of ∆ (t), is a slightly rewritten version of (A.15).

Equations (T1.4)-(T1.10) are essentially static equations, in the sense that they can be related
uniquely to the endogenous state variables and the exogenous variables of the model. Equation
(T1.4) is the intensive-form production function, obtained from (A.47). Equations (T1.5)-(T1.6)
are obtained by rewriting the expressions in (A.49)-(A.50) in the intensive form and noting (A.44).
Equations (T1.7)-(T1.8) are obtained by using (A.18)-(A.19). Equations (T1.9) and (T1.10) are
identical to, respectively, (A.20) and (A.21).

Finally, equation (T1.11) is the solvency condition of the government restricting the types of
fiscal policies which the government can pursue. In the paper we distinguish various policies which
all satisfy (T1.11).

5See below for a discussion of the different closure rules for the government budget restriction.
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Table A.1: Short-run version of the model(])

(a) Dynamic equations:

k̇(t) = y(t)− c(t)− g(t)− (δ + nN ) k(t) (T1.1)

ẋ(t) =

[
σX (r (t)− α) + (1− σX)

ṖU (t)

PU (t)

]
x(t)− η

[
k(t) + b (t)

∆(t)

]
(T1.2)

∆̇(t) = −1 +

[
(1− σX)

(
r (t) + β − ṖU (t)

PU (t)

)
+ σX (α + β)

]
∆(t) (T1.3)

(b) Static equations:

y(t) = ΨY

[
εKk (t)(σK−1)/σK + (1− εK)l (t)(σK−1)/σK

]σK/(σK−1)

(T1.4)

w (t)

1− tY
= (1− εK)Ψ

1−1/σK
Y

(
y (t)

l (t)

)1/σK

(T1.5)

r (t) + δ

1− tY
= εKΨ

1−1/σK
Y

(
y (t)

k (t)

)1/σK

(T1.6)

c(t) = ωCX (t) x(t) (T1.7)

w (t) [1− l(t)] = [1− ωCX (t)] x(t) (T1.8)

(c) Miscellaneous equations:

ωCX (t) ≡ εσC
C

εσC
C + (1− εC)σC w (t)1−σC

(T1.9)

PU (t) ≡




[
(εC)σC + (1− εC)σC w(t)1−σC

]1/(1−σC)
for σC 6= 1(

1
εC

)εC
(

w(t)
1−εC

)1−εC

for σC = 1
(T1.10)

b (t) =

∫ ∞

t

[z̄(τ) + tY (τ)y(τ)− g(τ)] exp

[
−

∫ τ

t

[r(s)− nN ] ds

]
dτ (T1.11)

(]) See Table A.2 for the variable definitions and Table A.3 for the parameters.
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Table A.2: Key variable definitions

a (A, ā) per capita (aggregate, individual) financial assets
b (B, b̄) per capita (aggregate, individual) government bonds
c (C, c̄) per capita (aggregate, individual) goods consumption
g (G) per capita (aggregate) government goods consumption
h

(
H, h̄

)
per capita (aggregate, individual) human wealth

I aggregate gross investment
k

(
K, k̄

)
per capita (aggregate, individual) capital stock

l
(
L, l̄

)
per capita (aggregate, individual) labour supply

Λ life-time utility
N (nN ) level (growth rate of) the population
PU true cost-of-living index
PY output price (numeraire, PY = 1)
Π firm profit
r real interest rate
tY output tax
ū individual sub-utility
V value of the capital stock (V = K)
w real wage rate
wK real rental rate on capital
x (X, x̄) per capita (aggregate, individual) full consumption
y (Y ) per capita (aggregate) output
z̄ (Nz̄, z̄) per capita (aggregate, individual) lump-sum tax
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Table A.3: Key structural parameters

α pure rate of time preference
β instantaneous death probability
δ capital depreciation rate
∆ propensity to full-consume out of total wealth
εC parameter for consumption in the sub-felicity function
εK efficiency parameter for capital in the production function
η instantaneous birth rate
nN population growth rate (nN ≡ η − β)
σC substitution elasticity between consumption and leisure
σK substitution elasticity between capital and labour
σX intertemporal substitution elasticity
Ψ index of general technology
ωCX share of goods consumption in full consumption

A.5 Phase diagram

In this section we construct the phase diagram for a special case of the model. This so-called
unit-elastic model has the following features:

• all elasticities in preferences and technology are set equal to unity: σC = σK = σX = 1

• initial per capita debt is zero (b = 0), the output tax is constant, and lump-sum taxes
balance the government budget

• the output share of public consumption (ωG ≡ g/y) is held constant

• the birth rate exceeds the death rate (η > β) and there is thus a constant rate of population
growth (nN ≡ η − β > 0)

For convenience we present the equations of the unit-elastic model in Table A.4.

A.5.1 Employment as a function of the state variables

By using labour demand (T4.4), labour supply (T4.6), and the aggregate production function
(T4.3), we obtain the following expression relating equilibrium employment to full consumption
and capital (we drop the time index for convenience). Note that “LME” designates labour market
equilibrium.

LME: (f(l) ≡)
1− l

lεK
=

ω0x

kεK
, (A.55)

where ω0 is defined as:

ω0 ≡ 1− εC

(1− εK) (1− tY )ΨY
. (A.56)
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Table A.4: The unit-elastic model(])

(a) Dynamic equations:

k̇(t) = (1− ωG) y(t)− εCx(t)− (δ + nN ) k(t) (T4.1)

ẋ(t) = [r (t)− α] x(t)− η (α + β) k(t) (T4.2)

(b) Static equations:

y(t) = ΨY k (t)εK l (t)1−εK (T4.3)

w (t)

1− tY
= (1− εK)

(
y (t)

l (t)

)
(T4.4)

r (t) + δ

1− tY
= εK

(
y (t)

k (t)

)
(T4.5)

w (t) [1− l(t)] = (1− εC) x(t) (T4.6)

z̄(t) = (ωG − tY ) y(t) (T4.7)

(]) See Table A.2 for the variable definitions and Table A.3 for the parameters.

We are interested in the properties of f(l) in the economically meaningful interval 0 ≤ l ≤ 1.
Clearly, it follows from (A.55) that f(1) = 0 and f(0) →∞. Furthermore, f(l) has the following
first- and second-order derivatives:

f ′(l) = −
[
εK (1− l) + l

l1+εK

]
< 0, (A.57)

f ′′(l) = εK

[
1 + l + εK(1− l)

l2+εK

]
> 0. (A.58)

It follows that for l ∈ [0, 1], f (l) is a convex and downward sloping function as drawn in Figure
A.1.

The important conclusion to be drawn from (A.55) is that, for any non-negative value of x/kεK ,
there is exactly one equilibrium employment level which solves equation (A.55). Furthermore,
f (·) can be inverted to obtain a relationship between l and ω0x/kεk : l = f−1 (ω0x/kεk). This
inverse function is used below—see, e.g., equations (A.72) and (A.107) below.

A.5.2 Capital stock equilibrium

It follows from (T4.1) that k̇ = 0 holds if and only if (δ + nN ) k = (1− ωG) y−εCx. By combining
labour demand and labour supply we find that x/y can be written as:

x

y
=

(1− εK) (1− tY )
1− εC

(
1− l

l

)
. (A.59)
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Figure A.1: Labour Market Equilibrium

It follows that the capital stock equilibrium (CSE) locus (for which k̇ = 0) can be written as:6

CSE: (δ + nN ) k =
[
1− ωG − εC (1− εK) (1− tY )

1− εC

(
1− l

l

)]
y. (A.60)

We are clearly only interested in positive values of output and capital so that the term in square
brackets on the right-hand side of (A.60) must be non-negative. This furnishes a lower bound for
employment, i.e. l must exceed lMIN which is defined as follows:

lMIN ≡ εC (1− εK) (1− tY )
εC (1− εK) (1− tY ) + (1− ωG)(1− εC)

, 0 < lMIN < 1. (A.61)

By using the definition of lMIN in equation (A.60) and substituting (T4.3) we obtain the following
expression for the CSE locus:

CSE:
(

k

l

)1−εK

=
(

εC (1− εK) (1− tY )ΨY

(δ + nN ) (1− εC)

) (
l − lMIN

lMINl

)
. (A.62)

Note that (A.62) can be further rewritten as:

CSE: k = g (l) ≡
(

εC (1− εK) (1− tY )ΨY

(δ + nN ) (1− εC)

)1/(1−εK) (
l − lMIN

lMINlεK

)1/(1−εK)

, (A.63)

where g (l) represents a function relating k to l (and the constants) which is defined over the
interval l ∈ [lMIN, 1]. We find from (A.63) that this function is upward sloping:

dk

dl
= g′ (l) =

(
g (l)

1− εK

)[
(1− εK) l + εK lMIN

l (l − lMIN)

]
> 0, (A.64)

6If εC = 1 labour supply is exogenous, l = 1, and the CSE curve is:

(δ + nN ) k = (1− ωG)ΨY kεK − εCx.
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where the sign follows from the fact that l ≥ lMIN > 0 so that the term in square brackets on the
right-hand side is strictly positive. It follows from (A.63) that k = 0 for l = lMIN, so as l rises
from l = lMIN to l = 1, k rises from k = 0 to k = kK , the expression for which is obtained by
substituting l = 1 in equation (A.63):

kK ≡
(

(1− ωG)ΨY

δ + nN

)1/(1−εK)

> 0. (A.65)

To summarize, we have found:

g (lMIN) = 0, g (1) = kK . (A.66)

We now have two zeros for the k̇ = 0 line, i.e. both (k, l) = (0, lMIN) and (k, l) = (kK , 1) solve
equation (A.60). By using (A.55) we find the corresponding values for x, i.e. (x, k, l) = (0, 0, lMIN)
and (x, k, l) = (0, kK , 1) are both zeros for the CSE-line–see Figure A.2. The slope of the CSE-line
is computed as follows. We note that the CSE-line can be written as:

εCx = (1− ωG)ΨY

[
g−1(k)

]1−εK
kεK − (δ + nN ) k, (A.67)

where l = g−1(k) is the implicit function defined in (A.63). By taking the derivative of (A.67) we
obtain in a few steps:

εC

(
dx

dk

)

k̇=0

= (1− ωG) [εK + (1− εK) ηg(k)]ΨY

[
g−1(k)

k

]1−εK

− (δ + nN ) , (A.68)

where ηg(k) ≥ 0 is the elasticity of the g−1(k) function:

ηg(k) ≡ k

g−1(k)
dg−1 (k)

dk

=
(1− εK)

[
g−1 (k)− lMIN

]

(1− εK) g−1(k) + εK lMIN
, (A.69)

where we have used (A.64) to get to the second line. We follows from (A.63) that g−1(k) → lMIN >

0 as k → 0, and thus from (A.69) that ηg(0) = 0. Using these results in (A.68) we find that:

lim
k→0

εC

(
dx

dk

)

k̇=0

= (1− ωG)ΨY εK lim
k→0

[
lMIN

k

]1−εK

= +∞. (A.70)

We thus find the usual Inada-style result that the CSE locus is vertical for k near zero. The
“golden-rule” point–for which full consumption is at its maximum value–is obtained by setting
dx/dk = 0 in (A.67):7

(1− ωG)
[
εK + (1− εK) ηg

(
kGR

)] (y

k

)GR

= δ + nN , (A.71)

In order to study the dynamics of the capital stock we write (T4.1) as follows:

k̇ = (1− ωG)ΨY kεK

[
f−1

(ω0x

kεK

)]1−εK − εCx− (δ + nN ) k, (A.72)

7For exogenous labour supply, ηg (k) ≡ 0 so that (A.71) reduces to the usual expression:

(1− ωG)εK

( y

k

)
= δ + nN .
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Figure A.2: Capital Equilibrium Locus

where f−1 (·) is the inverse of f (·) defined in (A.55) above. By partially differentiating () with
respect to full consumption we find:

∂k̇

∂x
= (1− ωG)

y

l

∂

∂x

[
f−1

(ω0x

kεK

)]
− εC < 0, (A.73)

where the sign follows from the fact that ∂f−1 (·) /∂x < 0. Hence, for points above (below) the
k̇ = 0 line, employment is too low (high) and full consumption is too high (low) so that the capital
stock falls (rises). This has been illustrated with horizontal arows in Figure A.2.

A.5.3 Consumption equilibrium

The consumption equilibrium (CE) locus describes (x, k)-combinations for which ẋ = 0. By using
(T4.2) (in steady-state format), (T4.5) and (A.59) we can write the ẋ = 0 line as follows:

η(α + β) =
(1− εK) (1− tY )

1− εC

(
1− l

l

) (y

k

) [
εK(1− tY )

(y

k

)
− (α + δ)

]
(A.74)

y

k
= ΨY

(
l

k

)1−εK

. (A.75)

Equations (A.74)-(A.75) together define the ẋ = 0 line in the (k, l)-plane. We distinguish two
cases, viz. the representative-agent case (η = 0) and the overlapping-generations case (η > 0).

A.5.3.1 Representative agents (η = 0)

When η = 0, the expression in (A.74) has two solutions: full employment of labour (l = 1), or
equality between the rate of interest and the rate of time preference (r = α). The former solution
constitutes the origin and the latter solution defines a unique output-capital ratio and thus (via
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Figure A.3: Consumption equilibrium locus (RA model)

the production function (A.75)) an expression relating employment and capital:

y

k
=

(y

k

)∗
=

α + δ

εK(1− tY )
, (A.76)

l =
[

1
ΨY

(y

k

)∗]1/(1−εK)

k. (A.77)

Equation (A.77) expresses l as an upward sloping linear function of k along the CE-line. By using
(A.77) in (A.55) we obtain the solution in the (x, k)-plane:

x =
(

(1− εK) (α + δ)
(1− εC)εK

) [(
ΨY

(y/k)∗

)1/(1−εK)

− k

]
. (A.78)

Equation (A.78) defines a linear function with coordinates (x, k) = (0, kC) and (x, k) = (xC , 0)—
see Figure A.3:

kC ≡
(

ΨY

(y/k)∗

)1/(1−εK)

, (A.79)

xC ≡
(

(1− εK) (α + δ)
(1− εC)εK

)
kC . (A.80)

A.5.3.2 Overlapping generations (η > 0)

The derivation of the ẋ = 0 line is much more tedious for the overlapping-generations model in
which η > 0. In fact, we can only describe the ẋ = 0 line parametrically, i.e. by varying l in the
interval [0, 1]. First, we can solve equation (A.74) for the economically sensible (positive) solution
for the output-capital ratio:

y

k
=

(y

k

)∗ [
1
2

+
(

1
4

+ ζ

(
l

1− l

))1/2
]

, (A.81)
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where ζ is a positive constant:

ζ ≡ η(α + β)εK(1− εC)
(1− εK) (α + δ)2

. (A.82)

By substituting (A.75) into (A.81) we obtain an expression for the ẋ = 0 line in the (k, l)-plane:

k1−εK =
(

ΨY

(y/k)∗

)
h (l) , (A.83)

h (l) ≡ l1−εK

1
2 +

(
1
4 + ζ

(
l

1−l

))1/2
. (A.84)

We derive in a straightforward fashion from (A.83)-(A.84) that:

lim
l→0

k

l
=

(
ΨY

(y/k)∗

)1/(1−εK)

, (A.85)

lim
l→1

k

l
= 0. (A.86)

Note that (A.55) can be written as follows:

x =
(

(1− εK) (1− tY )ΨY

1− εC

)
(1− l)

(
k

l

)εK

. (A.87)

By using (A.85)-(A.86) in (A.87) we find the following limiting results for x:

lim
l→0

x =
(

(1− εK) (1− tY )ΨY

1− εC

)
lim
l→0

(1− l)
(

k

l

)εK

=
(

(1− εK) (1− tY )ΨY

1− εC

) (
ΨY

(y/k)∗

)εK/(1−εK)

≡ xC , (A.88)

lim
l→1

x = 0, (A.89)

where xC is defined in (A.80) above. The ẋ = 0 line has two points on the x-axis, namely x = 0
(for l → 1) and x = xC (for l → 0)—see Figure A.4.

Next we must determine the slope of the ẋ = 0 line. We first look at the region of low
employment (l ≈ 0). We can derive from (A.83) and (A.87) that:

lim
l→0

dk

dl
=

(
ΨY

(y/k)∗

)1/(1−εK)

, (A.90)

lim
l→0

dx

dl
= −

(
(1− εK) (α + δ)

(1− εC)εK

) (
ΨY

(y/k)∗

)1/(1−εK) [
1 + ζ

(
εK

1− εK

)]
, (A.91)

so that:

lim
l→0

dx

dk
= −

(
(1− εK) (α + δ)

(1− εC)εK

) [
1 + ζ

(
εK

1− εK

)]
< 0. (A.92)

It follows from the comparison of (A.78) and (A.92) that as l approaches zero, the CE line for the
OLG model approaches the CE line for the RA model from below. This has been illustrated in
Figure A.4.

We next look at the region of near full employment (l ≈ 1). It is clear from the definition of
h(l) in (A.84) that h(0) = liml→1 h(l) = 0 so both (k, l) = (0, 0) and (k, l) = (0, 1) are solutions
which lie on the ẋ = 0 line. The derivatives of h(l) around l = 0 and l = 1 are:

lim
l→0

h′(l) = (1− εK) lim
l→0

l−εK = +∞, (A.93)
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lim
l→1

h′(l) = − lim
l→1




4ζl1−εK

(1− l)2
[
1 + 4ζ

(
l

1−l

)]1/2
[
1 +

[
1 + 4ζ

(
l

1−l

)]1/2
]2




= − lim
l→1




4ζl1−εK

[1− l + 4ζl]1/2

[
(1− l)3/4 +

(
(1− l)3/2 + 4ζl (1− l)1/2

)1/2
]2




= −∞. (A.94)

By totally differentiating (A.83), the elasticity of the ẋ = 0 line in the (k, l)-plane can be written
as:

(1− εK)
(

dk

k

)
= ηh(l)

(
dl

l

)
, (A.95)

where ηh (l) ≡ lh′(l)/h(l) is the elasticity of the h (·) function:

ηh(l) = (1− εK)

− 2ζl

(1− l)2
[
1 + 4ζ

(
l

1−l

)]1/2
[
1 +

[
1 + 4ζ

(
l

1−l

)]1/2
] . (A.96)

We readily obtain the following limiting results for ηh(l):

lim
l→0

ηh(l) = 1− εK , (A.97)

lim
l→1

ηh(l) = −∞. (A.98)

In a similar fashion, equation (A.55) can be written in elasticity form as:

ηf (l)
(

dl

l

)
=

(
dx

x

)
− εK

(
dk

k

)
, (A.99)

where ηf (l) is the elasticity of the f (·) function:

ηf (l) ≡ lf ′(l)
f(l)

= −
[
l + (1− l) εK

1− l

]
. (A.100)

The limiting results for ηf (l) are:

lim
l→0

ηf (l) = −εK , (A.101)

lim
l→1

ηf (l) = −∞, (A.102)

lim
l→1

(
ηf (l)
ηh(l)

)
= 2. (A.103)

By combining (A.95) and (A.99) we obtain the elasticity of the ẋ = 0 line in the (x, k)-plane for
the corner case, l → 1:

lim
l→1

(
k

x

dx

dk

)

ẋ=0

= εK + (1− εK) lim
l→1

(
ηf (l)
ηh(l)

)
= 2− εK > 1. (A.104)
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Figure A.4: onsumption equilibrium locus for the OLG model

Furthermore, by using (A.55) and (A.83) we derive the following limiting result:

lim
l→1

(x

k

)
ẋ=0

=
(

(1− εK) (1− tY ) (y/k)∗

1− εC

)
lim
l→1

(
(1− l)l−εK

h(l)

)
= 0. (A.105)

Combining (A.104) and (A.105) shows that:

lim
l→1

(
dx

dk

)

ẋ=0

= 0. (A.106)

Hence, the ẋ = 0 line is horizontal for l ≈ 1, i.e. near the origin in Figure A.4.
In order to study the dynamics of full consumption we write (T4.2) as follows:

ẋ =
[
εK (1− tY )

y

k
− (α + δ)

]
x− η (α + β) k

=

[
εK (1− tY )ΨY

(
f−1(ω0x/kεK )

k

)1−εK

− (α + δ)

]
x− η (α + β) k, (A.107)

where we have used (A.75) and l = f−1 (ω0x/kεK ) to get to the second line. By partially differ-
entiating (A.108) with respect to the capital stock we find:

∂ẋ

∂k
= xεK (1− tY ) (1− εK) ΨY

(
f−1(ω0x/kεK )

k

)−εK ∂

∂k

(
f−1(ω0x/kεK )

k

)
− η (α + β) < 0,

(A.108)

where the sign follows from the fact that ∂
∂k

(
f−1(ω0x/kεK )

k

)
< 0.8 Hence, full consumption rises

(falls) for points to the left (right) of the ẋ = 0 line. This has been illustrated with vertical arrows
in Figures A.3 and A.4.

8This can be seen most readily from (A.115) below.
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Figure A.5: Existence and Uniqueness of the Equilibrium

A.5.4 Uniqueness of the equilibrium

The equilibrium is unique as can be shown most easily in the (k, l)-plane. Equations (A.62) and
(A.83) define the steady-state equilibrium:

CSE (k̇ = 0): k1−εK =
(

εC (1− εK) (1− tY )ΨY

(δ + nN ) (1− εC)

)(
l − lMIN

lMINlεK

)
(A.109)

CE (ẋ = 0): k1−εK =
(

ΨY

(y/k)∗

)
h(l). (A.110)

By equating the two expressions a single equation in l is obtained which possesses a unique root
l∗ ∈ (lMIN, 1). This has been illustrated in Figure A.5. Once l∗ is known so is k∗ and (by equation
(A.55)) so is x∗. Hence, (k∗, x∗, l∗) is unique. 2

A.6 Model solution

In the previous section we have demonstrated that the steady-state equilibrium for the unit-elastic
model is unique. The main text of the paper contains the phase diagrams associated with the
various prototypical cases distinguished by the model. In this section we show how the comparative
dynamic effects of the various shocks can be computed. We also demonstrate saddle-point stability
for the various cases.
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A.6.1 Linearization

We log-linearize a slightly more general version of the unit-elastic model9 around an initial steady
state growth path–see Table A.5 for the resulting expressions. The following definitions are adopted
for the flow variables and the capital stock:

k̃ (t) ≡ dk(t)
k0

˙̃
k(t) ≡ dk̇(t)

k0
l̃ (t) ≡ dl(t)

l0
ỹ (t) ≡ dy(t)

y0
z̃ (t) ≡ dz(t)

z0

x̃ (t) ≡ dx(t)
x0

˙̃x(t) ≡ dẋ(t)
x0

w̃ (t) ≡ dW (t)
W0

r̃ (t) ≡ dr(t)
r0

, (A.111)

where the variables with a subscript “0” refer to steady-state values. Intuitively, a variable with
a tilde (‘˜’) denotes the proportional rate of change in that variable (relative to the initial steady
state), and a variable with a tilde and a dot is the time rate of change in terms of the initial level.
For the output tax rate and debt the following alternative conventions are used:

t̃Y (t) ≡ dtY (t)
1−tY 0

b̃(t) ≡ r0db(t)
y0

˙̃
b(t) ≡ r0dḃ(t)

y0
. (A.112)

These conventions have the advantage that the resulting expressions are meaningful even if the
initial level of the variable is zero, as is indeed the case for b0 in Table A.5 (but not for tY 0).

The following initial steady-state shares are used in Table A.5:

ωA ≡
(

rk
y

)
0

output share of income from financial assets (recall b0 = 0)

ωC ≡
(

c
y

)
0

output share of private consumption

ωG ≡
(

g
y

)
0

output share of government consumption

ωI ≡
(

(δ+nN )k
y

)
0

output share of private investment

ωLL ≡
(

1−l
l

)
0

leisure/labour supply ratio

ωZ ≡
(

z
y

)
0

share of lump-sum taxes

(A.113)

It is easy to deduce the following relationships between the steady-state shares and the various
parameters:

(
r − nN

r

)

0

ωA = ωC + ωZ − (1− tY ) (1− εK)

= εK(1− tY )− ωI

ωG = ωZ + tY (A.114)

1 = ωC + ωI + ωG

(y

k

)
0

=
r0

ωA
=

δ + nN

ωI
=

r0 + δ

εK (1− tY )

The loglinearized model can be reduced to a two-dimensional system of first-order differential
equations in the capital stock, k̃(t), and full consumption, x̃(t). Of these state variables, the

9Instead of (T4.1), (T4.2) and (T4.7) we use:

k̇ (t) = y (t)− εCx (t)− g (t)− (δ + nN ) k (t) ,

ẋ (t) = [r (t)− α] x (t)− η (α + β) [k (t) + b (t)]

b(t) =

∫ ∞

t
[z̄(τ) + tY (τ)y(τ)− g(τ)] exp

[
−

∫ τ

t
[r(s)− nN ] ds

]
dτ.

In the construction of the phase diagram it was useful to assume a constant ωG and to abstract from debt altogether.
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capital stock is predetermined, whilst full consumption is a non-predetermined ‘jump’ variable.
Conditional upon the state variables and the policy shocks, the static part of the log-linearized
model, consisting of equations (T5.3)-(T5.6) in Table A.5, can be used to derive the following
useful ‘quasi-reduced form’ expressions:

ỹ(t) = φεK k̃(t)− (φ− 1)
[
x̃(t) + t̃Y (t)

]
, (A.115)

(1− εK) l̃(t) = (φ− 1)
[
εK k̃(t)− x̃ (t)− t̃Y (t)

]
, (A.116)

(1− εK)
[
w̃(t) + t̃Y (t)

]
= −εK

[
ỹ(t)− k̃(t)

]
(A.117)

= εK

[
(1− φεK) k̃ (t) + (φ− 1)

[
x̃(t) + t̃Y (t)

]]
(A.118)

where φ is a crucial parameter representing the intertemporal labour supply elasticity:

φ ≡ 1 + ωLL

1 + εKωLL
≥ 1, (A.119)

where ωLL (≡ (1− l)/l ≥ 0) is the ratio between leisure and labour, which also represents the in-
tertemporal substitution elasticity of labour supply. Note that φ = 1 if labour supply is exogenous
(since l = 1 implies that ωLL = 0) but is strictly greater than unity otherwise. Note furthermore
that:

0 < 1− φεK =
1− εK

1 + εKωLL
< 1− εK . (A.120)

Table A.5: The log-linearized unit-elastic model

˙̃
k(t) =

(y

k

)
0

[
ỹ (t)− ωC x̃ (t)− ωGg̃ (t)− ωI k̃ (t)

]
− dη + dβ (T5.1)

˙̃x(t) = r0r̃(t) + (r0 − α)

[
x̃(t)− k̃(t)− (1/ωA)b̃(t)− dη

η0
− dβ

α + β0

]
(T5.2)

ỹ(t) = (1− εK) l̃(t) + εK k̃(t) (T5.3)

l̃(t) = ỹ(t)− w̃(t)− t̃Y (t) (T5.4)

k̃(t) = ỹ(t)−
(

r0

r0 + δ

)
r̃(t)− t̃Y (t) (T5.5)

l̃(t) = ωLL [w̃(t)− x̃(t)] (T5.6)

b̃(0) = (1− tY )

[
L{

t̃Y , (r − nN )0
}

+

(
tY

1− tY

)
L{

ỹ, (r − nN )0
}]

+ ωZL
{
z̃, (r − nN )0

}− ωGL
{
g̃, (r − nN )0

}
(T5.7)
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A.6.2 General solution approach

The Laplace transform10 technique of Judd (1982, 1998) is used to solve the model. In its most
general form the dynamical system can be written as:

[ ˙̃
k(t)
˙̃x(t)

]
= ∆

[
k̃(t)
x̃(t)

]
−

[
γK(t)
γX(t)

]
, (A.121)

where ∆ is the Jacobian matrix (with typical element δij) and γK(t) and γX(t) are (potentially
time-varying) forcing terms. By taking the Laplace transform of (A.121) and noting that the
capital stock is predetermined (k̃(0) = 0) we obtain:

Λ(s)

[
L{k̃, s}
L{x̃, s}

]
=

[
−L{γK , s}
x̃(0)− L{γX , s}

]
, (A.122)

where Λ(s) ≡ sI − ∆. The characteristic roots of ∆ are denoted in general terms by −λ1 < 0
and λ2 > 0. By pre-multiplying both sides of (A.122) by Λ(s)−1 ≡ adjΛ(s)/[(s + λ1)(s− λ2)] we
obtain the following expression in Laplace transforms:

(s + λ1)

[
L{k̃, s}
L{x̃, s}

]
=

adjΛ(s)

[
−L{γK , s}
x̃(0)− L{γX , s}

]

(s− λ2)
, (A.123)

where adj Λ(s) is the adjoint matrix of Λ(s). In order to eliminate the instability originating from
the positive (unstable) characteristic root (λ2 > 0) the jump in full consumption at impact (x̃(0))
must be such as to render the numerator of (A.123) equal to zero for s = λ2 (for which value of s

the denominator is also zero) (see Judd, 1998, pp. 459-460). This furnishes the general expression
for x̃(0):

adj Λ(λ2)

[
−L{γK , λ2}
x̃(0)− L{γX , λ2}

]
=

[
0
0

]
, (A.124)

where it should be noted that adj Λ(λ2) has rank 1 because λ2 is a distinct eigenvalue of Λ(s).
Hence, either row of (A.124) can be used to compute x̃(0).

We next note that adj Λ(s) = adj Λ(λ2)+I(s−λ2) so that (A.123) and (A.124) can be combined
to:

(s + λ1)

[
L{k̃, s}
L{x̃, s}

]
=

[
−L{γK , s}
x̃(0)− L{γX , s}

]
+ adj Λ(λ2)

[ L{γK ,λ2}−L{γK ,s}
s−λ2L{γX ,λ2}−L{γX ,s}
s−λ2

]
. (A.125)

Equations (A.124) and (A.125) together constitute the general solution in terms of Laplace trans-
forms. All the shocks studied in the paper can be represented as special cases of a gradually
introduced shock, γi(t) ≡ γi(1 − e−ξit) with ξi > 0 and for i = X, K. For an unanticipated and
permanent shock ξi →∞ whilst for an anticipated shock 0 ¿ ξi < ∞. The Laplace transform of
the general shock term takes the form L{γi, s} = γi[1/s− 1/(s + ξi)]. By using this in (A.125) we
obtain:[

L{k̃, s}
L{x̃, s}

]
=

[
0
x̃(0)

]
1

s + λ1
+

[
k̃(∞)
x̃(∞)

]
λ1

s(s + λ1)

+ adj Λ(λ2)

[
γK/[(λ2 + ξK)(s + ξK)]
γX/[(λ2 + ξX)(s + ξX)]

]
1

(s + λ1)
, (A.126)

10The Laplace transform of x(t) is denoted by L{x, s} ≡ ∫∞
0 x(t)e−stdt. Intuitively L{x, s} represents the present

value of x(t) using s as the discount rate.
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where the long-run effects are given by:
[

k̃(∞)
x̃(∞)

]
=

adjΛ(0)
λ1λ2

[
γK

γX

]
=

adj∆
−λ1λ2

[
γK

γX

]
. (A.127)

By inverting (A.126) and noting that L{e−at, s} = 1/(s + a) we obtain the expression for the
transition paths of k̃(t) and x̃(t):

[
k̃(t)
x̃(t)

]
=

[
0

x̃(0)

]
e−λ1t +

[
k̃(∞)
x̃(∞)

]
(
1− e−λ1t

)

+ adj Λ(λ2)

[
γKT(ξK , λ1, t)/(λ2 + ξK)
γXT(ξX , λ1, t)/(λ2 + ξX)

]
, (A.128)

where T(ξi, λ1, t) is a temporary transition term with properties covered by the following Lemma.

Lemma 1 Let T(α1, α2, t) be a single transition function of the form:

T(α1, α2, t) ≡
{

e−α2t−e−α1t

α1−α2
for α1 6= α2

te−α1t for α1 = α2,

with α1 > 0 and α2 > 0. Then T(α1, α2, t) has the following properties: (i) (positive) T(α1, α2, t) >
0 t ∈ (0,∞), (ii) T(α1, α2, t) = 0 for t = 0 and in the limit as t → ∞, (iii) (single-peaked)
dT(α1, α2, t)/dt > 0 for t ∈ (0, t̂), dT(α1, α2, t)/dt < 0 for t ∈ (t̂,∞), dT(α1, α2, t)/dt = 0 for
t = t̂ and in the limit as t →∞, and dT(α1, α2, 0)/dt = 1, (iv) t̂ ≡ ln(α1/α2)/(α1−α2) if α1 6= α2

and t̂ ≡ 1/α1 if α1 = α2; (v) (point of inflexion) d2T(α1, α2, t)/dt2 = 0 for t∗ = 2t̂; (vi) if αi →∞
then T(α1, α2, t) = 0 for all t ≥ 0.

Proof: Property (i) follows by examining the three possible cases. The result is obvious if
α1 = α2. If α1 < (>)α2, then α2 − α1 > (<)0 and e−α1t > (<) e−α2t for all t ∈ (0,∞), and
T(α1, α2, 0) > 0. Property (ii) follows by direct substitution. Property (iii) follows by examining
dT(α1, α2, t)/dt:

dT(α1, α2, t)
dt

≡
{

α1e−α1t−α2e−α2t

α1−α2
for α1 6= α2

[1− α1t] e−α1t for α1 = α2.

Property (iv) is obtained by examining dT2(α1, α2, t)/dt2:

d2T(α1, α2, t)
d2t

≡
{

α2
1e−α1t−α2

2e−α2t

α2−α1
for α1 6= α2

−α1 [2− α1t] e−α1t for α1 = α2.

Hence, d2T(α1, α2, 0)/dt2 = −(α1 + α2) < 0, and limt→∞ d2T(α1, α2, t)/dt2 = 0. The inflexion
point is found by finding the value of t = t∗ where d2T(α1, α2, t)/dt2 = 0. 2

The single transition term is thus bell-shaped, zero at impact and in the long run, and pos-
itive during the transition. The terms involving the temporary transition terms T(ξi, λ1, t) in
(A.128) describe the modifications to the transition path due to the gradual–rather than abrupt–
introduction of a shock (0 < ξi ¿∞).

In order to solve the various cases discussed in the text all that needs to be done is to identify
the form of the Jacobian matrix ∆ and the shock terms γK(t) and γX(t) and to prove saddle-point
stability. In each case there is a demographic shock which has an effect on output and thus on the
government budget constraint. Depending on the fiscal closure rule, there may be further effects
on the macro-economy.
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A.6.3 Lump-sum tax financing

With lump-sum taxes, both the output tax and public debt are held constant (t̃Y (t) = b̃ (t) = 0)
and (A.115) and (T5.5) can be combined with (T5.1)-(T5.2) to derive the relevant Jacobian matrix,
∆:

∆ ≡
[ (

y
k

)
0
[φεK − ωI ] − (

y
k

)
0
(ωC + φ− 1)

−(r0 − α)− (r0 + δ) (1− φεK) (r0 − α)− (r0 + δ)(φ− 1)

]
, (A.129)

and the shock term:
[

γK(t)
γX(t)

]
≡

[ (
y
k

)
0
ωGg̃ + dη − dβ

(r0 − α)
(

dη
η0
− dβ

α+β0

)
]

. (A.130)

A.6.3.1 Stability

Saddle-point stability holds provided the determinant of ∆ in (A.129) is negative. After some
manipulation we find:

|∆| = −(r0 + δ)
(y

k

)
0

[
ωG(φ− 1) + ωCφ (1− εK) + [φ (1− εK)− ωG]

(
r0 − α

r0 + δ

)]
, (A.131)

Proposition A.1 summarizes some properties of the model that will prove useful in the discussion
of policy shocks.

Proposition 1 The model satisfies the following properties: (i) Stability: the model is saddle-
point stable. (ii) Roots: the characteristic roots are λ2 > 0 and −λ1 < 0. The unstable root
satisfies the inequality λ2 > r0 − α + ωC(r0 + δ).

Proof. Part (i) is confirmed graphically by the configuration of arrows in Figure 1 in the paper.
Part (ii) is proved as follows. Since |∆| = −λ1λ2 < 0, ∆ has distinct roots −λ1 < 0 and
λ2 > 0. To prove the inequality for the unstable root we must show that Λ(λ̄) < 0, where
λ̄ ≡ r0 − α + ωC(r0 + δ) > 0. After some manipulations we get:

Λ(λ̄) = −
(y

k

)
0
(φ + ωC − 1)

[
ωG(r0 + δ) + λ̄ [1− (1− tY )εK ]

]
< 0,

which proves part (ii) of Proposition A.1. The root inequality is used in the paper to establish
the sign of x̃(0).

A.6.3.2 Shock in public consumption

Since the system is saddle-point stable the solution method of section A.6.2 is applicable. The
shock consists of an unanticipated and permanent increase in government consumption which is
financed with a lump-sum tax. The shock terms in (A.130) thus reduce to:

[
γK

γX

]
≡

[
1
0

] (y

k

)
0
ωGg̃. (A.132)

By using (A.132) in (A.127) we find the long–run effects on the capital stock and full consumption:

k̃ (∞)
g̃

=

(
y
k

)
0
ωG [(r0 + δ) (φ− 1)− (r0 − α)]

λ1λ2
R 0, (A.133)

x̃ (∞)
g̃

=
c̃ (∞)

g̃
= −

(
y
k

)
0
ωG [(r0 + δ) (1− φεK) + (r0 − α)]

λ1λ2
< 0. (A.134)
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By using (A.133)-(A.134) in (A.115)-(A.118) the long-run results for the remaining variables are
obtained:

ỹ (∞)
g̃

= φεK
k̃(∞)

g̃
− (φ− 1)

x̃(∞)
g̃

=

(
y
k

)
0
ωG [(r0 + δ) (φ− 1) + (r0 − α) [φ (1− εK)− 1]]

λ1λ2
, (A.135)

l̃ (∞)
g̃

=
(

φ− 1
1− εK

) [
εK

k̃(∞)
g̃

− x̃(∞)
g̃

]

=
(φ− 1)

(
y
k

)
0
ωG [r0 + δ + r0 − α]
λ1λ2

> 0, (A.136)

(1− εK)
w̃ (∞)

g̃
= −εK

[
ỹ (∞)

g̃
− k̃(∞)

g̃

]

= −εK

(
y
k

)
0
ωG (r0 − α) φ (1− εK)

λ1λ2
< 0, (A.137)

(
r0

r0 + δ

)
r̃ (∞)

g̃
=

ỹ(∞)
g̃

− k̃(∞)
g̃

=

(
y
k

)
0
ωG (r0 − α) φ (1− εK)

λ1λ2
> 0. (A.138)

The impact effect on full consumption is computed by using (A.124) and noting that:

L{γK , λ2} =
(y

k

)
0

ωGg̃

λ2
, L{γX , λ2} = 0. (A.139)

After some manipulation we find:

x̃ (0)
g̃

=
c̃ (0)

g̃
= −ωG [λ2 − (r0 − α) + (r0 + δ) (φ− 1)]

λ2 (ωC + φ− 1)
< 0, (A.140)

where the sign follows from the fact that λ2 > r0 − α. By using (A.140) in (A.115)-(A.118) and
noting that k̃ (0) = 0 the impact results for the remaining variables are obtained:

ỹ (0)
g̃

= −(φ− 1)
x̃(0)

g̃
=

(φ− 1)ωG [λ2 − (r0 − α) + (r0 + δ) (φ− 1)]
λ2 (ωC + φ− 1)

> 0,

(A.141)

l̃ (0)
g̃

=
(

1
1− εK

)
ỹ(0)
g̃

> 0, (A.142)

w̃ (0)
g̃

= −
(

εK

1− εK

)
ỹ (0)

g̃
< 0, (A.143)

(
r0

r0 + δ

)
r̃ (0)

g̃
=

ỹ(0)
g̃

> 0. (A.144)

A.6.3.3 Equal shock in birth and death rate

The next shock we consider consists of an equal (unanticipated and permanent) increase in the
birth and death rates, i.e. we assume that dη = dβ > 0. This shock leaves the population growth
rate unchanged (dnN = dη − dβ = 0) and thus does not affect the CSE line. The shock terms in



Demographic Shocks: Mathematical Appendix (version May 7, 2004) 27

(A.130) thus reduce to:
[

γK

γX

]
≡

[
0
ζ1

]
dη, (A.145)

ζ1 ≡ (r0 − α) (α− nN )0
η0 (α + β0)

. (A.146)

In the text we assume that the population growth rate is moderate, in the sense that (α− nN )0 > 0.
Since r0 > α this means that ζ1 is positive. By using (A.145) in (A.127) we find the long–run
effects on the capital stock and full consumption:

(
k̃ (∞)

dη

)

dη=dβ

= −ζ1

(
y
k

)
0
(ωC + φ− 1)
λ1λ2

< 0, (A.147)

(
x̃ (∞)

dη

)

dη=dβ

=
(

c̃ (∞)
dη

)

dη=dβ

= −ζ1

(
y
k

)
0
(φεK − ωI)
λ1λ2

< 0. (A.148)

By using (A.147)-(A.148) in (A.115)-(A.118) the long-run results for the remaining variables are
obtained:

(
ỹ (∞)

dη

)

dη=dβ

= φεK

(
k̃(∞)
dη

)

dη=dβ

− (φ− 1)
(

x̃(∞)
dη

)

dη=dβ

= −ζ1

(
y
k

)
0
[φεKωC + (φ− 1) ωI ]

λ1λ2
< 0, (A.149)

(
l̃ (∞)
dη

)

dη=dβ

=
(

φ− 1
1− εK

) 
εK

(
k̃(∞)
dη

)

dη=dβ

−
(

x̃(∞)
dη

)

dη=dβ




=
(φ− 1) ζ1

(
y
k

)
0
[εK (1− ωC)− ωI ]
λ1λ2

Q 0, (A.150)

(
w̃ (∞)

dη

)

dη=dβ

=
εK

1− εK




(
ỹ (∞)

dη

)

dη=dβ

−
(

k̃(∞)
dη

)

dη=dβ




= −εKζ1

(
y
k

)
0
[(1− φεK)ωC + (φ− 1) (1− ωI)]

(1− εK) λ1λ2
< 0, (A.151)

(
r0

r0 + δ

) (
r̃ (∞)

dη

)

dη=dβ

=
(

ỹ(∞)
dη

)

dη=dβ

−
(

k̃(∞)
dη

)

dη=dβ

=
ζ1

(
y
k

)
0
[(1− φεK)ωC + (φ− 1) (1− ωI)]

λ1λ2
> 0. (A.152)

The impact effect on full consumption is computed by using (A.124) and noting that:

L{γK , λ2} = 0, L{γX , λ2} =
ζ1dη

λ2
. (A.153)

After some manipulation we find:
(

x̃ (0)
dη

)

dη=dβ

=
(

c̃ (0)
dη

)

dη=dβ

=
ζ1dη

λ2
> 0. (A.154)

By using (A.154) in (A.115)-(A.118) and noting that k̃ (0) = 0 the impact results for the remaining
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variables are obtained:

(
ỹ (0)
dη

)

dη=dβ

= −(φ− 1)
(

x̃(0)
dη

)

dη=dβ

= − (φ− 1) ζ1

λ2
< 0, (A.155)

(
l̃ (0)
dη

)

dη=dβ

=
(

1
1− εK

)(
ỹ(0)
dη

)

dη=dβ

< 0, (A.156)

(
w̃ (0)
dη

)

dη=dβ

= −
(

εK

1− εK

) (
ỹ (0)
dη

)

dη=dβ

> 0, (A.157)

(
r0

r0 + δ

) (
r̃ (0)
dη

)

dη=dβ

=
(

ỹ(0)
dη

)

dη=dβ

< 0. (A.158)

A.6.3.4 Combined shock in birth and death rate: No generational turnover effect

The next shock we consider is a knife-edge case for which both β and η change, though in such a
way that the generational turnover effect is neutralized, i.e. we ensure that γX = 0. In view of
(A.130) we set dη/η0 = dβ/ (α + β0) so that the shock vector reduces to:

[
γK(t)
γX(t)

]
≡

[
−ζ2

0

]
dη, (A.159)

ζ2 ≡
(

α− nN

η

)
> 0, (A.160)

where we assume that α > nN as before. In this case, both β and η increase but the former by
more than the latter so that the population growth rate falls. By using (A.159) in (A.127) we find
the long–run effects on the capital stock and full consumption:

(
k̃ (∞)

dη

)

γX=0

=
ζ2 [r0 − α− (r0 + δ) (φ− 1)]

λ1λ2
R 0, (A.161)

(
x̃ (∞)

dη

)

γX=0

=
(

c̃ (∞)
dη

)

γX=0

=
ζ2 [r0 − α + (r0 + δ) (1− φεK)]

λ1λ2
> 0. (A.162)
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By using (A.161)-(A.162) in (A.115)-(A.118) the long-run results for the remaining variables are
obtained:

(
ỹ (∞)

dη

)

γX=0

= φεK

(
k̃(∞)
dη

)

γX=0

− (φ− 1)
(

x̃(∞)
dη

)

γX=0

= −ζ2 [(r0 + δ) (φ− 1) + (r0 − α) [φ (1− εK)− 1]]
λ1λ2

R 0, (A.163)

(
l̃ (∞)
dη

)

γX=0

=
(

φ− 1
1− εK

) 
εK

(
k̃(∞)
dη

)

γX=0

−
(

x̃(∞)
dη

)

γX=0




= − (φ− 1) ζ2 [r0 − α + r0 + δ]
λ1λ2

< 0, (A.164)

(
w̃ (∞)

dη

)

γX=0

=
εK

1− εK




(
ỹ (∞)

dη

)

γX=0

−
(

k̃(∞)
dη

)

γX=0




=
εKζ2φ (r0 − α)

λ1λ2
> 0, (A.165)

(
r0

r0 + δ

) (
r̃ (∞)

dη

)

γX=0

=
(

ỹ(∞)
dη

)

γX=0

−
(

k̃(∞)
dη

)

γX=0

= −εKζ2φ (r0 − α)
λ1λ2

< 0. (A.166)

The impact effect on full consumption is computed by using (A.124) and noting that:

L{γK , λ2} = −ζ2dη

λ2
, L{γX , λ2} = 0. (A.167)

After some manipulation we find:
(

x̃ (0)
dη

)

γX=0

=
(

c̃ (0)
dη

)

γX=0

=
ζ2 [λ2 − (r0 − α) + (r0 + δ) (φ− 1)]

λ2

(
y
k

)
0
(ωC + φ− 1)

> 0. (A.168)

By using (A.154) in (A.115)-(A.118) and noting that k̃ (0) = 0 the impact results for the remaining
variables are obtained:

(
ỹ (0)
dη

)

γX=0

= −(φ− 1)
(

x̃(0)
dη

)

γX=0

= −ζ2 (φ− 1) [λ2 − (r0 − α) + (r0 + δ) (φ− 1)]
λ2

(
y
k

)
0
(ωC + φ− 1)

< 0, (A.169)

(
l̃ (0)
dη

)

γX=0

=
(

1
1− εK

)(
ỹ(0)
dη

)

γX=0

< 0, (A.170)

(
w̃ (0)
dη

)

γX=0

= −
(

εK

1− εK

)(
ỹ (0)
dη

)

γX=0

> 0, (A.171)

(
r0

r0 + δ

) (
r̃ (0)
dη

)

γX=0

=
(

ỹ(0)
dη

)

γX=0

< 0. (A.172)

A.6.3.5 Shock in birth rate

??? Shock is dη > 0 (both CSE and FCE lines affected). Results are ambiguous.
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A.6.3.6 Shock in death rate

??? Shock is dβ > 0 (both CSE and FCE lines affected). Results are ambiguous.

A.7 Discrete-time model

In this section we present the discrete-time version of the model which is used to simulate the
non-linear version of the model with the aid of the DYNARE MATLAB package of Juillard (1996,
2003). Variable names are the same as for the continuous time version.

A.7.1 Individual households

Lifetime utility of the household of vintage v at time t is:

Λv,t ≡
∞∑

τ=t

[
ū

1−1/σX
v,τ − 1
1− 1/σX

] (
1− β

1 + α

)t−τ

, (A.173)

where α is the rate of time preference, β is the probability of death, and v < t.11 Sub-utility is:

ūv,τ ≡
[
εC (c̄v,τ )(σC−1)/σC + (1− εC)

[
1− l̄v,τ

](σC−1)/σC
]σC/(σC−1)

. (A.174)

The household budget identity is:

āv,τ =
(

1 + rτ

1− β

)
āv,τ−1 + Wτ − z̄τ − PU,τ ūv,τ , (A.175)

PU,τ ūv,τ = xv,τ . (A.176)

where āv,τ−1 is the stock of financial wealth at the end of period τ −1. Financial wealth is defined
as:

āv,τ ≡ k̄v,τ + b̄v,τ . (A.177)

Full consumption definition:

x̄v,τ ≡ c̄v,τ + Wτ

[
1− l̄v,τ

]
. (A.178)

Discount factor:

Rt,τ ≡





1 for τ = t

∏τ
µ=t+1

1−β
1+rµ

for τ > t

. (A.179)

Useful relationships:

Rt,τ

Rt−1,τ
=

1
Rt−1,t

=
1 + rt

1− β
,

Rt,τ+1

Rt,τ
=

1− β

1 + rτ+1
. (A.180)

Intertemporal budget restriction:
∞∑

τ=t

x̄v,τRt,τ = TW v,t, (A.181)

TW v,t ≡
(

1 + rt

1− β

) [
āv,t−1 + h̄t−1

]
. (A.182)

11A newly born household starts to consume one period after it is born, i.e. Λt−1,t is its lifetime utility.
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Lagrangian expression:

ZH
v,t =

∞∑
τ=t

(
1− β

1 + α

)τ−t
{

ū
1−1/σX
v,τ − 1
1− 1/σX

+ λH
v,τ

[(
1 + rτ

1− β

)
āv,τ−1 + Wτ − z̄τ − PU,τ ūv,τ − āv,τ

]}
.

(A.183)

The (interesting) first-order conditions:

ū−1/σX
v,τ = λH

v,τPU,τ , (A.184)

λH
v,τ = λH

v,τ+1

1 + rτ+1

1 + α
. (A.185)

Euler equation for ūv,τ :

ūv,τ+1

ūv,τ
=

(
PU,τ

PU,τ+1

)σX
(

1 + rτ+1

1 + α

)σX

. (A.186)

Euler equation for full consumption x̄v,τ :

x̄v,τ+1

x̄v,τ
=

(
PU,τ+1

PU,τ

)1−σX
(

1− β

1 + α

1 + rτ+1

1− β

)σX

. (A.187)

The conditional solution for the Euler equation is:

Rt,τ x̄v,τ =
(

PU,τ

PU,t

)1−σX
(

1− β

1 + α

)σX(τ−t)

R1−σX
t,τ x̄v,t. (A.188)

By using (A.188) in (A.181) we obtain the solution for full consumption:

x̄v,t = TW v,t/∆t, (A.189)

∆t ≡
∞∑

τ=t

(
PU,τRt,τ

PU,t

)1−σX
(

1− β

1 + α

)σX(τ−t)

. (A.190)

We note various aspects of (A.190):

• If σX = 1 then:

1
∆t

≡
[ ∞∑

τ=t

(
1− β

1 + α

)τ−t
]−1

=
β + α

1 + α
. (A.191)

• In general, the difference equation for ∆t is:

∆t = 1 +
(

PU,t+1

PU,t

1− β

1 + rt+1

)1−σX
(

1− β

1 + α

)σX

∆t+1 (A.192)

Human wealth (excluding current non-interest income) is defined as:

h̄t ≡
∞∑

τ=t+1

[Wτ − z̄τ ]Rt,τ . (A.193)

The difference equation for human wealth is:

h̄t =
(

1 + rt

1− β

)
h̄t−1 − [Wt − z̄t] (A.194)
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Consumption of goods and leisure:

Wt

[
1− l̄v,t

]
= [1− ωCX,t] x̄v,t, (A.195)

c̄v,t = ωCX,tx̄v,t, (A.196)

ωCX,t ≡ εσC

C

εσC

C + (1− εC)σC W 1−σC
t

. (A.197)

Definition PU,t:

PU,t ≡





[
(εC)σC + (1− εC)σC W 1−σC

t

]1/(1−σC)
for σC 6= 1

(
1

εC

)εC
(

Wt

1−εC

)1−εC

for σC = 1

(A.198)

A.7.2 Population dynamics

Total population stock at the end of period t− 1 (beginning of period t) is Nt−1. Definition:

Nt ≡
∞∑

a=1

Nt−a,t−1 (A.199)

where Nt−1,t−1 is the new generation born at end of period t− 1 (a = 1 for newborn). Population
growth rate:

Nt ≡ (1 + nN ) Nt−1. (A.200)

Or:

Nt = (1 + nN )t (A.201)

Digression on timing convention:

• stock at beginning of period 2 is N2−1 = N1

• then early during period 2 [winter-time] death occurs, i.e. population dwindles to (1− β) N1

• then later during period 2 [spring-time] births occur, i.e. population expands to (1 + η) (1− β)N1

• hence, at end of period 2 we have N2 = (1 + nN )N1 so 1 + nN ≡ (1 + η) (1− β)

Hence:

1 + nN = (1− β) (1 + η) . (A.202)

Newborn generation:

Nv,v = η (1− β)Nv−1. (A.203)

Size of existing generations:

Nv,t−1 = (1− β)t−v−1
Nv,v, t− 1 ≥ v. (A.204)

Or in terms of age, a ≡ t− v:

Nt−a,t−1 = (1− β)a−1
Nt−a,t−a, a ≥ 1. (A.205)
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Cohort size (for a ≥ 1):

Nt−a,t−1 = η

(
1− β

1 + nN

)a

Nt−1 = η (1 + η)−a
Nt−1, (A.206)

where we have used the fact that Nt−1 = (1 + nN )a
Nt−a−1. Cohort size in terms of v and t (for

v ≤ t− 1):

Nv,t−1 = η (1 + η)v−1 (1− β)t−1
. (A.207)

A.7.3 Aggregate household sector

A.7.3.1 Total human wealth

Total human wealth is defined as follows:

Ht ≡
−∞∑
v=t

h̄tNv,t = Nth̄t. (A.208)

Note that it includes the human wealth of newborns.

A.7.3.2 Difference equation aggregate human wealth

By using (A.194) in (A.208) we find:

Ht = Nt

[(
1 + rt

1− β

)
h̄t−1 − [Wt − zt]

]

= (1 + η) (1− β)Nt−1

(
1 + rt

1− β

)
h̄t−1 −Nt [Wt − z̄t]

= (1 + rt) (1 + η)Ht−1 −Nt [Wt − z̄t] , (A.209)

where we have used (A.200), (A.202), and noted that Ht−1 = Nt−1h̄t−1.

A.7.3.3 Aggregate full consumption

Aggregate full consumption is defined as follows:

Xt ≡
−∞∑

v=t−1

x̄v,tNv,t−1. (A.210)

The thing to note is that newborns start to consume when they are 1 period old. We recall from
above that:

x̄v,t =
1

∆t
TW v,t (A.211)

TW v,t ≡ 1 + rt

1− β

[
āv,t−1 + h̄t−1

]
(A.212)

These equations are found in (A.189) and (A.182) respectively. After some manipulation we find
that aggregate total wealth is:

TW t ≡
−∞∑

v=t−1

TW v,tNv,t−1

=
1 + rt

1− β

−∞∑
v=t−1

[
āv,t−1 + h̄t−1

]
Nv,t−1

=
1 + rt

1− β
[(1− β)At−1 + Ht−1] , (A.213)
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where we have used:

−∞∑
v=t−1

āv,t−1Nv,t−1 = āt−1,t−1︸ ︷︷ ︸
=0

Nt−1,t−1 +
−∞∑

v=t−2

āv,t−1Nv,t−1

= (1− β)
−∞∑

v=t−2

āv,t−1Nv,t−2

= (1− β) At−1 (as Nv,t−1 = (1− β)Nv,t−2). (A.214)

Recall that newborns are born without financial wealth, i.e. āt−1,t−1 = 0.

It follows from (A.210)-(A.211) that aggregate full consumption can be written as:

Xt =
1

∆t
TW t

=
1

∆t

1 + rt

1− β
[(1− β)At−1 + Ht−1] . (A.215)

We know that by definition:

Xt+1 ≡
−∞∑
v=t

x̄v,t+1Nv,t

= Nt,tx̄t,t+1 +
−∞∑

v=t−1

x̄v,t+1Nv,t

= η (1− β)Nt−1x̄t,t+1 + (1− β) ΓtXt, (A.216)

where we have used:

Γt ≡
(

PU,t+1

PU,t

)1−σX
(

1 + rt+1

1 + α

)σX

, (A.217)

−∞∑
v=t−1

x̄v,t+1Nv,t =
−∞∑

v=t−1

Γtx̄v,t (1− β)Nv,t−1 = (1− β) ΓtXt. (A.218)

A.7.3.4 Aggregate Euler equation

To derive the aggregate Euler equation for full consumption we first write:

x̄t,t+1 =
1

∆t+1
TW t,t+1, (A.219)

TW t,t+1 ≡
(

1 + rt+1

1− β

) 
 āt,t︸︷︷︸

=0

+ h̄t


 =

(
1 + rt+1

1− β

)
h̄t. (A.220)

It follows that:

η (1− β) Nt−1x̄t,t+1 =
1 + rt+1

∆t+1
ηNt−1h̄t

=
1 + rt+1

∆t+1

ηHt

(1− β) (1 + η)
, (A.221)
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where we have used (A.208) and noted that Nt = (1− β) (1 + η)Nt−1. By using (A.221) in
(A.216) we find:

∆t+1Xt+1 =
1 + rt+1

1− β

ηHt

1 + η
+ (1− β) Γt∆t+1Xt

=
1 + rt+1

1− β

[
ηHt

1 + η
+ (1− β) (∆t − 1) Xt

]
, (A.222)

where we have used:

Γt∆t+1 =
1 + rt+1

1− β
(∆t − 1) . (A.223)

(Note that (A.223) follows by definition from (A.192) and (A.217).) We derive from (A.215) that:

∆t+1Xt+1 =
1 + rt+1

1− β
[(1− β)At + Ht] ⇐⇒

Ht =
1− β

1 + rt+1
∆t+1Xt+1 − (1− β)At. (A.224)

Using (A.224) in (A.222) we find after some manipulations:

∆t+1Xt+1 =
η

1 + η

1 + rt+1

1− β

[
1− β

1 + rt+1
∆t+1Xt+1 − (1− β)At

]

+ (1 + rt+1) (∆t − 1)Xt

= (1 + rt+1)
[
(1 + η) (∆t − 1)Xt − ηAt

]
. (A.225)

Equation (A.225) is the most general expression for the aggregate Euler equation for full consump-
tion. Several special cases are worth noting:

• For the unit-elastic case (for which σX = 1) we find that ∆t = ∆t+1 = 1+α
β+α so that (A.225)

reduces to:

Xt+1 =
1 + rt+1

1 + α

[
(1 + nN ) Xt − η (β + α) At

]
. (A.226)

• The standard representative-agent case is obtained by setting β = 0, η = 0 (so that nN = 0)
in (A.225):

Xt+1 = ΓtXt, (A.227)

where Γt is defined in (A.217) above. Note that (A.227) is identical to (A.187).

A.7.3.5 Aggregate financial wealth

Aggregate financial wealth is defined as:

At ≡
∞∑

a=1

Nt−a,t−1āt−a,t, (A.228)

where At is financial wealth at the end of period t. By using (A.175)-(A.176) and (A.178) (and
noting v ≡ t− a) we find:

∞∑
a=1

Nt−a,t−1āt−a,t =
∞∑

a=1

Nt−a,t−1

[(
1 + rt

1− β

)
āt−a,t−1 + [Wt − z̄t]− x̄t−a,t

]
⇔

At = (1 + rt)At−1 + Nt−1 [Wt − z̄t]−Xt. (A.229)
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In deriving (A.229) we have also used:

∞∑
a=1

Nt−a,t−1āt−a,t−1 = Nt−1,t−1āt−1,t−1 +
∞∑

a=2

Nt−a,t−1āt−a,t−1

= (1− β) At−1, (A.230)

as āt−1,t−1 = 0 (newborns have no financial assets).

A.7.3.6 Aggregate goods consumption and labour supply

Aggregate goods consumption is defined as follows:

Ct ≡
−∞∑

v=t−1

c̄v,tNv,t−1. (A.231)

By using (A.196) in (A.231) and noting (A.210) we find:

Ct ≡
−∞∑

v=t−1

ωCX,tx̄v,tNv,t−1 = ωCX,tXt. (A.232)

In a similar fashion, aggregate leisure demand is given by:

−∞∑
v=t−1

Wt

[
1− l̄v,t

]
Nv,t−1. (A.233)

By using (A.195) in (A.233) and noting (A.210) we obtain:

−∞∑
v=t−1

Wt

[
1− l̄v,t

]
Nv,t−1 = Wt [Nt−1 − Lt] = [1− ωCX,t] Xt, (A.234)

where Lt is aggregate labour supply in period t:

Lt ≡
−∞∑

v=t−1

l̄v,tNv,t−1. (A.235)

A.7.4 Firms

Output is given by:

Yt = F [Kt−1, Lt] (A.236)

≡ ΨY

[
εKK

(σK−1)/σK

t−1 + (1− εK)L(σK−1)/σK

t

]σK/(σK−1)

. (A.237)

Real profit is defined as:

Πt ≡ (1− tY,t)Yt −WK
t KN

t−1 −WtLt. (A.238)

The first-order conditions are:

(1− tY,t)
∂F [Kt−1, Lt]

∂Kt−1
= WK

t , (A.239)

(1− tY,t)
∂F [Kt−1, Lt]

∂Lt
= Wt. (A.240)
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A.7.5 Portfolio investments

A.7.5.1 Capital accumulation:

By purchasing goods for investment purposes the household creates capital which is rented out to
the firms at a rental rate WK

τ . The objective function associated with the portfolio investment
problem is:

V̄t =
∞∑

τ=t

[
WK

τ Kτ−1 − Iτ

]
Dt,τ (A.241)

= WK
t Kt−1 − It +

∞∑
τ=t+1

[
WK

τ Kτ−1 − Iτ

]
Dt,τ

︸ ︷︷ ︸
Vt

, (A.242)

Dt,τ ≡





1 for τ = t

∏τ
µ=t+1

1
1+rµ

for τ > t

, (A.243)

where rµ is the real interest rate. The capital accumulation identity is:

Kτ = Iτ + (1− δ)Kτ−1. (A.244)

The investor chooses paths for gross investment and the capital stock in order to maximize (A.241)
subject to (A.244) and taking as given the path of the rental rate (WK

τ ) and the initial capital
stock (Kt−1). The first-order conditions are (for τ = t, t + 1, ...):

∂V̄t

∂Iτ
= −Dt,τ + λτ = 0, (A.245)

∂V̄t

∂Kτ
= WK

τ+1Dt,τ+1 − λτ + (1− δ) λτ+1 = 0, (A.246)

where λτ is the Lagrange multiplier associated with (A.244). Combining these first-order condi-
tions yields:

WK
τ+1 + (1− δ) =

Dt,τ

Dt,τ+1
≡ 1 + rτ+1. (A.247)

By simplifying (A.247) we obtain the usual rental rate expression:

WK
τ+1 = rτ+1 + δ (for τ = t, t + 1, ...). (A.248)

Note that Vt satisfies the following arbitrage relationship:

(1 + rt)Vt−1 = WK
t Kt−1 − It + Vt. (A.249)

It is not difficult to show that:

Vt = Kt. (A.250)
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The proof proceeds as follows:

Vt ≡
∞∑

τ=t+1

[
WK

τ Kτ−1 − Iτ

]
Dt,τ

=
∞∑

τ=t+1

[
WK

τ Kτ−1 −Kτ + (1− δ) Kτ−1

]
Dt,τ

=
[(

WK
t+1 + (1− δ)

)
Kt −Kt+1

]
Dt,t+1

+
[(

WK
t+2 + (1− δ)

)
Kt+1 −Kt+2

]
Dt,t+2

+
[(

WK
t+3 + (1− δ)

)
Kt+2 −Kt+3

]
Dt,t+3 + ... (A.251)

Gathering terms we find:

Vt =
[
WK

t+1 + (1− δ)
]
KtDt,t+1

+
[(

WK
t+2 + (1− δ)

)
Dt,t+2 −Dt,t+1

]
Kt+1

+
[(

WK
t+3 + (1− δ)

)
Dt,t+3 −DN

t,t+2

]
Kt+2

+ ... (A.252)

Using the first-order condition,
[
WK

τ+1 + (1− δ)
]
Dt,τ+1 = Dt,τ (and noting that Dt,t = 1) we can

simplify (A.252) to obtain (A.250).

A.7.6 Loose ends

The government budget identity is given by:

Bt = (1 + rt) Bt−1 + Gt −Nt−1z̄t − tY,tYt (A.253)

where rt denotes the real rate of interest on government bonds, B is aggregate government debt,
and G is government consumption. Dividing both sides of (A.253) by Nt ≡ (1 + nN ) Nt−1 we find:

bt =
(1 + rt) bt−1 + gt − z̄t − tY,tyt

1 + nN
, (A.254)

where bt ≡ Bt/Nt, gt ≡ Gt/Nt−1, and yt ≡ Yt/Nt−1.
The goods market clearing condition is:

Yt = Ct + It + Gt. (A.255)

The discrete-time model is given in Table A.9. We note the following conventions. Flow
variables are expressed in terms of the population stock at the beginning of the period (i.e. at the
end of the previous period):

ct ≡ Ct

Nt−1
gt ≡ Gt

Nt−1
lt ≡ Lt

Nt−1

yt ≡ Yt

Nt−1
xt ≡ Xt

Nt−1

(A.256)

Stock variables are expressed as follows:

bt ≡ Bt

Nt
at ≡ At

Nt

kt ≡ Kt

Nt

(A.257)
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Table A.9: Discrete-time version of the model(])

(a) Dynamic equations:

kt − kt−1 =
yt − ct − gt − (δ + nN ) kt−1

1 + nN
(T9.1)

∆t+1xt+1 = (1 + rt+1)
[ (∆t − 1) xt

1− β
− η [kt + bt]

]
(T9.2)

∆t = 1 +

(
PU,t+1

PU,t

1− β

1 + rt+1

)1−σX
(

1− β

1 + α

)σX

∆t+1 (T9.3)

(b) Static equations:

yt = ΨY

[
εKk

(σK−1)/σK
t−1 + (1− εK)l

(σK−1)/σK
t

]σK/(σK−1)

(T9.4)

Wt

1− tY,t
= (1− εK)Ψ

1−1/σK
Y

(
yt

lt

)1/σK

(T9.5)

rt + δ

1− tY,t
= εKΨ

1−1/σK
Y

(
yt

kt−1

)1/σK

(T9.6)

ct = ωCX,txt (T9.7)

Wt [1− lt] = [1− ωCX,t] xt (T9.8)

(c) Miscellaneous equations:

ωCX,t ≡ εσC
C

(εC)σC + (1− εC)σC W 1−σC
t

(T9.9)

PU,t ≡




[
(εC)σC + (1− εC)σC W 1−σC

t

]1/(1−σC)

for σC 6= 1(
1

εC

)εC
(

Wt
1−εC

)1−εC

for σC = 1
(T9.10)

bt − bt−1 =
(rt − nN ) bt−1 + gt − z̄t − tY,tyt

1 + nN
(T9.11)

(]) See the list of variables for the definitions.
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A.7.7 Numerical simulations

In order to illustrate the quantitative significance of returns to scale and the mode of financing,
this section presents a calibrated example of the model. Since we wish to study the effects of the
intertemporal substitution elasticity in labour supply (ωLL), the pre-existing output tax (tY ), and
the diversity parameter (η) on the various output multipliers, the model is calibrated in such a
way that these parameters can be freely varied. In terms of Tables A.5 - A.8, the parameters that
are held fixed throughout the simulations are the rate of pure time preference (α = 0.03), the rate
of depreciation of the capital stock (δ = 0.07), the share of labour income (1− εK = 0.7), and the
share of government spending (ωG = 0.2). In Table A.5, tY = 0 and ωLL is varied and in Table
A.6, ωLL = 2 and tY is varied. Table A.5-A.6 refer to the case of infinitely-lived agents (β = 0).
Once these coefficients are set, all other information regarding shares can be obtained by using
the information at the bottom of Table A.2.12

12Indeed, β = 0 implies that r = α and y = (α + δ)/[εK(1− tY )]. It follows that ωI = δ/y, ωC = 1− ωI − ωG,
ωT = ωG − tY , and ωA = (εK(1− tY )− ωI .
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